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In 2001 maize became the number one production crop in the world with the Food and Agriculture Organization of the United
Nations reporting over 614 million tonnes produced. Its success is due to the high productivity per acre in tandem with a wide
variety of commercial uses. Not only is maize an excellent source of food, feed, and fuel, but also its by-products are used in the
production of various commercial products. Maize’s unparalleled success in agriculture stems from basic research, the outcomes
of which drive breeding and product development. In order for basic, translational, and applied researchers to benefit from others’
investigations, newly generated data must be made freely and easily accessible. MaizeGDB is the maize research community’s
central repository for genetics and genomics information. The overall goals of MaizeGDB are to facilitate access to the outcomes
of maize research by integrating new maize data into the database and to support the maize research community by coordinating
group activities.

Copyright © 2008 Carolyn J. Lawrence et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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1. INTRODUCTION

Maize (Zea mays L.) is a species that encompasses the
subspecies mays (commonly called “corn” in the US) as well
as the various teosintes that gave rise to modern maize. Maize
is an important crop: not only is it one of the most abundant
sources of food and feed for people and livestock the world
over, it is also an important component of many industrial
products. Maize byproducts are present in, for example,
glue, paint, insecticides, toothpaste, rubber tires, rayon, and
molded plastics, among others. Maize is also currently the
nation’s major source of ethanol, a major biofuel that is more
environmentally friendly than gasoline and that may be a
more economical fuel alternative in the long run. Although
it is unlikely that ethanol production from maize directly
will be sustainable long-term, maize’s suitability to serve as a

model organism for developing fuelstock grasses is apparent
[1]. Indeed, in addition to its value as a commodity, maize
has been a premiere model organism for biological research
for over 100 years. Many seminal scientific discoveries have
first been shown in maize, such as the identification [2] and
cloning [3] of transposable elements, the correlation between
cytological and genetic crossing over [4], and the discovery of
epigenetic phenomena [5]. These exceptional characteristics
of maize set this amazing plant apart: no other species serves
as both a commodity and a leading model for basic research.

Today, with the accelerated generation of maize genetic
and genomic information, the need for a centralized biologi-
cal data repository is critical. MaizeGDB (the Maize Genetics
and genomics Data Base [6]) (http://www.maizegdb.org/)
is the Model Organism Database (MOD) for maize. Stored
at MaizeGDB is comprehensive information on loci (genes
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and other genetically defined genomic regions including
QTL), variations (alleles and other sorts of polymorphisms),
stocks, molecular markers and probes, sequences, gene
product information, phenotypic images and descriptions,
metabolic pathway information, reference data, and con-
tact information for maize researchers. Described in the
results and discussion section are example workflows that
could be followed by researchers to utilize the MaizeGDB
resource for their research. Other long-term resources serv-
ing maize data include Gramene (http://www.gramene.org/)
[7], which specializes in grass comparative genomics, and
GRIN (the Germplasm Resources Information Network;
http://www.ars-grin.gov/npgs/), which provides access to the
National Plant Germplasm System’s germplasm stocks and
related breeding data. MaizeGDB makes an effort to guide
researchers to these resources via context-sensitive linkages
rather than duplicating data, though some data are shared
simply to allow for the context-sensitive linkages to be
created. This reduces duplication in effort and allows per-
sonnel skilled in comparative genomics and germplasm con-
servation/plant breeding to interact with maize researchers
directly via Gramene and GRIN, respectively.

In addition to storing and making maize data available,
the MaizeGDB team also provides services to the commu-
nity of maize researchers and offers technical support for
the Maize Genetics Executive Committee and the Annual
Maize Genetics Conference. Also available at the MaizeGDB
website, as a service to the maize research community, are
bulletin boards for news items, information of interest to
cooperators, lists of websites for projects that focus on the
scientific study of maize, the Editorial Board’s recommended
reading list, and educational outreach items.

The genetic and genomic data as well as community-
related information maintained by MaizeGDB are highly
utilized: MaizeGDB averages 8620 visitors (based on unique
Internet Protocol or IP addresses) and over 160 000 page
impressions per month (July 2007 to June 2008). In addition,
MaizeGDB came in fifth out of 170 in a National Plant
Genome Initiative Grantees poll in which lead principal
investigators reported most useful websites for their research
[8].

2. MATERIALS AND METHODS

2.1. Kinds of data in the database that link genetic and
genome sequence information

MaizeGDB is the primary repository for the major genetic
and cytogenetic maps and includes details about genes,
mutants, QTL (quantitative trait loci), and molecular
markers including 2500 RFLPs (restriction fragment length
polymorphisms), 4625 SSRs (simple sequence repeats),
363 SNP (single nucleotide polymorphisms), 2500 indels
(insertion/deletion sites), and 10 644 overgos (overlapping
oligonucleotides). These data are described using 1.27
millions synonyms, 42 000 primer sequences, 16 394 raw
scores from mapping based upon 16 panels of stocks,
and 323 313 links to GenBank [9] accessions. GenBank
accessions form the links between the genetic position on

a chromosome, the sequence records at MaizeGDB, and
the EST (expressed sequence tag) and GSS (genome survey
sequence) contig assemblies at PlantGDB [10] and Dana
Farber (The Gene Indices at http://compbio.dfci.harvard
.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=maize, previously at
TIGR [11]). All of the 3 520 247 sequences in MaizeGDB
are accessible by BLAST [12] and can be filtered to report
only mapped loci, including any SSRs and overgos that may
not be mapped genetically, but via BACs (bacterial artificial
chromosomes) in anchored contigs.

The inclusion of the public BAC FPC (Finger Print
Contig) information [13] adds 439 449 BACs together with
associated overgo, SSR, and RFLP markers, which are
used to assemble the contigs and to link contigs onto
genetic map coordinates. The order of loci on the BAC
contigs is represented by over 27 000 sequenced-based
loci on the IBM2 FPC057 maps (http://www.maizegdb
.org/cgi-bin/displaymapresults.cgi?term=ibm2+fpc0507) in
MaizeGDB, by links to contigs at both the Arizona FPC
site (http://www.genome.arizona.edu/) and the genome
sequencing project (http://www.maizesequence.org/). As the
B73 genome sequence progresses, these BAC sequences are
added to MaizeGDB along with links to the sequencing
project, both from the BAC clones and from genetically
mapped loci associated with a BAC.

The newest maps in MaizeGDB, IBM SNP 2007 (http://
www.maizegdb.org/cgi-bin/displaymapresults.cgi?term=ibm
%20snp%202007), are the first of a new generation of
genetic maps from the Maize Diversity Project (http://www
.panzea.org/) kindly provided pre-publication by Dr. Mike
McMullen. The SNP loci on these maps are associated
with allelic sequences from a core set of maize and teosinte
germplasm. Because the majority of the anticipated 1128
loci have been previously mapped onto BAC clones [13, 14],
these genetic maps tightly link sequence diversity to the B73
genome sequence.

2.2. Methods of access, environments,
and the database back end

2.2.1. The production web interface

Maize researchers primarily access MaizeGDB through
the series of interconnected Web pages available at
http://www.maizegdb.org/ (see Figure 1). These web pages
are dynamically generated and are written in PHP (the
recursive abbreviation for PHP Hypertext Preprocessor [15])
and Perl [16]. Through this interface, each page shows
detailed information on a specific biological entity (such as
a gene) as well as basic information about data associated
with it (genes are associated with maps, phenotypes, and
citations, among others). These additional data types are
linked to the gene page, enabling quick access to alternative
data views. The site also includes links to related resources at
other databases; genes, for example, are linked to Gramene
[7].

One may access these individual data pages by using
either (1) the search bar located at the top right of every page
(Figure 1(A)), or (2) data type-specific advanced querying
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Figure 1: The MaizeGDB home page. The most commonly utilized search functionality for MaizeGDB is the search bar (A), which is
available within the header of any MaizeGDB page. To browse data and to search specific data types using specific limiters, the Data Centers
(B) are also quite useful. Also available is a Bin Viewer (C), which allows for a view of lots of data types within the context of their
chromosomal location. To enable access to the Data Centers and other displays of interest from any MaizeGDB page, a pull-down menu
for “Useful pages” (D) is accessible on the header of any MaizeGDB page. The footer of all MaizeGDB pages contains a context-sensitive
“feedback form” link (E). Researchers use the feedback form to report errors, ask questions, and to contact the MaizeGDB team directly. For
newcomers to the site, the MaizeGDB Tutorial (F) can help them to get a jump start on how to use the site.

tools (accessible via the “Data Centers” links; Figure 1(B))
on the left side of the home page, or (3) the Bin Viewer tool
(Figure 1(C)), which is located in the left margin of the home
page or via a pull down labeled “Useful pages” (Figure 1(D))
accessible at the top of any MaizeGDB page. These tools allow
researchers to easily find relevant data displays.

MaizeGDB’s method of data delivery has three primary
goals: placing information within the framework of its
scientific meaning, making this information available to
the researcher with minimal input (often only the relevant
term), and requiring minimal effort from the researcher to
comprehend the data displays. By focusing on biological
context and ease of use as the primary focus of this
interface (the “production” Web interface), the database
is intended to be intuitive to the researcher as their click
stream follows a logical path of biological associations.
Up-to-date site usage statistics can be accessed online at
http://www.maizegdb.org/usage/.

2.2.2. Structure and relationship of environments:
production, staging, and test

The production Web interface, which most MaizeGDB
users interact with, is only one component of the overall
MaizeGDB infrastructure (Figure 2). The data accessed by
the production Web interface are typically updated on
the first Tuesday of each month. Prior to being in that
Production Environment, the data are prepared for public
accessibility in a Staging Environment. In the Staging Envi-
ronment, the most up-to-date information is available, new
data are added to the database, and existing data are updated
with new information. In addition to a Web interface that
appears identical to the one in the Production Environment,
the Staging Environment offers SQL (Structured Query
Language) read-only access to the community so that
researchers interested in interacting with the data in a more
direct and customized manner can have access to the most

http://www.maizegdb.org/usage/
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up-to-date information available. In addition, a Disaster
Recovery system has been put in place whereby the Curation
Database is backed up in a compressed format to a separate
machine in Ames, Iowa daily. Once weekly, the Ames file is
copied to Columbia, Missouri for off-site storage.

To aid in the modeling of new types of data for inclusion
in the MaizeGDB product and to enable programming to
be tried out in a safe place, a Test Environment identical to
the Staging Environment has been created. Note that three
copies of the database exist. While each environment and
server has a specific purpose, all are configured such that they
could serve a backup to each other. If any one server was to
fail, either of the other two could provide full, unrestricted
data access and site functionality. The curation database is
backed up on a daily basis and is available for download
(http://goblin1.zool.iastate.edu/∼oracle/) for those who have
Oracle Relational Database Management System (RDBMS)
installed locally.

2.2.3. Curation

Also available within the Staging Environment are Com-
munity Curation Tools to enable researchers to add small
datasets to the database directly, as well as a set of Profes-
sional Curation Tools developed by Dr. Marty Sachs’ group
at the Maize Genetics Cooperation-Stock Center in Urbana-
Champaign [17]. Whereas the Community Curation Tools
have many safeguards to help researchers enter data step-
wise and with enforced field requirements, the Professional
Curation Tools allow MaizeGDB project members as well
as Stock Center personnel to enter datasets in a more
stream-lined and powerful fashion with fewer integrity
enforcement rules (which slow down the data entry process
considerably). It also should be noted that data added
to the database via the Community Curation Tools are
first marked as “Experimental” that must be “Activated”
by professional curators at MaizeGDB. This ensures that
only quality information is made publicly accessible. The
availability of a Curation Web interface (within the Staging
Environment) enables researchers to view the data as they
will appear once they are uploaded to Production. Few
researchers (about 30 at present) have Community Curation
accounts. To increase the use of these tools, training sessions
are being organized (see Section 2.3, below). If researchers
wish to deposit complex or large datasets, it would not be
reasonable to enter the data via the Community Curation
Tools because those tools work via a “bottom-up” approach
whereby the records are (1) built based upon the most basic
information included in the dataset and (2) entered one
record at a time (i.e., not in bulk). For complex or large
datasets, researchers are encouraged to submit data files to
the curators at MaizeGDB. Those data are added to the
database directly by curators and the database administrator.

2.2.4. Database back end

Each environment’s server has a perpetual license and is
supported by Oracle RDBMS powered by 2 × 2.0 GHz Xeon
processors, 4 GB of RAM, 5 × 73 GB Ultra 320 10 K RPM

drives with Red Hat Advanced Server 2.1 operating system
installed. The curation database, either partially or in its
entirety, can be moved to MySQL, Microsoft Access, and
nearly any other portable data format that a researcher would
need. Requests to gain read-only SQL access to the Curation
database can be made via the feedback link that appears at the
bottom of any MaizeGDB page. Data housed at MaizeGDB
are in the public domain and are freely available for use
without a license.

2.3. Outreach

One of the strengths of MaizeGDB is its responsiveness
to community input, received either personally or by the
feedback forms accessible at the bottom of each page
(Figure 1(E)). To provide outreach and user support as well
as to solicit input from researchers in a more active manner,
several strategies are employed. The first is tutorials and
basic information on MaizeGDB. The MaizeGDB Tutorial
(Figure 1(F)) can be reached from the home page at the top
of the left margin. A new user can go through this tutorial,
and become familiar with how to use the site quickly. In
addition, a “Site Tour” with an overview with examples can
be found under the “Useful pages” pull down menu at the
top of each page. More specific tutorial examples and other
educational materials are available via the “Education” link,
also within the “Useful pages” pull down menu. Also, on
many of the “Data Center” pages (available from the left
margin of the front page or via the “Useful pages” pull down)
a discussion of the topic of the page that is suitable for the
general public appears toward the bottom. Another form of
outreach supported by MaizeGDB is assistance at meetings
and conferences. Representatives from MaizeGDB attend and
help researchers at the Annual Maize Genetics Conference
(usually in March), the International Plant and Animal
Genome Conference (January), and various other meetings
through direct interaction in person. Finally, researchers can
request a MaizeGDB site visit. About three times a year,
an expert curator travels to various research locations and
provides tutorials and support for maize researchers. For
these visits, the local maize researchers are asked for a list of
specific questions ahead of time. During the one to two day
visits, researchers interact in groups and one-on-one with the
traveling curator to learn how to utilize MaizeGDB for their
research and to deposit data at MaizeGDB.

2.4. Community support services

MaizeGDB provides community support in several ways.
Two members of the MaizeGDB team, MLS and TES, serve
as ex officio members of the Maize Genetics Conference
Steering Committee. They collect electronic abstracts
for the Annual Maize Genetics Conference and handle
the preparation and printing of the program for the
conference. MaizeGDB personnel also manage regular
community surveys on behalf of the Maize Genetics
Executive Committee. These surveys enable the Executive
Committee to summarize the overall research interest
of the maize community and to advise funding agencies

http://goblin1.zool.iastate.edu/~oracle/
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Figure 2: Simplified infrastructure of MaizeGDB. The community of maize researchers can add data to the database (downward-facing
arrows from the uppermost yellow box) via direct data deposition (upper left) and via a set of Community Curation Tools that interacts
with the Curation Database (upper center). Researchers are also allowed access to maize data (upward-facing arrows from the lower dashed
box) via a web interface that can be accessed at http://www.maizegdb.org/ (upper right) and by way of SQL access to the Curation Database,
which houses the most up-to-date data available (upper center). These functionalities are supported by two of the three environments:
Production and Staging, respectively (upper dashed gold boxes). Available for use by MaizeGDB personnel to facilitate data modeling
and trial programming manipulations is a third environment called Test (lower left dashed gold box), which is identical to the Staging
Environment. To ensure that the most up-to-date copy of the database is backed up, a Disaster Recovery process has been instituted (lower
center dashed gold box) whereby a compressed copy of the database is backed up to a separate machine in Ames, Iowa daily, and to a server
in Columbia, Missouri weekly.

on future research directions. MaizeGDB personnel
also manage the Executive Committee’s website (i.e.,
http://www.maizegdb.org/mgec.php) and conducts the
Executive Committee’s elections. MaizeGDB houses the
mailing list for the annual Maize Newsletter and project
personnel conduct semi-regular mailings to the maize com-
munity on behalf of interested researchers by maintaining an
electronic list of researchers’ contact information. Potential
mailings to this list are vetted by the Executive Committee.

3. RESULTS AND DISCUSSION

To demonstrate how researchers utilize MaizeGDB, three
example usage cases are presented here. Because researchers
with very different goals can all utilize MaizeGDB to advance
their work, the usage cases are classified by research type:
basic, translational, and applied. See Figure 3 for examples of
how these research types fit together. By enabling researchers
to carry out workflows that support translational and
applied research, MaizeGDB plays a part in influencing crop
development directly. Although a single researcher might
even include all of these three aspects in his/her research

simultaneously, here the researcher types are distinguished
as follows: basic researchers investigate the fundamental
biology of the organism, translational researchers work to
determine the application of basic research outcomes for
practical purposes [18], and applied researchers implement
proven technologies to improve crops.

3.1. Basic

Many basic researchers work with mutants to understand
the processes underlying biological phenomena. Once a new
mutant is found, there are several standard methods used
to elucidate normal gene functions. These efforts include
determining whether the mutant represents an allele of a
previously described gene, and if not, genetic mapping and
cloning of the new gene. Information stored in MaizeGDB is
useful in all of these steps.

In a large screen for mutations that change pericarp
pigmentation from red to some other color, Researcher
1 has found a plant with a brownish-red pericarp
coloration. She first wants search MaizeGDB to find
all known mutants that have red pericarp phenotypes

http://www.maizegdb.org/
http://www.maizegdb.org/mgec.php
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Section 3)

Determining the
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maysin production for
corn ear worm
resistance

Using markers
(morphological and
molecular) to guide
breeding programs to
produce ear worm
resistant sweet corn
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Figure 3: Three types of biological research. Research can be divided into three categories: basic, translational, and applied. Outcomes
from basic research feed into translational predictions, and developed uses for these findings constitute the basis for developing real-world
applications that benefit humanity and the world. Listed after the flow of research are definitions for each research type as well as medical
and plant biological models for how the different divisions are interrelated. Also shown are overviews of the example usage cases presented
in Section 3.

to determine whether this mutation represents a newly
discovered gene. Because she does not know how others
might have described the phenotype, she decides to
browse existing phenotype terms and images. From the
left margin of the MaizeGDB homepage, she selects
“Mutant Phenotypes” under “Data Centers-Functional.”
On this page (http://www.maizegdb.org/), she selects
“pericarp color” from the pull down menu labeled
“Show only phenotypes relating to this trait” in the
green search bar. A number of possible mutant phenotypes
are returned, including “red pericarp.” Clicking on the
“red pericarp” phenotype link, she finds that the listed
mutants are alleles of p1 (pericarp color1). On this page
(http://www.maizegdb.org/cgi-bin/displayphenorecord.cgi?
id=13818), she scrolls to the bottom and finds that there
are many stocks that can be ordered from the Maize
Genetics Cooperation-Stock Center that carry P1-rr (an
allele that causes red pericarp and red cob) or P1-rw (red
pericarp and white cob). Having these stocks in hand will
enable her to test whether the new mutant represents an
allele of the p1 gene, so she decides to order a few for
complementation analyses. Clicking on the stock links
listed on the variation/allele page allows her access to a
shopping cart utility (in the green right hand panel), and

she orders seed from the Stock Center directly through the
MaizeGDB interface. She then goes back to the results of her
“pericarp color” query and repeats the process for “cherry
pericarp,” ordering stocks for r1-ch (colored1-cherry), also
to be used in her complementation analyses. (Another way
she could have found maize stocks that have red pericarp is
the following: from the header of any page, select “Useful
pages” and click “Stocks.” This pulls up the stock search
page http://www.maizegdb.org/stock.php. In the green box,
select stocks with the phenotype “red pericarp” from the
pull down menu of all phenotype names and submit. A
long list of stocks that contain alleles of p1 with red pericarp
is returned. Alternatively, the Stock Center Catalog is also
available from the Stocks Data Center page.)

Researcher 1 receives several appropriate stocks and
performs allelism tests and determines that her mutant
(which turns out to be recessive) is not allelic to p1 or r1.
She returns to MaizeGDB and again looks through “Mutant
Phenotype” results using the “pericarp color” query. Listed
there are brown pericarp, orange pericarp, white pericarp,
and lacquer red pericarp phenotypes in addition to the
red and cherry phenotypes she focused on initially. She
finds that there is no stock available for the brown pericarp
phenotype (the brown pericarp1 mutant has been lost), and

http://www.maizegdb.org/phenotype.php
http://www.maizegdb.org/cgi-bin/displayphenorecord.cgi?id=13818
http://www.maizegdb.org/cgi-bin/displayphenorecord.cgi?id=13818
http://www.maizegdb.org/stock.php
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all the others are alleles that confer colored pericarp in the
dominant condition as a result of the presence of P1 alleles.
To determine whether the new mutation could be an allele of
bp1, she decides to map it genetically.

MaizeGDB houses the largest collection of publicly
available genetic maps of maize (currently over 1,337 maps).
These include maps of genes primarily defined by mutants
with morphological phenotypes (“Genetic 2005” is the most
current), maps based on phenotypic molecular markers, and
composite maps where various maps have been integrated.
These maps can be easily accessed from the home page,
via the left margin link to “Data Centers-Genetic-Maps”
(http://www.maizegdb.org/map.php). This page not only
allows various map search functions, but also provides infor-
mation on the most popular maps and a handy reference to
explain more about the various composite maps.

The maize genome is divided into genetic bins of
approximately 20 centiMorgans each and boundary markers
with nearby SSRs can be used for mapping (for further expla-
nation see http://www.maizegdb.org/cgi-bin/bin viewer.cgi).
Researcher 1 decides to utilize SSRs to map her gene to bin
resolution. To find the core markers from the home page,
she clicks on “Tools-Bin Viewer” in the left margin of the
home page. This provides a list of the core bin markers and
a link to purchase relevant primers to screen her mapping
population. She generates a mapping population, performs
PCR experiments using the polymorphic markers, and maps
her mutant to bin 9.02.

To see what genes are located in bin 9.02, she goes back
to the Bin Viewer (from the homepage), and holds the curser
over the image of chromosome 9 until she sees “bin 9.02,”
then clicks. The result is a long list of genes, other loci,
sequences, EST contigs, SSRs, BACs, and other data relating
to bin 9.02. Searching through this data, she sees that bp1 is
listed under “other loci” in bin 9.02. This is a “lapsed locus”
meaning that the stock has been lost, but perhaps she has
found a new allele!

To see more specific genetic mapping data on bp1,
she goes to the search bar along the top green bar of
every page, selects “loci” from the pull down menu,
types “bp1” into the field provided, and clicks the button
marked “Go!” This brings her to the bp1 locus page
(http://www.maizegdb.org/cgi-bin/displaylocusrecord.cgi?
id=61563) where she can see that bp1 is placed on three
genetic maps. Clicking on each map, Researcher 1 learns that
in 1935, bp1 was mapped between sh1 and wx1 (shrunken1
and waxy1), two well-studied genes. To search for molecular
markers suitable for fine structure mapping, she visits “Data
Centers-Genetic-Maps” from the link on the home page.
In the green Advanced Search box, she enters sh1 and wx1
separately in the “Show only maps containing this locus”
lines. This returns only genetic maps that contain both
genes. She selects the map with the most markers—IBM2
2005 Neighbors 9 (with 2,488 markers). She finds sh1 at
position 80.30, and wx1 at 185.00. To choose among several
molecular markers, Researcher 1 follows the available links
leading her to information about suitable primers, a number
of variations (which can help to decide if there may be a
polymorphism in her mapping populations), gel patterns,

and any available GenBank accession numbers for sequences
as well as sequenced BACs. She finally selects markers and
performs fine structure mapping. As she finds markers
closer and closer to the gene, she can proceed with positional
cloning to determine whether the position is consistent with
bp1 (nice examples of how this is done can be found in
[19–21]).

3.2. Translational

Research to understand the metabolic pathways that produce
pigmentation (like those outlined in Section 3.1) are well
studied in maize [22]. One example of a well-characterized
gene that confers pigmentation is p1, which encodes a
transcription factor that regulates synthesis of flavones such
as anthocyanins [23]. The p1 gene, along with its adjacent
duplicate pericarp color2 (p2), controls pericarp and cob
coloration and causes silks to brown when cut. One flavone
produced by the pathway is maysin, a compound which
has been shown to be antinutritive to the corn ear worm
at concentrations above 0.2% fresh weight if husks limit
access to the ear such that feeding on silks is required for
the insect to enter [24]. Many QTL for resistance to corn
earworm map near loci in the flavone synthesis pathway that
are either regulatory genes (such as p1 and p2), or at rate-
limiting enzymatic steps, such as c1 (chalcone synthase1) that
contribute maysin accumulation in silks [25]. Understanding
how maysin functions and how this information could be
used for production agriculture is Researcher 2’s area of
expertise.

Researcher 2 has investigated maysin synthesis for some
time, and has decided to clone an uncharacterized maysin
QTL near umc105a, in the bin 9.02, which is bounded by
bz1 and wx1 [24]. He believes that the QTL may be a
previously described, but lost, bp1 mutant thought to be
involved in maysin synthesis. In the first step, he must first
find molecular markers to more finely map the region (his
preference would be to use SSRs, since members of the
lab are already using them successfully). He plans to follow
the strategy of chromosome walking to narrow down the
region of interest [19–21] followed by association mapping
to identify the actual QTL sequence [26, 27]. Knowing this
sequence would enable plant breeders to track the QTL for
marker assisted selection.

To find SSR data for mapping to a bin region, Researcher
2 goes to the MaizeGDB home page and clicks on “Data
Centers-Genomic-Molecular Markers/Probes” in the left
margin, then clicks the “SSR” link at the top of the page
(the link is located in “Specific information is available on
BACs, ESTs, overgos, and SSRs.”) Scrolling down to the green
“Set Up Criteria” box, he then selects bin 9.02 and submits
a search request. A report is returned that lists the available
SSRs for bin 9.02, complete with primers, gel patterns for
different germplasm, and related maps. By going back to the
SSR page, he also downloads tabular reports of map locations
of all SSRs on chromosome 9, including those that have been
anchored to a BAC contig. Using this information in the
laboratory, members of his research group perform mapping
experiments using several SSRs in bin 9.02 along with some

http://www.maizegdb.org/map.php
http://www.maizegdb.org/cgi-bin/bin_viewer.cgi
http://www.maizegdb.org/cgi-bin/displaylocusrecord.cgi?id=61563
http://www.maizegdb.org/cgi-bin/displaylocusrecord.cgi?id=61563


8 International Journal of Plant Genomics

others in the more distal part of bin 9.03. They discover that
the mid-region peak for the QTL is very near an SSR for
bnlg1372, which is anchored to a BAC contig.

To find sequenced BACs that may harbor the earworm
resistance QTL, Researcher 2 uses the search bar at the
top of each MaizeGDB page to find the locus bnlg1372.
At the top of the bnlg1372 page, he follows a link to
the contig 373 display at the Maize Sequencing Project
site (http://www.maizesequence.org/). This is a rather large
contig with many sequenced BACs and assigned markers.
At the Maize Sequencing Project site, he uses the export
function (a button at the left margin) to view a text list
of all the markers and sequenced BAC clones that are
available on the Finger Print Contig physical map. He finds
that bnlg1372 is assigned to the region “19742100,1974700,”
encompassed by the sequenced BAC clone, c0324E10. This
information provides coordinates for viewing the region
on a large contig associated with bnlg1372, the sequence
of BAC c0324E10, and any other BACs nearby. Researcher
2 sequences candidate regions in diverse germplasm and
conducts association analysis using silk maysin levels as
a trait. This may require other information about nearby
markers, which also are accessible via MaizeGDB [28, 29].

Although these investigations may require the devel-
opment of further sequenced-based markers, Researcher 2
hopes that useful markers already exist and decides to explore
MaizeGDB for any other sequences or primer-based markers
already assigned to the region of interest including SNPs and
indels. To do this from the locus page for bnlg1372, he clicks
on the link to the most current IBM neighbors map listed,
then explores the “sequence” and “primer” view versions of
the map by clicking on the relevant links at the top of the page
just under the map name. The primer view shows primers
associated with mapping probes along with the name of the
probes—just what he needs to get going with the association
mapping work.

3.3. Applied

Interested in breeding plants for organic sweet corn produc-
tion, Researcher 3 has decided to use molecular markers to
select for high maysin content, which would increase resis-
tance to the corn earworm—a cause of significant damage
to sweet corn [30]. Although plants could be genetically
modified to carry the genes that confer high maysin levels
in silks (e.g., see [31]), Researcher 3’s farming clients require
that their product be certified as both organic and “GMO-
free.” To meet the producers’ needs, he has decided to pursue
a marker-assisted selection program to create high maysin
sweet inbred lines, which he will use to generate single-
cross hybrids. To get started with the work, he searches
MaizeGDB to find references, markers, and stocks for the
project. Described here are the details on how he could use
MaizeGDB to (1) access stocks known to have high maysin
content directly and (2) locate relevant stocks based upon
associated data with no prior knowledge of which stocks
he wants to find. An outline of how he uses MaizeGDB to
identify relevant selectable markers for tracking the various
QTL associated with maysin accumulation also is described.

In the instance of looking for particular stocks,
Researcher 3 has identified GT114 as a high maysin line from
[25]. Using the green search bar at the top of any MaizeGDB
page, he searches “stocks” for “GT114.” At that page, he
sees a brief annotation stating that GT114 is a poor pollen
producer and makes a note of that observation and plans to
cross by IA453 and IA5125, sweet lines that produce pollen
well, to ameliorate this potential difficulty. Clicking the link
to GT114, he sees that it is an inbred line derived from GT-
DDSA (DD Syn A) in Georgia, and it is made available via
GRIN. Selecting the link for GRIN, a page opens at that site
(http://www.ars-grin.gov/cgi-bin/npgs/html/search.pl?PI+
511314). Listed there are the Crop Science Registration data,
availability (noted as currently unavailable, but a call to Mark
Millard, maize curator at the maintenance site indicates that
he could access that stock in limited quantities if current
resources allow), and an image of bulk kernels among
other information. The image of bulked kernels is especially
revealing: the kernels are yellow and the cob fragments
appear red. Aware that a red cob would be unacceptable for
breeding sweet corn (the red pigment could cause quite a
mess for those cooking and eating corn on then cob), he
decides to search MaizeGDB for other available high maysin
stocks.

After a literature search of breeding stocks with a white
cob that might still produce maysin in the silks, Researcher
3 starts searching stocks for those known to carry the P1-
wwb allele, a dominant allele of the p1 locus that confers
white pericarp, white cob, and browning silks. By clicking
the “Data Centers-Genetic-Stocks” link from the MaizeGDB
homepage, he arrives at the Stocks Data Center page (which
is also accessible via the “Useful pages” pull down at the top
of every MaizeGDB page). He uses the Advanced Search box
to limit the query by variation to those stocks associated
with the allele P1-wwb. A number of the stocks returned
on the results page have been evaluated for silk maysin
accumulation (per associated publications) and could be
further investigated as potential breeding stocks.

Although the p1 gene accounts for much of the
variability in maysin accumulation [32], association and
QTL analyses for candidate genes for maysin accumulation
also have identified anthocyaninless1 (a1), colorless2 (c2), and
white pollen1 (whp1) as contributing significantly [32, 33].
Researcher 3 can track the dominant P1-wwb allele visually
by selecting for browning silks given that the sweet lines
he will be using in the breeding program have silks that do
not brown, but tracking the other factors will require the
use of molecular markers. To find molecular markers to
select for desirable alleles of, for example, a1, Researcher 3
uses the search menu at the top of any page at MaizeGDB
to find “loci” using the query “a1.” The results page
(http://www.maizegdb.org/cgi-bin/displaylocusresults.cgi?
term=a1) lists many loci with a1 as a substring, but
shows the exact match (the a1 locus) at the top of
the list. Clicking on that link shows the a1 locus page
(http://www.maizegdb.org/cgi-bin/displaylocusrecord.cgi?
id=12000), which lists useful information including
six probes/molecular markers that could be used for
tracking useful a1 alleles. Using the same process, he also

http://www.maizesequence.org/
http://www.ars-grin.gov/cgi-bin/npgs/html/search.pl?PI+511314
http://www.ars-grin.gov/cgi-bin/npgs/html/search.pl?PI+511314
http://www.maizegdb.org/cgi-bin/displaylocusresults.cgi?term=a1
http://www.maizegdb.org/cgi-bin/displaylocusresults.cgi?term=a1
http://www.maizegdb.org/cgi-bin/displaylocusrecord.cgi?id=12000
http://www.maizegdb.org/cgi-bin/displaylocusrecord.cgi?id=12000
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finds markers for the c2 and whp1 loci and sets to work
determining which markers to use for his selections.

4. CONCLUSIONS

Because MaizeGDB stores and makes accessible data of use
for a variety of applications, it is a resource of interest to
maize researchers spanning many disciplines. The fact that
basic research outcomes are tied to translational and applied
data enables all researcher types to utilize the MaizeGDB
resource to further their research goals, and connections to
external resources like Gramene, NCBI, and GRIN make it
possible for researchers to find relevant resources quickly,
irrespective of storage location.

At present, maize geneticists are at the cusp of a
milestone: the genome of the maize inbred B73 is being
sequenced in the U.S., with anticipated completion
in 2008. In addition, scientists working in Mexico
at Langebio (the National Genomics for Biodiversity
Laboratory) and Cinvestav (Centro de Investigacion y
Estudios Avanzados) have announced through a press
release (July 12, 2007) that they completely sequenced
95% of the genes with 4X coverage in a native Mexican
popcorn called palomero, though the data have not yet
been released and the quality of the data is unknown (see
http://www.bloomberg.com/apps/news?pid=20601086&sid=
aO.Xj8ybAExI&refer=latin america). At present and as more
maize sequence becomes available relating sequences to the
existing compendium of maize data is the primary need
that must be met for maize researchers in the immediate
future. Creating and conserving relationships among the
data will enable researchers to ask and answer questions
about the structure and function of the maize genome
that previously could not be addressed. To address this
need, MaizeGDB personnel will create a “genome view” by
adopting and customizing a Genome Browser that could
be used to integrate the outcomes of the Maize Genome
Sequencing Project. For genome browser functionality, basic
researchers have an interest in visualizing genome structure,
gene models, functional data, and genetic variability.
Translational researchers would like to be able to assign
values to genomic and genetic variants (e.g., the value
of a particular allele in a given population) and to view
those values within a genomic context. Applied researchers
are interested in tagging variants for use as selectable
markers and retrieving tags for particular regions of the
genome. To best meet these researchers’ needs, the “genome
view” will allow researchers to visualize a gene within its
genomic context and a soon to be created “pathway view”
will enable the visualization of a gene product within the
context of relevant metabolic pathways annotated with
Plant Ontology (http://www.plantontology.org/) [34] and
Gene Ontology (http://www.geneontology.org/index.shtml)
[35] terms. By making sequence information more easily
accessible and fully integrated with other data stored at
MaizeGDB, it will become possible for researchers to begin
to investigate how sequence relates to the architecture
of the maize chromosome complement. How are the
chromosomes arranged? Is it possible to relate the genetic

and cytological maps to the assembled genome sequence?
Are there sequences present at centromeres that signal the
cell to construct kinetochores, the machines that ensure
proper chromosome segregation to occur, at the correct site?
MaizeGDB aims to enable researchers to discover answers
to such queries that will enhance the quality of basic maize
research and ultimately the value of maize as a crop. It will
become possible to interrogate the database to find answers
to these and other complex questions, and the content of the
genome can better be related to its function, both within the
cell and to the plant as a whole. Convergence of traditional
biological investigation with the knowledge of genome
content and organization is currently lacking, and is a new
area of research that will open up once a complete genome
sequence and a method for searching through the whole
of the data are both in place. It is the ability to investigate
and answer such basic research questions that will serve as
the basis for devising sound methods to breed better plants.
Once the relationships among sequence data and more
traditional maize data like genotypes, phenotypes, stocks,
and so forth have been captured, it is important that those
data be presented to researchers in a way that can be easily
understood without requiring that they have any awareness
of how the data are actually stored within a database. It is
these needs—creating connections between sequence and
traditional genetic data, improving the interface to those
data, and determining how sequence data relate to the overall
architecture of the maize chromosome complement—that
the MaizeGDB team seeks to fulfill in the very near future.

ACKNOWLEDGMENTS

We are indebted to the community of maize researchers
and the MaizeGDB Working Group (Drs. Volker Brendel,
Ed Buckler, Karen Cone, Mike Freeling, Owen Hoekenga,
Lukas Mueller, Marty Sachs, Pat Schnable, Tom Slezak, Anne
Sylvester, and Doreen Ware) for their continued enthusiasm,
help, and guidance. We are grateful to Dr. Bill Beavis for
giving us the idea to highlight MaizeGDB’s utility for the
three user types. We thank Drs. Mike McMullen, Jenelle
Meyer, Bill Tracy, and Tom Peterson for helpful discussions
concerning p1 and maysin research as well as Dr. Damon
Lisch for suggestions on seminal discoveries in maize and
Mark Millard at the USDA-ARS North Central Regional
Plant Introduction Station for samples of corn with red cobs.

REFERENCES

[1] C. J. Lawrence and V. Walbot, “Translational genomics for
bioenergy production from fuelstock grasses: maize as the
model species,” The Plant Cell, vol. 19, no. 7, pp. 2091–2094,
2007.

[2] B. McClintock, “The origin and behavior of mutable loci in
maize,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 36, no. 6, pp. 344–355, 1950.

[3] N. Fedoroff, S. Wessler, and M. Shure, “Isolation of the
transposable maize controlling elements Ac and Ds,” Cell, vol.
35, no. 1, pp. 235–242, 1983.

[4] H. B. Creighton and B. McClintock, “A correlation of cytologi-
cal and genetical crossing-over in Zea mays,” Proceedings of the

http://www.bloomberg.com/apps/news?pid=20601086\&sid=aO.Xj8ybAExI\&refer=latin_america
http://www.bloomberg.com/apps/news?pid=20601086\&sid=aO.Xj8ybAExI\&refer=latin_america
http://www.plantontology.org/
http://www.geneontology.org/index.shtml


10 International Journal of Plant Genomics

National Academy of Sciences of the United States of America,
vol. 17, no. 8, pp. 492–497, 1931.

[5] E. H. Coe Jr., “The properties, origin, and mechanism of
conversion-type inheritance at the B locus in maize,” Genetics,
vol. 53, no. 6, pp. 1035–1063, 1966.

[6] C. J. Lawrence, M. L. Schaeffer, T. E. Seigfried, D. A. Campbell,
and L. C. Harper, “MaizeGDB’s new data types, resources and
activities,” Nucleic Acids Research, vol. 35, database issue, pp.
D895–D900, 2007.

[7] D. H. Ware, P. Jaiswal, J. Ni, et al., “Gramene, a tool for grass
genomics,” Plant Physiology, vol. 130, no. 4, pp. 1606–1613,
2002.

[8] Achievements of the National Plant Genome Initiative and
New Horizons in Plant Biology, National Academies Press,
Washington, DC, USA, 2008.

[9] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and
D. L. Wheeler, “GenBank,” Nucleic Acids Research, vol. 35,
database issue, pp. D21–D25, 2007.

[10] Q. Dong, C. J. Lawrence, S. D. Schlueter, et al., “Comparative
plant genomics resources at PlantGDB,” Plant Physiology, vol.
139, no. 2, pp. 610–618, 2005.

[11] J. Quackenbush, F. Liang, I. Holt, G. Pertea, and J. Upton,
“The TIGR gene indices: reconstruction and representation of
expressed gene sequences,” Nucleic Acids Research, vol. 28, no.
1, pp. 141–145, 2000.

[12] S. F. Altschul, T. L. Madden, A. A. Schaffer, et al., “Gapped
BLAST and PSI-BLAST: a new generation of protein database
search programs,” Nucleic Acids Research, vol. 25, no. 17, pp.
3389–3402, 1997.

[13] F. Wei, E. H. Coe Jr., W. Nelson, et al., “Physical and
genetic structure of the maize genome reflects its complex
evolutionary history,” PLoS Genetics, vol. 3, no. 7, p. e123,
2007.

[14] J. Gardiner, S. Schroeder, M. L. Polacco, et al., “Anchoring
9,371 maize expressed sequence tagged unigenes to the bac-
terial artificial chromosome contig map by two-dimensional
overgo hybridization,” Plant Physiology, vol. 134, no. 4, pp.
1317–1326, 2004.

[15] R. Lerdorf, P. MacIntyre, and K. Tatroe, Programming PHP,
O’Reilly, Sebastopol, Calif, USA, 2006.

[16] L. Wall, T. Christiansen, and J. Orwant, Programming Perl,
O’Reilly, Cambridge, Mass, USA, 2000.

[17] R. Scholl, M. M. Sachs, and D. Ware, “Maintaining collections
of mutants for plant functional genomics,” Methods in Molec-
ular Biology, vol. 236, pp. 311–326, 2003.

[18] S. Carpenter, “Science careers. Carving a career in transla-
tional research,” Science, vol. 317, no. 5840, pp. 966–967, 2007.

[19] E. Bortiri, G. Chuck, E. Vollbrecht, T. Rocheford, R. Mar-
tienssen, and S. Hake, “ramosa2 encodes a LATERAL ORGAN
BOUNDARY domain protein that determines the fate of stem
cells in branch meristems of maize,” The Plant Cell, vol. 18, no.
3, pp. 574–585, 2006.

[20] E. Bortiri, D. Jackson, and S. Hake, “Advances in maize
genomics: the emergence of positional cloning,” Current
Opinion in Plant Biology, vol. 9, no. 2, pp. 164–171, 2006.

[21] H. Wang, T. Nussbaum-Wagler, B. Li, et al., “The origin of the
naked grains of maize,” Nature, vol. 436, no. 7051, pp. 714–
719, 2005.

[22] E. H. Coe Jr., M. G. Neuffer, and D. A. Hosington, “The
genetics of corn,” in Corn and Corn Improvement, G. F.
Sprague and J. W. Dudley, Eds., pp. 81–258, American Society
of Agronomy, Madison, Wis, USA, 1988.

[23] E. Grotewold, B. J. Drummond, B. Bowen, and T. Peterson,
“The myb-homologous P gene controls phlobaphene pigmen-

tation in maize floral organs by directly activating a flavonoid
biosynthetic gene subset,” Cell, vol. 76, no. 3, pp. 543–553,
1994.

[24] B. R. Wiseman, M. E. Snook, and D. J. Isenhour, “Maysin
content and growth of corn earworm larvae (Lepidoptera:
Noctuidae) on silks from first and second ears of corn,” Journal
of Economic Entomology, vol. 86, no. 3, pp. 939–944, 1993.

[25] P. F. Byrne, M. D. Mcmullen, M. E. Snook, et al., “Quantitative
trait loci and metabolic pathways: genetic control of the
concentration of maysin, a corn earworm resistance factor, in
maize silks,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 93, no. 17, pp. 8820–8825,
1996.

[26] J. M. Thornsberry, M. M. Goodman, J. Doebley, S. Kresovich,
D. Nielsen, and E. S. Buckler, “Dwarf8 polymorphisms
associate with variation in flowering time,” Nature Genetics,
vol. 28, no. 3, pp. 286–289, 2001.

[27] M. Yano and T. Sasaki, “Genetic and molecular dissection of
quantitative traits in rice,” Plant Molecular Biology, vol. 35, no.
1-2, pp. 145–153, 1997.

[28] S. A. Flint-Garcia, A.-C. Thuillet, J. Yu, et al., “Maize associ-
ation population: a high-resolution platform for quantitative
trait locus dissection,” The Plant Journal, vol. 44, no. 6, pp.
1054–1064, 2005.

[29] S. Salvi, G. Sponza, M. Morgante, et al., “Conserved non-
coding genomic sequences associated with a flowering-time
quantitative trait locus in maize,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 104,
no. 27, pp. 11376–11381, 2007.

[30] W. F. Tracy, “Sweet corn,” in Specialty Corns, A. R. Hallauer,
Ed., pp. 155–198, CRC Press, Boca Raton, Fla, USA, 2nd
edition, 2000.

[31] E. T. Johnson, M. A. Berhow, and P. F. Dowd, “Expression
of a maize Myb transcription factor driven by a putative
silk-specific promoter significantly enhances resistance to
Helicoverpa zea in transgenic maize,” Journal of Agricultural
and Food Chemistry, vol. 55, no. 8, pp. 2998–3003, 2007.

[32] J. D. F. Meyer, M. E. Snook, K. E. Houchins, B. G. Rector, N.
W. Widstrom, and M. D. McMullen, “Quantitative trait loci
for maysin synthesis in maize (Zea mays L.) lines selected for
high silk maysin content,” Theoretical and Applied Genetics,
vol. 115, no. 1, pp. 119–128, 2007.

[33] S. J. Szalma, E. S. Buckler IV, M. E. Snook, and M. D.
McMullen, “Association analysis of candidate genes for maysin
and chlorogenic acid accumulation in maize silks,” Theoretical
and Applied Genetics, vol. 110, no. 7, pp. 1324–1333, 2005.

[34] K. Ilic, E. A. Kellogg, P. Jaiswal, et al., “The plant structure
ontology, a unified vocabulary of anatomy and morphology
of a flowering plant,” Plant Physiology, vol. 143, no. 2, pp. 587–
599, 2007.

[35] M. Ashburner, C. A. Ball, J. A. Blake, et al., “Gene ontology:
tool for the unification of biology. The gene ontology consor-
tium,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000.


	INTRODUCTION
	MATERIALS AND METHODS
	Kinds of data in the database that link genetic and genome sequence information
	Methods of access, environments, and the database back end
	The production web interface
	Structure and relationship of environments: production, staging, and test
	Curation
	Database back end

	Outreach
	Community support services

	RESULTS AND DISCUSSION
	Basic
	Translational
	Applied

	CONCLUSIONS
	ACKNOWLEDGMENTS
	References

