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Abstract
This report describes synthesis and evaluation of novel cationic 99mTc-nitrido complexes, [99mTcN
(L)(PNP)]+ (L = ma, ema, tma, etma and mpo; PNP = PNP5, PNP6 and L6), as potential radiotracers
for heart imaging. Cationic complexes [99mTcN(L)(PNP)]+ were prepared in two steps. For example,
reaction of succinic dihydrazide with 99mTcO4

− in the presence of excess stannous chloride and
PDTA resulted in the [99mTcN(PDTA)n] intermediate, which then reacted Hmpo and PNP6 at 100
°C for 10 – 15 min to give [99mTcN(mpo)(PNP6)]+ in >90% yield. It was found that bidentate
chelators have a significant impact on lipophilicity, solution stability, biodistribution and metabolic
stability of cationic 99mTc-nitrido complexes. The fact that [99mTcN(ema)(PNP6)]+ decomposes
rapidly in presence of cysteine (1 mg/mL) while [99mTcN(etma)(PNP6)]+ and [99mTcN(mpo)
(PNP6)]+ remain stable for >6 h under the same conditions strongly suggests that thione-S donors
in bidentate chelators increase the solution stability of their cationic 99mTc-nitrido complexes.
Biodistribution studies were performed on four cationic 99mTc-nitrido complexes in Sprague-Dawley
rats. [99mTcN(etma)(PNP5)]+ is of particular interest due to its high initial heart uptake (1.81±0.35
%ID/g at 5 min postinjection), and long myocardial retention (1.99±0.47 %ID/g at 120 min
postinjection). The heart/liver ratio of [99mTcN(etma)(PNP5)]+ (6.06±1.48) at 30 min postinjection
is almost identical that of 99mTcN-DBODC5 (6.01±1.45), and is >2 times better than that of 99mTc-
sestamibi (2.90±0.22). Results from metabolism studies show that [99mTcN(etma)(PNP5)]+ has no
significant metabolism in the urine; but it does show significant metabolism in feces samples at 120
min postinjection. Planar imaging studies suggest that [99mTcN(etma)(PNP5)]+ might be able to give
clinically useful images of the heart as early as 30 min postinjection. [99mTcN(etma)(PNP5)]+ is a
very promising candidate for more pre-clinical evaluations in various animal models.

INTRODUCTION
Recently, we reported a series of crown ether-containing cationic complexes [99mTcN(DTC)
(PNP)]+ (Figure 1: DTC = L1 – L5; PNP = PNP5 and L6) as potential radiotracers for heart
imaging (1). Results from biodistribution studies have clearly demonstrated that crown ether
groups are very useful for improvement of the liver clearance of cationic 99mTc-nitrido
complexes, some of which have the heart uptake comparable to that of 99mTc-sestamibi, the
most successful radiotracer for myocardial perfusion imaging, with the heart/liver ratios being
4 – 5 time better than that of 99mTc-sestamibi at 120 min postinjection (p.i.). Results from
imaging studies suggested that they might be able to give clinically useful images of heart as
early as 30 min p.i. These promising results led us to explore other bidentate chelators for
preparation of cationic 99mTc-nitrido complexes that have the heart/liver ratio substantially
better than that of 99mTc-sestamibi while maintaining their high heart uptake.
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As an extension of our previous studies, we now report the use of maltol (Hma), thiomaltol
(Htma), ethylmaltol (Hema), ethylthiomaltol (Hetma), and 2-mercaptopyridine oxide (Hmpo)
as the bidentate chelators for preparation of cationic complexes [99mTcN(L)(PNP)]+ (Figure
1: L = ma, ema, tma, etma, and mpo; PNP = PNP5, PNP6 and L6). These cationic 99mTc-nitrido
complexes are designed in such a way that the lipophilicity and biodistribution characteristics
can be modified by the choice of bidentate chelators and bisphosphines. Compared to the crown
ether-containing DTCs (Figure 1: L1 – L5), these bidentate chelators offer a greater structural
diversity, which is very important for modification of biodistribution properties of
cationic 99mTc radiotracers. To demonstrate their potential as radiotracers for heart imaging,
we carried out biodistribution studies on four cationic 99mTc-nitrido complexes in Sprague-
Dawley rats. Results from these studies will be compared to those of 99mTc-sestamibi
and 99mTcN-DBODC5 (DBODC = N,N-bis(ethyoxythyl)dithiocarbamate) reportedly having
the best heart/liver ratio among the known cationic 99mTc radiotracers (2–4).

It is well-documented that maltol and ethylmaltol form neutral complexes with many
biologically important metal ions (5–10). Their vanadyl(IV) complexes have been reported to
possess insulin enhancing activity (11–15). The Co(II), Cu(II) and Cr(III) complexes of maltol
have also been studied for their anti-hypoglycemic activity (16). Recently, thiolmaltol and
ethylthiomaltol and their N-substituted derivatives have been used for preparation of their Cu
(II), Ni(II), Zn(II), V(IV), group 13 and lanthanide metal complexes (17–21). The study
described herein represents the first one to use these bidentate chelators to prepared cationic
complexes [99mTcN(L)(PNP)]+ (Figure 1: L = ma, ema, tma, etma, and mpo; PNP = PNP5,
PNP6 and L6).

EXPERIMENTAL
Materials

Chemicals, such as 1,2-diaminopropane-N,N,N′,N′-tetraacetic acid (PDTA), maltol (Hma),
ethylmaltol (Hema), and mercaptopyridine oxide (Hmpo), were purchased from Sigma/
Aldrich (St. Louis), and were used as received. Thiomaltol (Htma) and ethylthiomaltol (Hetma)
were prepared according to the literature methods (17–21). Synthesis of N-ethoxyethyl-N,N-
bis[2-(bis(3-methoxypropyl)phosphino)ethyl]amine (PNP5), N-ethoxyethyl-N,N-bis[2-(bis
(3-ethoxypropyl)phosphino)ethyl]amine (PNP6) and N-methoxyethyl-N,N-bis[2-(bis(3-
ethoxypropyl)phosphino)ethyl]amine (L6) has been described in our previous report
(1). 99mTcN-DBODC5 was prepared according to the literature method (2–4). Cardiolite®
vials were obtained as a gift from Bristol Myers Squibb Medical Imaging (North Billerica,
MA), and were reconstituted according to the manufacturer’s insert.

Methods
The radio-HPLC method used a LabAlliance semi-prep HPLC system with a β-Ram IN-US
detector, and a Zorbax C8 column (4.6 mm × 150 mm, 100 Å pore size). The flow rate was 1
mL/min. The mobile phase was isocratic with 30% solvent A (25 mM NH4OAc buffer, pH =
6.8) and 70% solvent B (methanol) at 0 – 5 min, followed by a gradient from 70% solvent B
at 5 min to and 90% solvent B at 15 min.

General Procedure for Preparation of Cationic 99mTc-Nitrido Complexes
The solution containing SDH and PDTA was prepared according to the procedure described
in our previous communication (1). To a 5 cc vial were added 1.0 mL of the solution containing
SDH (5 mg/mL) and PDTA (5 mg/mL), 1.0 mL of 99mTcO4

− solution (2 – 10 mCi), and 20
μL of SnCl2 solution (1 mg in 1.0 N HCl). The reaction mixture was kept at room temperature
for 15 – 30 min to form the 99mTc-nitrido intermediate. After adding 0.5 mL of the solution
containing the bidentate chelator (5 – 10 mg/mL) and the bisphosphine (5 – 10 mg/mL), the
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reaction mixture was heated at 95 °C for 10 – 15 min. After completion of radiolabeling, the
vial was placed back into the lead pig, and allowed to stand at room temperature for 5 – 10
min. A sample of the resulting solution was analyzed by the radio-HPLC. The radiochemical
purity (RCP) was >95% with minimal amount (<0.5%) of [99mTc]colloid formation.

Composition Studies
The mixed-ligand experiments were performed to determine the number of bidentate chelators
or bisphosphines in cationic 99mTc-nitrido complexes according to the method described in
our previous communication (1). The radiolabeling procedure was identical to that above
except that two bidentate chelators or PNP-type bisphosphines were used as competing ligands
in a the same vial. For example, a mixture of Hma (2 mg) and Hema (2 mg) was used to
determine the number of bidentate chelators in cationic complexes [99mTcN(L)(PNP6)]+. The
number of bisphosphines was determined in a similar fashion using a mixture L6 (2 mg) and
PNP6 (2 mg).

Doses for Animal Studies
For biodistribution studies on [99mTcN(L)(L6)]+ (L = ema, tma and etma) and [99mTcN(etma)
(PNP5)]+, the radiotracer was purified by HPLC to remove all radioimpurities. Volatiles in the
mobile phase were evaporated under reduced pressure. Doses were made by dissolving the
residue to ~10 μCi/mL in saline with 15% (w/w) propylene glycol. The resulting solution was
filtered with a 0.20 micron filter unit to eliminate particles before being injected into animals.
The injection volume was 0.1 mL for each animal in biodistribution studies. For imaging
studies with [99mTcN(etma)(PNP5)]+ was first purified by HPLC. Volatiles in the mobile phase
were completely removed under the reduced pressure. Doses were made by dissolving the
residue to ~2.5 mCi/mL in saline containing ~15% (w/w) propylene glycol. The injection
volume was ~0.25 mL for each animal in the imaging studies.

Determination of Log P Values
Log P values of cationic 99mTc-nitrido complexes were determined using the following
procedure: the 99mTc radiotracer was prepared and purified by HPLC. The collected mobile
phases were evaporated and the residue was dissolved in a mixture of equal volume (3 mL:3
mL) n-octanol and 25 mM phosphate buffer (pH = 7.4). After vortex for >20 min, the mixture
was centrifuged at 8,000 rpm for 5 min. Samples (in triplets) from aqueous and n-octanol were
obtained and counted separately in a gamma counter (Beckman Gama 8000). The partition
coefficients were calculated using the equation: P = (activity concentration in n-octanol)/
(activity concentration in aqueous layer). The log P value was measured three different times
and reported as an average of three different measurements.

Solution Stability
For solution stability in kit matrix, the radiotracer was prepared and analyzed by radio-HPLC
at 0, 1, 2, 3, and 6 h post-labeling. For cysteine challenging experiment, the resulting reaction
solution was mixed with an equal volume of a cysteine (1 mg/mL) solution. Samples of the
mixture were analyzed by radio-HPLC at 0, 1, 2, 3, and 6 h.

Biodistribution Studies
Biodistribution studies were performed using Sprague-Dawley rats in compliance with NIH
animal experiment guidelines (Principles of Laboratory Animal Care, NIH Publication No.
86-23, revised 1985). This animal model has been used as the screening tool for
cationic 99mTc radiotracers (51–56). The protocols for these studies have been approved by
the Purdue University Animal Care and Use Committee (PACUC). In short, sixteen Sprague-
Dawley rats (200 – 250 g) were anesthetized with intramuscular injection of a mixture of
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ketamine (80 mg/kg) and xylazine (19 mg/kg). A jugular vein was surgically exposed, and
each animal was administered with 1 – 3 μCi of the purified radiotracer in 100 μL of 10 – 20%
propylene glycol. Four animals were sacrificed by sodium pentobarbital overdose at each time
point (5, 30, 60 and 120 min p.i.). Blood was withdrawn from the heart through a syringe.
Organs of interest (heart, brain, lung, liver, spleen, kidneys, muscle and intestine) were excised,
rinsed with saline, dried with tissues, weighed, and counted on a gamma counter (Beckman
RD8000). Four extra doses were also weighed and counted before and after tissue samples.
The organ uptake was calculated as a percentage of the injected dose per gram of wet tissue
mass (%ID/g) and a percentage of the injected dose per wet organ (%ID/organ). The
biodistribution data and T/B ratios are reported as an average plus the standard variation.

Imaging Studies
Two Sprague-Dawley rats (200 – 250 g) were anesthetized with intramuscular injection of a
mixture of ketamine (80 mg/kg) and xylazine (19 mg/kg). The radiotracer (300 – 500 μCi) was
administered via surgically exposed jugular vein. Animals will be monitored on the gamma
camera (PhoGama large field-of-view Anger camera and NucLearMac computer system).
Sequential anterior images were collected for 5 min at the specified time (5, 15, 30, 60 min
and 120 min) using 256 × 256 image matrix while animal are still under anesthesia. Images of
rats administered with 99mTc-sestamibi and 99mTcN-DBODC5 were obtained using the same
protocol. After imaging, the animals were sacrificed by sodium pentobarbital overdose. The
urine and feces samples were collected for metabolism studies.

Metabolism
The urine samples were collected from the rats at 30 and 120 min p.i. by manual void, and
were mixed with equal volume of acetonitrile. The mixture was centrifuged at a speed of 8,000
rpm. The supernatant was collected and filtered through a 0.20 micron Millex-LG syringe
driven filter unit. The filtrate was analyzed by radio-HPLC. The feces samples were collected
once they were sacrificed after the imaging study (at ~120 min p.i.). The sample was suspended
in a mixture of 50% acetonitrile aqueous solution, and the resulting mixture was vortexed for
5 – 10 min. After centrifuging, the supernatant was collected and passed through a 0.20 μfilter.
The filtrate was analyzed by radio-HPLC.

Data and Statistical Analysis
The biodistribution data and T/B ratios are reported as an average plus the standard variation
based on the results from four animals for each time point. Comparison between two different
radiotracers was made using the one-way ANOVA test. The level of significance was set at
p = 0.05.

RESULTS
Radiochemistry

Cationic complexes [99mTcN(L)(PNP)]+ (L = ma, ema, tma, etma and mpo; PNP = PNP5,
PNP6 and L6) were prepared according to Scheme I. First, 99mTcO4

− was allowed to react
with SDH in the presence of excess PDTA and stannous chloride. The reaction mixture was
allowed to stand at room temperature for 15 – 30 min to form the [99mTcN(PDTA)n]
intermediate, which was then reacted with the bidentate chelator and bisphosphine at 100 °C
for 10 – 15 min to give the cationic complex [99mTcN(L)(PNP)]+ (L = ma, ema, tma, etma and
mpo; PNP = PNP5, PNP6 and L6). Using this procedure, all new radiotracers had >85% RCP
with minimal amount (<0.5%) of [99mTc]colloid formation.
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A reversed phase radio-HPLC method was used to analyze cationic complexes [99mTcN(L)
(PNP)]+ (L = ma, ema, tma, etma, and mpo; PNP = PNP5, PNP6 and L6). Their HPLC retention
times are listed in Table 1. Figure 2 illustrates representitive radio-HPLC chromatograms of
[99mTcN(ma)(PNP6)]+ and [99mTcN(ema)(PNP6)]+. There is always an impurity peak (5 –
10%) in their radio-HPLC chromatograms. These radioimpurities are most likely due to partial
oxidation of the bisphosphine ligand during preparation or radiolabeling. This explanation is
supported by the fact that the radioimpurities could be totally eliminated when the extra pure
bisphosphine was used for the radiolabeling.

The mixed-ligand experiment was performed to determine the composition (the number of
bidentate chelators and bisphosphine ligands) of cationic 99mTc-nitrido complexes. In the first
experiment, we used PNP6 as the bisphosphine ligand, Hma and Hema as the competing
chelators. After radiolabeling, the reaction mixture was analyzed by radio-HPLC. Figure 3
shows the typical radio-HPLC chromatogram of the reaction mixture containing [99mTcN(ma)
(PNP6)]+ and [99mTcN(ema)(PNP6)]+. If only one bidentate chelator is bonded to the Tc, the
HPLC chromatogram should show two peaks: one from [99mTcN(ma)(PNP6)]+ and the other
from [99mTcN(ema)(PNP6)]+. If two bidentate chelators were bonded to the Tc, there would
have been a third peak from the mixed-ligand complex, [99mTcN(ma)(ema)(PNP6)]. The
presence of two distinctive peaks at ~14.5 min and ~16.5 min for [99mTcN(ma)(PNP6)]+ and
[99mTcN(ema)(PNP6)]+, respectively, clearly demonstrates that there is only one bidentate
chelator in cationic complex [99mTcN(L)(PNP)]+. The number of bisphosphines in cationic
complex [99mTcN(L)(PNP)]+ was determined in a similar fashion using Hema as the bidentate
chelator, L6 and PNP6 as the competing ligands. Figure 4 shows the radio-HPLC
chromatogram of the resulting reaction mixture containing [99mTcN(ema)(L6)]+ and [99mTcN
(ema)(PNP6)]+. The peaks at 14.0 min is due to [99mTcN(ema)(L6)]+ and the peak at 15.5 min
is from [99mTcN(ema)(PNP6)]+. This clearly demonstrates that there is only one bisphosphine
in [99mTcN(L)(PNP)]+. Once again, the radioimpurities (~20%) at 10 – 12 min are caused by
the partial oxidation of PNP6 during preparation.

We studied the solution stability of [99mTcN(L)(PNP)]+ (L = ma, ema, tma, etma and mpo;
PNP = PNP5, PNP6 and L6) in the kit matrix and after purification. It was found that they all
remain stable for more than 6 h. The cysteine challenge experiment was also performed for
[99mTcN(L)(PNP6)]+ (L = ema, etma and mpo). It was found that [99mTcN(ema)(PNP6)]+

decomposes rapidly in the presence of cysteine (~1.0 mg/mL). The RCP was >90% in the kit
matrix and decreased to 61.6% at 2 h and 30.1% at 6 h (Figure 5). In contrast, [99mTcN(etma)
(PNP6)]+ and [99mTcN(mpo)(PNP6)]+ remain stable (>6 h) in presence of excess cysteine (1.0
mg/mL) at ambient temperature (Figure 5). The use of thione-S donors in bidentate chelators
increases solution stability of their cationic 99mTc-nitrido complexes.

Lipophilicity plays a significant role in the heart uptake and excretion kinetics of
cationic 99mTc radiotracers (1,22–25). Thus, it is important to explore the impact of bidentate
chelators and bisphosphines on lipophilicity of their cationic 99mTc-nitrido complexes.
Partition coefficient constants of [99mTcN(L)(PNP)]+ (L = ma, ema, tma, etma and mpo; PNP
= PNP5, PNP6 and L6) were determined by measuring their distribution in a mixture of equal
volume n-octanol and 25 mM phosphate buffer (pH = 7.4). HPLC purification was needed to
minimize the interference from other radioimpurities. The log P values are summarized in
Table 1. In general, cationic complexes [99mTcN(L)(PNP)]+ (L = ma and tma) have lower
lipophilicity than [99mTcN(L)(PNP)]+ (L = ema and etma) due to the extra methylene group.
[99mTcN(L)(PNP)]+ (L = tma and etma) are more lipophilic than [99mTcN(L)(PNP)]+ (L = ma
and ema) due to the presence of thione-S donor. [99mTcN(L)(PNP6)]+ is more lipophilic than
[99mTcN(L)(PNP5)]+ due to the presence of four ethoxypropyl groups in PNP6 instead of four
methoxypropyl groups in PNP5. The lipophilicity of [99mTcN(mpo)(PNP)]+ is between that
of [99mTcN(tma)(PNP)]+ and [99mTcN(etma)(PNP)]+.
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Biodistribution Characteristics
Biodistribution studies in rats were performed on [99mTcN(etma)(PNP5)]+, [99mTcN(ema)
(L6)]+, [99mTcN(tma)(L6)]+, and [99mTcN(etma)(L6)]+. We choose these four radiotracers to
demonstrate the impact of the solution stability and lipophilicity on their biodistribution
characteristics. The biodistribution data and T/B ratios are listed in Tables SI – SIV. Figure 7
shows the direct comparison of heart uptake and heart/liver ratios with 99mTc-Sestamibi
and 99mTcN-DBODC5. Biodistribution data for 99mTc-Sestamibi and 99mTcN-DBODC5 in
the same animal model were obtained from our previous report (1).

[99mTcN(ema)(L6)]+ has a lop P value of 1.22±0.13, which is almost identical to that
of 99mTc-Sestamibi (1.29±0.13). It had a moderate heart uptake (1.58±0.41 %ID/g at 5 min
p.i. and 1.60±0.48 %ID/g at 120 min p.i.) with the heart/liver ratios being 0.35±0.04, 1.06±0.34,
2.56±0.23, and 5.43±1.37 at 5, 30, 60 and 120 min p.i., respectively. [99mTcN(etma)(L6)]+ has
the log P of 1.43±0.05. It has a low heart uptake (1.10±0.10 %ID/g at 5 min p.i. and 1.27±0.51
%ID/g at 120 min p.i.) and poor heart/liver ratios (0.37±0.01, 1.21±0.16, 1.17±0.19, and 1.91
±0.31 at 5, 30, 60 and 120 min p.i., respectively). [99mTcN(tma)(L6)]+ has the log P value (1.09
±0.17) that is almost identical to that of 99mTcN-DBODC5 (1.10±0.07). It shows a high initial
heart uptake (2.03±0.75 %ID/g at 5 min p.i.) with a long myocardial retention (2.01±0.40 %
ID/g at 120 min p.i.). Its heart/liver ratios are 1.10±0.09, 2.01±0.41, 3.55±0.34, and 6.25±0.68
at 5, 30, 60 and 120 min p.i., respectively. The log P value of [99mTcN(etma)(PNP5)]+ is 0.67
±0.15. It has a relatively high heart uptake (1.81±0.35 %ID/g at 5 min p.i.), a long myocardial
retention (1.99±0.47 %ID/g at 120 min p.i.), and high heart/liver ratios (6.06±0.90, 10.36±2.25,
and 16.46±4.24 at 30, 60 and 120 min p.i., respectively).

Imaging Studies
[99mTcN(etma)(PNP5)]+ was chosen for the imaging study in rats due to its much better heart/
liver ratios than those of 99mTc-Sestamibi. For comparison purpose, we also obtained images
of rats administered with 99mTc-sestamibi and 99mTcN-DBODC5. Figure 7 illustrates planar
images of rats administered with [99mTcN(etma)(PNP5)]+, 99mTc-Sestamibi and 99mTcN-
DBODC5. In general, all the images acquired at 5 min p.i. show a very high liver uptake
adjacent to the heart; but the lung activity was low for all three radiotracers. At 30 min p.i., the
liver activity for [99mTcN(etma)(PNP5)]+ and 99mTcN-DBODC5 is reduced significantly. By
60 min p.i., the liver activity almost disappeared for [99mTcN(etma)(PNP5)]+ and 99mTcN-
DBODC5 while the liver activity level for 99mTc-Sestamibi remained high.

Metabolism
We examined metabolism of [99mTcN(etma)(PNP5)]+ by analyzing the urine and feces
samples from the rats used in imaging studies. Figure 8 shows its radio-HPLC chromatograms
in the kit matrix (A), in urine at 30 min p.i. (B), in urine at 120 min p.i. (C), and in feces at 120
min p.i. (D). Obviously, very small amount of metabolite was detected in the urine samples
(Figure 8: B and C); but a significant metabolism was observed in feces samples of rats
administered with [99mTcN(etma)(PNP5)]+ (Figure 8D).

DISCUSSION
Myocardial perfusion imaging with radiotracers is an integral component of the clinical
evaluation of patients with known or suspected coronary artery disease (26–29). Since the early
1980s, intensive research efforts have been directed towards development of cationic 99mTc
complex radiotracers for heart imaging (26,27). As a result these efforts, 99mTc-Sestamibi
and 99mTc-Tetrofosmin have been approved as commercial products for myocardial perfusion
imaging. Despite their widespread applications, both 99mTc-Sestamibi and 99mTc-Tetrofosmin
do not meet the requirements of an ideal perfusion imaging agent, at least in part, due to their
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high liver uptake (30). Therefore, it would be a great advantage to develop a new radiotracer
with substantially better heart/liver ratio than that of 99mTc-Sestamibi.

The factors affecting biodistribution patterns of radiotracers include the charge, solution
stability, lipophilicity, and protein-binding capability. For example, [99mTcN(ema)(L6)]+

and 99mTc-Sestamibi share the same cationic charge, and have very high lipophilicity (1.22
±0.13 and 1.29±0.13, respectively). However, the heart uptake and heart/liver ratios of
[99mTcN(tma)(L6)]+ are significantly lower (P<0.01) than that of 99mTc-Sestamibi at 5 – 60
min postinjection. This difference is probably related to its solution instability of [99mTcN
(ema)(L6)]+ in the presence of cysteine (Figure 6). The solution instability of [99mTcN(ema)
(L6)]+ may also contribute to its high protein binding as indicated by its relatively high blood
activity and low heart/blood ratios (Table SIII).

Compared to [99mTcN(ema)(L6)]+, [99mTcN(etma)(L6)]+ has better solution stability due to
the thione-S donor atom in etma. However, it has a low heart uptake with low heart/lung and
heart/liver ratios, suggesting that it is probably too lipophilic (log P = 1.43±0.05) to achieve
the high heart uptake and fast liver clearance. [99mTcN(tma)(L6)]+ has a high solution stability.
Its log P value is almost identical to that of 99mTcN-DBODC5 (Table 1). The heart uptake of
[99mTcN(tma)(L6)]+ is comparable to that of 99mTcN-DBODC5 (Figure 6); but its heart/liver
and heart/liver ratios are significantly lower (p<0.01) than that of 99mTcN-DBODC5 over the
2 h study period. In contrast, [99mTcN(etma)(PNP5)]+ is less lipophilic (log P = 0.67±0.15).
Its heart uptake is comparable to that of 99mTcN-DBODC5 within the experimental error
(Figure 6). The heart/liver ratio of [99mTcM(etma)(PNP5)]+ is very similar to that of 99mTcN-
DBODC5 at 5 – 60 min p.i.

Another important factor influencing the in vivo biological properties of cationic 99mTc
radiotracers is their metabolic properties. Cationic 99mTc radiotracers are generally excreted
via hepatobiliary and renal routes. Metabolic products can be readily detected by analyzing the
urine (renal excretion) and feces (hepatobiliary excretion) samples. In this study, we used a
reversed phase radio-HPLC method to analyze the urine and feces samples from the rats
administered with ~500 μCi of [99mTcN(etma)(PNP5)]+. The results indicated that [99mTcN
(etma)(PNP5)]+ remained intact in the urine over 2 h study period (Figure 9C); but it shows a
significant metabolism (>70%) in feces samples at 120 min p.i. (Figure 9D). In
contrast, 99mTcN-DBODC5, which shares the same PNP5 bisphosphine ligand with [99mTcN
(etma)(PNP5)]+, has very little metabolism in both urine and feces of rats under anesthesia
(1). Changing the bidentate chelator from DBODC to ethylthiomaltolate (etma) has a
significant impact on metabolic fate of the cationic 99mTc-nitrido complex. The metabolic
instability of [99mTcN(etma)(PNP5)]+ may contribute to its lower heart/liver ratio than that
of 99mTcN-DBODC5 at 120 min p.i. (Figure 6).

It is well-documented that cationic 99mTc radiotracers, such as 99mTc-Sestamibi and 99mTc-
Tetrofosmin, are able to penetrate plasma and mitochondrial membranes and accumulated in
mitochondria because of the negative mitochondrial potential (31–35). Due to their similarity
in molecular charge with 99mTc-Sestamibi and 99mTc-Tetrofosmin, it is reasonable to believe
that cationic 99mTc-nitrido complexes might share the same localization mechanism. The
difference in the heart uptake of cationic 99mTc radiotracers is most likely caused by their
lipophilicity and capability to across the plasma and mitochondrial membranes.
Cationic 99mTc radiotracers with the log P>1.5 often have a low heart uptake and a slow liver
clearance while more hydrophilic cationic radiotracers with log P<0 tend to show fast washout
from the myocardium (1–3,22–25). In both cases, the heart/liver ratio is low because of either
high liver uptake or fast myocardial washout. While there is no clear-cut “optimal” log P values,
we believe that cationic 99mTc radiotracers should have a log P value of 0.6 – 1.2 in order to
achieve a high heart uptake with the fast liver clearance at the same time.
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CONCLUSIONS
This report describes synthesis and evaluation of cationic complexes [99mTcN(L)(PNP)]+

(Figure 1: L = ma, ema, tma, etma, and mpo; PNP = PNP5, PNP6 and L6) as potential
radiotracers for heart imaging. The key finding of this study is that bidentate chelators have a
significant impact on lipophilicity, solution stability, biodistribution patterns, and metabolism
of their cationic 99mTc-nitrido complexes. The results from solution stability studies indicate
that the thione-S donors in bidentate chelators increase solution stability of cationic 99mTc-
nitrido complexes. Among four radiotracers evaluated in Sprague-Dawley rats for their
biodistribution characteristics, [99mTcN(etma)(PNP5)]+ has a high heart uptake, long
myocardial retention, and fast liver clearance with the heart/liver ratio being >2 times better
than that of 99mTc-sestamibi at 30 min p.i. Results from planar imaging studies are completely
consistent with those from biodistribution studies. The fast liver clearance suggests that
[99mTcN(etma)(PNP5)]+ might give clinically useful images of heart as early as 30 min p.i.
[99mTcN(etma)(PNP5)]+ is a promising candidate for evaluation of its blood flow
characteristics in larger animal models, such as dogs and pigs. It is interesting to note that the
heart/liver ratio of [99mTcN(etma)(PNP5)]+ is not as good as that of 99mTcN-DBODC5 at 120
min p.i. probably due to its metabolic instability in the hepatobiliary system. Therefore, our
future research will focus more on cationic 99mTc-nitrido complexes with better metabolic
stability.
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Abbreviations
PDTA  

1,2-diaminopropane-N,N,N′,N′-tetraacetic acid

Hma  
maltol

Htma  
thiomaltol

Hema  
ethylmaltol

Hetma  
ethylthiomaltol

Hmpo  
and 2-mercaptopyridine oxide

PNP5  
N-ethoxyethyl-N,N-bis[2-(bis(3-methoxypropyl)phosphino)ethyl]amine

PNP6  
N-ethoxyethyl-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine

L6  
N-methoxy-ethyl-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine
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Figure 1.
Bidentate chelators (Hma, Hema, Htma, Hetma, and Hmpo), bisphosphines (PNP5, PNP6 and
L6), and their cationic 99mTc-nitrido complexes [99mTcN(L)(PNP)]+ (L = ma, ema, tma, etma
and mpo; PNP = PNP5, PNP6 and L6).
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Figure 2.
Typical radio-HPLC chromatograms of [99mTcN(ma)(PNP6)]+ (top) and [99mTcN(ema)
(PNP6)]+ (bottom).
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Figure 3.
Radio-HPLC chromatogram of the reaction mixture containing [99mTcN(ma)(PNP6)]+ (left)
and [99mTcN(ema)(PNP6)]+ (right).

Liu et al. Page 13

Bioconjug Chem. Author manuscript; available in PMC 2008 August 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Radio-HPLC chromatogram of the reaction mixture containing [99mTcN(ma)(L6)]+ (left) and
[99mTcN(ma)(PNP6)]+ (right). The radioimpurities (~20%) at 10 – 12 min are caused by the
partial oxidation of PNP6.
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Figure 5.
Solution Stability data for [99mTcN(ema)(PNP6)]+, [99mTcN(etma)(PNP6)]+ and [99mTcN
(mpo)(PNP6)]+.
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Figure 6.
Comparison of heart uptake (top) and heart/liver (bottom) ratios between [99mTcN(ema)
(L6)]+, [99mTcN(tma)(L6)]+, [99mTcN(etma)(PNP5)]+, 99mTcN-DBODC5, 99mTc-Sestamibi,
and [99mTcN(L4)(L6)]+.
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Figure 7.
Planar images of rats administered with ~ 500 μCi of [99mTcN(etma)(PNP5)]+, 99mTc-
Sestamibi and 99mTcN-DBODC5. Arrows indicate the location of the heart, liver and salivary
gland (as determined by ex-vivo gamma counting).
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Figure 8.
Radio-HPLC chromatograms of [99mTcN(etma)(PNP5)]+ in the kit matrix before injection (A),
in the urine at 30 min p.i. (B), in the urine at 120 min p.i. (C), and in feces at 120 min p.i. (D).
Each rat was administered with ~500 μCi of [99mTcN(etma)(PNP5)]+.
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Scheme I.
Synthesis of Cationic Complexes [99mTcN(L)(PNP)]+ (L = ma, ema, tma, etma, and mpo; PNP
= PNP5, PNP6 and L6).
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Table 1
The RCP data and radio-HPLC retention times of cationic 99mTc-nitrido complexes.

Compound Radiochemical Purity (%) HPLC Retention Time (Min) Log P Value
 99mTc-Sestamibi >98% 16.5 1.29±0.15
 99mTcN-DBODC5 >90% 16.2 1.10±0.07
[99mTcN(ma)(PNP5)]+ 90.5% 9.3 −0.01±0.01
[99mTcN(ema)(PNP5)]+ 90.3% 10.7 0.53±0.08
[99mTcN(tma)(PNP5)]+ 91.0% 9.9 0.38±0.10
[99mTcN(etma)(PNP5)]+ 90.0% 15.5 0.67±0.15
[99mTcN(mpo)(PNP5)]+ 91.2% 15.8 0.51±0.05
[99mTcN(ma)(PNP6)]+ 91.2% 15.8 1.19±0.13
[99mTcN(ema)(PNP6)]+ 90.8% 16.7 1.48±0.02
[99mTcN(tma)(PNP6)]+ 85.7% 15.3 1.29±0.02
[99mTcN(etma)(PNP6)]+ 92.5% 16.4 1.51±0.01
[99mTcN(mpo)(PNP6)]+ 90.3% 16.7 1.49±0.05
[99mTcN(ma)(L6)]+ 90.1% 14.2 0.92±0.16
[99mTcN(ema)(L6)]+ 90.2% 15.2 1.22±0.13
[99mTcN(tma)(L6)]+ 85.8% 15.7 1.09±0.17
[99mTcN(etma)(L6)]+ 85.6% 16.6 1.43±0.05
[99mTcN(mpo)(L6)]+ 90.3% 13.4 1.32±0.13
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