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Abstract
We present a new model-based framework for the statistical analysis of diffusion imaging data
associated with specific white matter tracts. The framework takes advantage of the fact that several
of the major white matter tracts are thin sheet-like structures that can be effectively modeled by
medial representations. The approach involves segmenting major tracts and fitting them with
deformable geometric medial models. The medial representation makes it possible to average and
combine tensor-based features along directions locally perpendicular to the tracts, thus reducing data
dimensionality and accounting for errors in normalization. The framework enables the analysis of
individual white matter structures, and provides a range of possibilities for computing statistics and
visualizing differences between cohorts. The framework is demonstrated in a study of white matter
differences in pediatric chromosome 22q11.2 deletion syndrome.
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1 Introduction
In recent years there has been increased interest in neuroimaging statistical mapping techniques
that are structure-specific. The underlying belief is that analysis that takes into account the
unique properties of specific anatomical structures and focuses its attention on these structures
can be more sensitive than analysis performed over the whole brain. Furthermore, analysis that
restricts its attention to structures of interest produces inferences that are also structure-specific.
Such inferences can be communicated and visualized more effectively than whole-brain
results, since they can be described and presented in the context of well-known structures.
Thus, for instance, a significant cluster at the tail of the hippocampus is easier to describe and
visualize than a cluster at a certain position in Talairach space. Another key feature of structure-
specific analysis is the ability to combine or average data along anatomically meaningful
directions while respecting the boundaries between structures, as opposed to uniform
smoothing over the whole brain.
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Structure-specific analysis requires a suitable representation for the anatomical structures of
interest, and the main aim of this paper is to provide a representation that is particularly well-
suited for analyzing white matter structures in diffusion MRI studies. White matter tracts
(fasciculi) are thin, sheet-like or tube-like structures, and as such can be effectively described
using skeletons. This fact is leveraged in the tract-based spatial statistics (TBSS) approach
(Smith et al., 2006), although there skeletons are derived for the entire white matter region and
no distinction between white matter structures is made. In this paper we propose to use the
continuous medial representation (cm-rep) (Yushkevich et al., 2006b) to model individual
white matter tracts. The advantage of using cm-reps, as opposed to skeletonization, is that the
skeleton of the structure of interest is represented by a parametric surface. A parametric
representation of the skeleton allows us to perform manifold-based statistical analyses similar
to those used in cortical flat-mapping (e.g., (Thompson et al., 2001; Fischl et al., 1999)).

One of the main motivations for representing white matter tracts using parametric geometrical
models is to offer an alternative to smoothing in situations where it is necessary to increase the
sensitivity of statistical analysis at the cost of specificity. Whereas isotropic smoothing reduces
the locality of detectable statistical differences equally in all directions, geometrical models
provide a way to combine and collapse data in the context of the structure of interest, making
it possible to reduce the locality along “less interesting” directions while maintaining
specificity along the directions that are more meaningful. One way to apply such shape-based
averaging is to reduce the dimensionality of a volumetric dataset to a two-manifold that is
representative of the overall shape of the dataset. For thin structures, the skeleton is an ideal
manifold onto which to project volumetric data because the skeleton captures the overall shape
of the structure.

In this paper, the new structure-specific analysis framework is used to model major fasciculi
with sheet-like geometry: the corpus callosum (CC), corticospinal tract (CST), inferior
longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), inferior fronto-occipital
fasciculus (IFO) and uncinate fasciculus (UNC). The framework is demonstrated by
application to statistical mapping of white matter tracts in chromosome 22q11.2 deletion
syndrome (DS22q11.2), which encompasses most cases of DiGeorge and Velocardiofacial
syndromes amongst others. Cluster analysis performed on the medial surfaces of white matter
tracts yields a number of statistically significant findings indicating that DS22q11.2 is
associated with bilateral differences in diffusivity in three of the fasciculi.

The paper is organized as follows. Section 2 reviews current approaches to white matter
analysis and motivates the medial-based structure-specific mapping framework. The methods
employed by the framework, including atlas-building, model initialization, fitting and
statistical analysis, are described in Section 3. A demonstration of the method in the context
of the DS22q11.2 study is presented in Section 4.2. The discussion in Section 5 focuses on the
next steps in the implementation of the structure-specific analysis framework, such as direct
automatic fitting of medial tract models to diffusion tensor imaging (DTI) data.

2 Background
The traditional approach to structure-specific analysis of diffusion imaging data has been to
identify regions of interest and integrate diffusion-based measurements over these regions,
forming a small number of statistical features (Horsfield and Jones, 2002). The advent of fiber
tracking algorithms (Mori et al., 2002) has made it possible to map out DTI-based statistical
features along the length of fiber bundles. A number of authors (Jones et al., 2005b; Corouge
et al., 2006; Lin et al., 2006; Maddah et al., 2007) identify bundles of fibers with similar shape
and make inferences on the base of bundle centerlines; this approach is well-suited for tubular
structures, but larger sheet-like structures like the corpus callosum have to be divided into
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several tubular bundles. Our approach is designed to analyze sheet-like structures as a whole,
and is highly complementary to bundle-based methods: one could use our models for sheet-
like fasciculi and bundle-based analysis for tube-like fasciculi.

Cascio et al. (Cascio et al., 2006) and Sun et al. (Sun et al., 2007) collapse DTI-derived features
onto the midsagittal cross-section of the corpus callosum and perform analysis in this two-
dimensional space. Such structure-specific approaches are powerful because they take
advantage of the specific geometry of the corpus callosum. However, the dimensionality
reduction accomplished by these methods is very distinct from our approach: in the former,
DTI data are averaged or combined along the length of fibers and projected onto a flat region
on the midsagittal plane, while in our approach this data is collapsed onto a manifold
representative of the overall shape of a white matter tract.

Another approach to white matter analysis involves adapting voxel-based and deformation-
based morphometry (Ashburner and Friston, 2000) to diffusion data. Whole-brain
morphometry is tailored for exploratory analysis, and serves different needs than structure-
specific methods. A common approach is to normalize the subjects’ structural images (T1, T2,
or in some cases, fractional anisotropy (FA) images derived from diffusion-weighted MRI) to
a standard whole-brain template (e.g., (Eriksson et al., 2001)). More recently, specialized
deformable registration methods for diffusion data have been developed (Zhang et al., 2006;
Cao et al., 2005). Voxel-based morphometry in DTI has been applied in a large number of
studies. One of the concerns raised about the standard VBM approach in DTI data is that
structure boundaries and within-structure directional information are not taken into account
during smoothing and analysis (Jones et al., 2005a). The tract-based spatial statistics (TBSS)
framework for DTI morphometry addresses this limitation by incorporating the geometric
properties of white matter tracts in the analysis. This is achieved by using registration to
compute a “mean FA” image, thresholding this image, computing the skeleton of the
thresholded region, projecting the subjects’ FA values onto the skeleton, and performing
statistical analysis on the skeleton. TBSS leverages the fact that the skeleton is a natural
representation for white matter structures, which are thin sheet-like or tube-like objects. One
of the limitations, however, is that by operating on the mean FA image, TBSS ignores
orientation information, which can lead to fasciculi that have different orientation but similar
anisotropy being combined together into a single structure. Thus the skeleton computed by
TBSS may not correspond to the skeletons of the individual fasciculi at such locations. Recent
work by Kindlmann et al. (2007) overcomes this limitation to some extent by formulating a
way to automatically detect surfaces that separate adjacent fasciculi with differing fiber
orientations, and providing a way to estimate the skeletons of adjacent fasciculi separately.

Our paper also represents white matter structures medially. However, unlike TBSS, we use
medial models to represent specific white matter structures of interest, rather than all of white
matter. In order to distinguish between adjacent tracts, we derive segmentations of individual
fasciculi using fiber tractography. The use of parametric medial models with predefined
topology simplifies statistical analysis and makes it possible for the rich collection of statistical
tools and visualization approaches developed in the cortical flat-mapping literature to be
applied to white matter studies. This is illustrated by the manifold-based cluster analysis
presented at the end of this paper.

3 Methods and Materials
3.1 Analysis Framework Overview

The main aim of this paper is to give a proof-of-concept demonstration of a new model-based
framework for representing major fasciculi and analyzing associated DTI data. This framework
includes three main components: segmentation, modeling and statistical analysis. These
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components leverage prior work in atlas-based segmentation, deformable medial modeling and
non-parametric statistical analysis. Prior to describing these components in detail, we note that
alternative approaches to each of them are available and emphasize that the focus of this paper
is on demonstrating the framework as a whole rather than on the implementation of each of its
components.

In the current implementation, segmentation, modeling and analysis all take place in atlas
space. That is, all DTI images in a study are normalized to a common atlas, which is derived
from the images themselves. Working in atlas space facilitates the segmentation and modeling
of white matter structures. An alternative, discussed in Sec. 5, is to perform segmentation,
modeling and analysis in subject space. The main difference between these approaches is in
the way that inter-subject correspondences are computed (on the basis of image-based
normalization in the atlas-based approach, or on the basis of shape in subject-space analysis).

3.2 Normalization to a DTI Atlas
The DTI atlas is constructed by normalizing all DTI images in a study to a common average
image. A number of techniques for computing an unbiased average image from a cohort of
images have been proposed (Thompson and Toga, 1997; Guimond et al., 2000; Joshi et al.,
2004; Avants and Gee, 2004). We use a similar approach (Zhang et al., 2007b) that leverages
a new deformable DTI registration algorithm (Zhang et al., 2006), in which image similarity
is computed on the basis of full tensor images, rather than scalar features. When measuring
similarity between tensor images, it is essential to take into account the fact that when a
transformation is applied to a tensor field, the orientation of the tensors is changed. A unique
property of our registration algorithm is the ability to model the effect of deformation on tensor
orientation as an analytic function of the Jacobian matrix of the deformation field. By using
full tensor information in the similarity metric, the method aligns white matter regions better
than scalar-based registration methods, as demonstrated by Zhang et al. (2007a) in a task-driven
evaluation study.

When building the atlas, the initial average image is computed as a log-Euclidean mean
(Arsigny et al., 2006) of the input diffusion tensor images. The average is then iteratively
refined by repeating the following procedure: register the subject images to the current average,
then compute a refined average for the next iteration as the Euclidean mean of the normalized
images. This procedure is repeated until the average image converges.

To allow asymmetry analysis and to simplify the modeling of bilateral fasciculi, a symmetric
average is constructed by simply applying the above averaging procedure to the non-symmetric
population average and its mirror image across the midsagittal plane (the midsagittal plane is
estimated automatically by solving a three-parameter rigid registration problem, similar to
(Ardekani et al., 1997)). The images of the subjects are then registered to the symmetric
average. The combination of the symmetric average image and the warps from the average to
each of the subject’s DTI images forms the symmetric DTI atlas. This atlas captures the
correspondences between the white matter regions of different subjects as well as between left
and right hemispheres of each subject.

3.3 Tract Segmentation
Six major fasciculi (CC, CST, IFO, ILF, SLF, UNC) were segmented in the white matter atlas
using an established protocol by Wakana et al. (2004), which is based on fiber tracking. The
FACT fiber tracking algorithm (Mori et al., 1999) was applied to the DTI white matter atlas
with the FA threshold of 0.15 and an inner product threshold of 0.7, which prevents angles
larger than 45° during tracking. A fiber was tracked from the center of any voxel with a FA >
0.2. Fibers of interest were extracted using a multiple region of interest (ROI) based approach
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(Conturo et al., 1999; Mori et al., 2002). Two types of ROIs were defined: those through which
all fibers in a tract must pass, and those through which none of the fibers may pass. Since in
this paper, a 2D manifold-based model of fasciculi is employed, only those fasciculi that have
a major portion that is sheet-like were segmented. Fasciculi that are more appropriately
represented by tubular models, such as the tapetum of the CC, the cingulum, the fornix and the
optic tract were not segmented. Fasciculi in the cerebellum and brain stem were not considered
either. Only the arcuate portion of the SLF, which can be tracked consistently, was segmented.
Binary 3D segmentations of individual fasciculi were generated by labeling voxels in the white
matter atlas through which at least one fiber passed. The binary segmentations were further
edited using ITK-SNAP (Yushkevich et al., 2006a) by one of the authors (HZ) to remove
extraneous connections: the portion of the CST extending to the cerebellum was removed;
regions that can not be disambiguated between CC and CST were attributed to both structures.
Fig. 4–Fig. 9 show the binary segmentations for the six selected fasciculi. The segmentation
of all six fasciculi required less than two hours of user time, and no slice-by-slice or voxel-by-
voxel editing was performed.

3.4 Geometrical Modeling of Major Fasciculi
Geometrical modeling of the fasciculi involves fitting deformable medial models (cm-reps) to
binary segmentations of the fasciculi in atlas space. These models describe the skeleton 1 and
the boundary of a geometrical object as parametric digital surfaces with predefined topology.
Furthermore, the models describe the geometrical relationship between the skeleton and the
boundary, such that deformations applied to the model’s skeleton can be propagated to the
model’s boundary. The medial models used in this paper have skeletons consisting of a single
surface patch, i.e., non-branching skeletons. For most fasciculi, a single-surface model appears
sufficient, as our fitting results demonstrate.

The deformable medial model is constructed as follows. We start with an initial mesh
representation of the skeleton, denoted S0. The mesh S0 is triangular, which allows maximum
flexibility for modeling complex skeleton shapes. Each vertex i in the mesh S0 is a tuple
{m0,i, R0,i}, where m0,i ∈ ℝ3 is the coordinate of the vertex and R0,i ∈ ℝ+ is the radius
value, which describes the local thickness of the model. The initial mesh S0 is fairly sparse (see
Fig. 3d). Loop subdivision (Loop and DeRose, 1990) is used to derive a sequence of
successively finer meshes S1, S2,…, which converge to a continuous limit surface as k → ∞.
In practice, only two or three levels of subdivision are used when modeling the skeleton surface.
In order to deform a medial model to optimize some cost function, we change the values of
m0,i and R0,i in the sparse mesh S0. The corresponding deformation of the finer-level meshes
is simply a linear function of the update to the sparse mesh.

Let Sk be the mesh representing the skeleton of a deformable medial model at subdivision
level k. The boundary of the medial model is derived analytically from the skeleton using
inverse skeletonization, i.e. finding a closed surface mesh bk whose Blum skeleton is
approximately Sk. The boundary surface mesh has sphere topology and consists of two halves,
each of disk topology. These halves lie on the opposite sides of the skeleton and share a common
edge. The boundary halves are denoted  (see Fig. 2) and are given by the following
inverse skeletonization expression (Damon, 2004,2005;Yushkevich et al., 2006b):

(1)

1In this paper, the term skeleton refers to the Blum skeleton (Blum, 1967; Damon, 2004, 2005). The Blum skeleton of a geometrical
object in ℝ3 is a surface or set of surfaces that result from thinning the object uniformly, i.e., evolving the boundary at uniform speed
along the inward normal until the object becomes infinitely thin. An example of a skeleton is shown in Fig. 3a.
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(2)

where  denotes the unit normal to the skeleton and ∇mR is the Riemannian gradient of R
on the manifold m. The normal and the Riemannian gradient at node i are approximated from
the ring of neighboring nodes using the expression for the tangent vectors to the limit surface
of Loop subdivision, as given by Xu (2004).

The inverse skeletonization of a skeleton surface S : Ω → ℝ3 yields a surface of spherical
topology whose skeleton is S only if S satisfies a set of sufficient conditions (Damon, 2004,
2005; Yushkevich et al., 2006b). These conditions include the following equality constraint at
each point along the edge of the skeleton surface:

(3)

In previous work, this constraint has been satisfied in different ways: by adapting the domain
Ω such that (3) is satisfied along ∂Ω (Yushkevich et al., 2003); by defining R as a solution of
a Poisson partial differential equation with the boundary condition identical to (3) (Yushkevich
et al., 2006b) or by using specially designed subdivision rules for quadrilateral meshes to model
the surface m (Terriberry and Gerig, 2006). In this paper, we simply admit skeleton meshes
Sk that slightly violate the equality constraint (3) and correct these solutions by local adjustment.
During fitting, a penalty is imposed on (‖∇mR‖ − 1)2 along edge nodes in the mesh Sk, which
forces ‖∇mR‖ to be very close to 1. The correction procedure consists of simply applying (1)
as if ‖∇mR‖ were actually equal to 1 at edge nodes. While this approach may not be as elegant
as the previous ones, it behaves well in practice and leads to a very efficient fitting algorithm.
The remaining sufficient conditions of inverse skeletonization are inequality constraints and
are handled in this paper the same way as in (Yushkevich et al., 2006b), i.e., by using additional
penalty terms during model fitting.

Now, as we apply deformations to the nodes of the sparse-level skeleton S0, we can use inverse
skeletonization to generate a boundary of the medial model at subdivision level k. Furthermore,
the correspondence between points on the skeleton and boundary points established by (1)
allows us to parameterize the region enclosed by the boundary, as discussed in Sec. 3.5. Overlap
between the medial model and a binary image can be computed efficiently. Thus, fitting a
model to a binary segmentation of a fasciculus is an optimization problem where overlap
between the model’s interior and the segmentation is maximized and the penalty terms required
for inverse skeletonization to be well-posed are minimized. Model fitting is discussed in greater
detail in (Yushkevich et al., 2006b).

3.4.1 Automatic Model-Building for Initialization—Prior to fitting a deformable medial
model to a target structure, an initial model must be generated. While it is possible to begin
with a simple stock model, the freedom to choose an arbitrary domain Ω makes it possible to
build data-driven initial models. With the freedom to define cm-reps over arbitrary domains
comes the problem of finding the right domain and the right mesh configuration for a particular
anatomical structure. We accomplish this by essentially flattening the skeleton of the structure,
under constraints that minimize local distortion.

Automatic domain generation and model building employ the following pipeline. Given a
binary image of the structure of interest, we first compute the Voronoi skeleton of the structure
using qhull (www.qhull.org) and use simple heuristics (similar to (Näf et al., 1996)) to prune
away the least salient branches. Unlike earlier work on automatic medial model initialization
(Styner et al., 2003), we do not require the Voronoi skeleton to be pruned down until it becomes
a manifold. Instead, we use the Maximum Variance Unfolding (MVU) technique (Weinberger
and Saul, 2006) which finds a two-dimensional embedding of the skeletons’ vertices that
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minimally distorts the distances between neighboring vertices. The two-dimensional
embedding assigns a pair of coordinates (ui, vi) ∈ ℝ2 to each of the vertices xi in the skeleton.
A manifold can then be fitted to the skeleton by fitting low-degree polynomial surfaces to the
data xi(ui, vi), yi(ui, vi), zi(ui, vi). The domain Ω is computed as a region homeomorphic to a
disc in ℝ2 that encloses all of the points (ui, vi). This is achieved by rasterizing the scatter plot
of (ui, vi) and applying dilation and erosion operations. To produce a quality triangulation of
Ω, we sample a set of 20–40 points along its boundary and use the meshing program
triangle to produce conforming constrained Delaunay triangulations (Shewchuk, 1996). The
initialization pipeline is illustrated in Fig 3 using the CC as the example.

3.5 Shape-Based Coordinate System
A key property of medial models is the ability to parameterize the entire interior of the model
using a shape-based coordinate system. Let us refer to the vectors  with tail on the medial
surface m as spokes. If m is a continuous surface and the constraints of inverse skeletonization
are met, the spokes span the interior of the model, i.e., the region enclosed by the surface b−
∪ b+. Every point inside this region can belong to only one spoke. Let us use coordinates (u,
v) to describe where the tail of a spoke is on the medial surface, and use the coordinate ξ ∈

[−1, 1] to describe a location along a spoke (when ξ > 0, it references the spoke  and when
ξ < 0, it references the spoke ). Then every point x on the model’s interior can be assigned
a set of coordinates (u, v, ξ), as follows:

(4)

This assignment is unique, except when (u, v) ∈ ∂Ω, in which case the spokes 
coincide. This 3D parametrization of the model is a powerful tool, as it allows us to analyze
data on the interior of structures in a shape-based coordinate system.

3.6 Statistical Analysis on Medial Manifolds
This section describes one of many possible ways to perform structure-specific white matter
analysis in cm-rep coordinate space. We assume a simple scenario, where we are interested in
analyzing differences between two groups of subjects. To further simplify the analysis, we
restrict our attention only to the differences in the apparent diffusion coefficient (ADC). ADC
is a scalar measurement of overall diffusivity equal to the mean of the eigenvalues of a diffusion
tensor.

The key feature of our statistical analysis approach is the projection of tensor-derived quantities
lying on the interior of a fasciculus onto its medial manifold. This projection results in a
dimensionality reduction along the spoke direction, i.e., the direction orthogonal to the
boundary of the fasciculus. Like smoothing, dimensionality reduction increases sensitivity at
the cost of decreased specificity. However, unlike isotropic Gaussian smoothing, data reduction
along spoke directions respects the boundaries between structures. Furthermore, isotropic
Gaussian smoothing causes equal loss of specificity in all directions, while, arguably,
dimensionality reduction along spokes in thin sheet-like fasciculi causes loss of specificity
along the least interesting direction.

We propose and compare two approaches to dimensionality reduction; other approaches are
also possible. In both approaches, we map the three-dimensional field of diffusion tensors D
(x) defined over the image domain to two-dimensional tensor fields defined over the medial
manifold of each fasciculus. For each fasciculus, this mapping is achieved by sampling
diffusion tensors along spokes RU±(u, v) and deriving a single tensor D ̃(u, v) for each point on
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the medial manifold. Such a two-dimensional tensor field is computed for each fasciculus in
each subject.

The first strategy is an adaptation of the dimensionality reduction strategy used in TBSS (Smith
et al., 2006) and will be referred to as the ‘Max-FA’ strategy. In this strategy, we select the
diffusion tensor that has the largest FA of all the tensors sampled along the pair of spokes:

(5)

In TBSS, this strategy is adopted to correct for registration errors in atlas building. Since FA
tends to be larger on the interior of fasciculi, by searching for the position with the largest FA
value along vectors which extend from the interior to the fasciculus boundary, one may recover
intersubject correspondences distorted by imperfect registration (Smith et al., 2006). However,
there is a slight but important difference between our ‘Max-FA’ approach and TBSS. The latter
computes the skeleton of the entire white matter region (defined by an FA threshold) and so
the search for the maximum FA value may span multiple fasciculi if they are not separated by
voxels with low FA. Our approach searches within the interior of each fasciculus, as defined
by our tracking-based segmentation protocol. The effects of this difference are examined in
Sec. 4.2.

The second proposed strategy is to compute the average tensor along each pair of spokes.
Following Arsigny et al. (2006), we compute the tensor average using the log-Euclidean
formulation:

(6)

This strategy assumes that the registration quality is sufficiently high and uses averaging as
the way to increase sensitivity of the analysis at the cost of specificity in the spoke direction,
which is assumed to be of least interest. A third strategy, which is not studied here, is not to
perform dimensionality reduction, but to generate statistical maps in the full u, v, ξ coordinate
system. This approach has the advantage of greatest specificity.

The analysis of statistical feature maps defined over manifolds has been studied extensively
in the neuroimaging literature and many of the techniques previously proposed for cortical
surface analysis can be directly applied to the analysis of white matter differences on medial
manifolds of fasciculi (e.g., (Thompson et al., 2001; Fischl et al., 1999)). As an illustration,
we analyze the ADC differences between two groups using non-parametric cluster-based
analysis with family-wise error rate (FWER) correction (Nichols and Holmes, 2002). First, we
compute a two-sample t-test at each point on the medial manifold of each fasciculus. Then,
given an arbitrary threshold t0, the set of clusters with t > t0 is extracted. In this context, a
cluster C ∈ Ω is a simply connected subset in the domain of the medial manifold that satisfies
t(u, v) ≥ t0 for all (u, v) ∈ C. We record the mass of each cluster C, defined as

We compare the mass of each cluster to the histogram of maximal cluster masses generated
from a large number of identical experiments in which the labels of the subjects are randomly
permuted. This histogram lookup yields a corrected p-value for each cluster. The histogram of
cluster masses is pooled over all structures of interest, so that the FWER correction takes into
account the number of structures that we examine.
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4 Experimental Evaluation
4.1 Evaluation Experiment: Subjects and Imaging Protocol

We demonstrate the proposed structure-specific white matter analysis paradigm in an ongoing
study of DS22q11.2 conducted at the Department of Psychiatry and Behavioral Science,
M.I.N.D. Institute of University of California, Davis. DS22q11.2 is associated with reduced
brain volume, and in particular, has been linked to morphological changes in white matter
(Eliez et al., 2000; Kates et al., 2001; Simon et al., 2005). We are interested in testing the
hypothesis that white matter structure is different between children with DS22q11.2 and
typically developing children (TD).

The participants in the study include 18 normally developing children and 13 children with
DS22q11.2. Diffusion-weighted and structural MRI were acquired for each participant on a 3
Tesla Siemens Trio scanner. A single-shot, spin-echo, diffusion-weighted echo-planar imaging
(EPI) sequence was used for the diffusion-weighted MRI. The diffusion scheme was as follows:
one image with minimum possible diffusion gradient, referred to as the b = 0 image, followed
by twelve images measured with twelve non-collinear and non-coplanar diffusion encoding
directions isotropically distributed in space (b = 1000s/mm2). Additional imaging parameters
for the diffusion-weighted sequence are: TR = 6500 ms, TE = 99 ms, 90° flip angle, number
of averages = 6, matrix size = 128 × 128, slice thickness = 3.0 mm, spacing between slices =
3.0 mm, 40 axial slices with in-plane resolution of 1.72 × 1.72 mm.

Diffusion-weighted images were corrected for motion and eddy-current artifacts using the
method described in (Mangin et al., 2002), prior to extracting brain parenchyma with the Brain
Extraction Tool (Smith, 2002). Diffusion tensor images were then reconstructed from the
diffusion-weighted images using the standard linear regression approach (Basser et al.,
1994). Finally, the resulting tensor volumes were resampled to a voxel space of 128 × 128 ×
64 with voxel dimensions equal to 1.72 × 1.72 × 2.5mm3. The resampled volume, with axial
dimension equal to a power of 2, is better suited for registration algorithms that require the
construction of standard multi-resolution image pyramids.

4.2 Results
The pipeline described in Sec. 3 was applied to all 31 images in the study. First, a symmetric
unbiased population atlas was constructed using image registration; this atlas is illustrated in
Fig. 1. A qualitative assessment of registration accuracy is presented in Fig 11, which shows
the DTI images from eight subjects warped into the space of the atlas. No large-scale
registration errors are evident, although there are small-scale differences.

Fiber tracking and tract labeling were used to segment six fasciculi of interest in atlas space.
Fiber tracking results and the corresponding binary segmentations are shown in top row of Fig.
4–Fig. 9. Medial models that were fit to each of the binary segmentations are shown in the
bottom row of Fig. 4–Fig. 9. The model fitting accuracy for the six fasciculi is listed in Table
1, in terms of Dice overlap between the binary segmentation of a fasciculus and the fitted cm-
rep model, as well as root mean square displacement from the boundary of the fitted cm-rep
to the boundary of the binary segmentation. The fitting accuracy is high (~0.95 Dice overlap)
for five of the six fasciculi. For the ILF, fitting accuracy is lower (0.90 Dice overlap), due to
branching fibers in the posterior part of the fasciculus (Fig. 8). Fitting this structure more
accurately would require extending our medial modeling approach to allow multi-manifold
skeletons, which is the subject of ongoing research. A combined view of the six fasciculi and
the medial models fitted to them is shown in Fig. 10.

Fig. 12 plots the distribution of thickness along the medial models fitted to each of the fasciculi.
Thickness is also shown as a color map in Fig. 4–Fig. 9. The CC and CST are the thickest
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fasciculi, with thickness reaching 16mm. ILF is the thinnest, with maximal thickness below
9mm. The voxel size of our DTI data is 1.72mm × 1.72mm × 3.0mm. Hence, the dimensionality
reduction strategies proposed above do indeed combine data from multiple voxels.

For each fasciculus, we tested the hypothesis that ADC is greater in TD than in DS22q11.2.
This hypothesis was tested using both ‘Max-FA’ and tensor averaging dimensionality reduction
strategies. In each case, a t-map was generated over the medial manifold of each fasciculus.
These t-maps are plotted in three dimensions in Fig. 13 as color maps over the medial manifolds.
An alternative visualization in the top row of Fig. 14 displays the t-maps in the two-dimensional
u, v domain of each fasciculus, making it easy to display the results of hypothesis testing on a
single page. Note that the two-dimensional projection of each fasciculus roughly resembles
the shape of the fasciculus in three dimensions, making it easier to interpret the two-
dimensional t-maps. The 2D visualization is also an effective tool for comparing the results of
different studies or different contrasts within a study.

To find the regions where ADC differences between TD and DS22q11.2 groups are statistically
significant, we performed permutation-based cluster analysis with 10000 random
permutations. The cluster threshold t0 was set to 3.40, corresponding to an uncorrected p-value
of 0.001. The sets of clusters computed for each contrast and each dimensionality reduction
strategy are shown in a two-dimensional flattened view in the bottom row of Fig. 14. The
clusters detected using tensor averaging dimensionality reduction are listed in Table 2 and the
clusters detected with ‘Max-FA’ are listed in Table 3. The results consistently point to ADC
differences in CC, IFO and UNC. However, the study is ongoing and we intend to report the
complete results, including FA differences, in a separate clinically-oriented paper.

More clusters are obtained using the ‘MaxFA’ strategy than using tensor averaging. In
particular, a large cluster is detected in the right genu of the CC, for which there is no equivalent
in the clusters generated by tensor averaging. However, looking at the differences between lists
of clusters can be deceptive because a cluster’s presence or absence can be sensitive to small
differences in the topography of the t-map from which the cluster is generated. A more fair
assessment when comparing t-maps generated by two strategies is to examine the t-values from
different strategies over the extent of the same cluster. This comparison is made in Tables 2
and Table 3. For each cluster, the average t in the ‘native’ t-map is reported (i.e., the same t-
map that was used to generate the cluster), along with the average t in the ‘opposite’ t-map. In
all cases, the native |t̄| > 3.40 since 3.40 is the clustering threshold. For almost all clusters, the
opposite t̄ is also fairly large, indicating agreement between the two strategies. The two
exceptions are the cluster for the tensor averaging strategy located in the right IFO

 and the cluster for ‘MaxFA’ strategy located in the right genu
of the CC 

Fig. 15 helps explain why the two strategies can produce different t-maps. It looks at the
aforementioned cluster in the right IFO, and examines where the tensors with maximal FA are
in relation to the medial manifold of the fasciculus. It turns out that over the region of the
cluster, the tensors with maximal FA are located not along the medial manifold but towards
the end of the spokes that point in the direction of the adjacent ILF, which passes very close
to the IFO. The tensors in the ILF have larger FA than tensors in the IFO, and the ‘MaxFA’
strategy chooses the former. Thus, although it seems to produce larger and more numerous
clusters, the ‘MaxFA’ strategy can also fail to detect statistically significant differences in
places where one fasciculus passes close to another.

The other cluster that is inconsistent between the two strategies is located in the right genu of
the CC. As Fig. 16 shows, this cluster is located where the CC is adjacent on one side to the
lateral ventricles. Unlike in the case of the right IFO, there is no systematic shift in the position
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of the diffusion tensor with maximal FA along the spokes in that area of the CC; on average,
the position of the maximal FA tensor is right on the medial manifold. It is likely that the low
sensitivity of the tensor averaging strategy is due to the partial volume effects between the CC
and adjacent highly isotropic gray and CSF structures.

5 Discussion and Conclusions
This work demonstrates the feasibility of using deformable medial models for structure-
specific statistical mapping of DTI data in major white matter fasciculi. The cornerstone of
this approach is the shape-based parametrization of the fasciculi. Medial models are a natural
representation for thin sheet-like structures because the medial manifold effectively
summarizes the overall shape of structures and presents an ideal target for dimensionality
reduction. Collapsing tensors by taking the average along spokes is an attractive alternative to
spatial smoothing of DTI data. Both approaches trade specificity for sensitivity by averaging
data from multiple locations, but spoke-based averaging also reduces data dimensionality and
explicitly strives to ensure that averaging is applied within the structure of interest, not across
its boundaries. However, since averaging takes place in atlas space and normalization is never
perfect, there is still a possibility for tensor data outside of the structure of interest to be included
in the analysis. The TBSS-inspired approach of summarizing data along the spokes by selecting
the tensor with maximal FA is also feasible in our framework and, as shown above, can lead
to increased sensitivity, albeit at the cost of potentially missing significant differences in areas
of adjoining fasciculi.

The use of skeletons in DTI analysis was pioneered by Smith et al. (2006) in the the TBSS
approach. Our approach is distinct from TBSS in several important ways. First, our approach
is directed at statistical mapping of individual fasciculi, while TBSS aims to draw inferences
about white matter as a whole. In TBSS, deterministic skeletonization is applied to the set of
all voxels with above-threshold fractional anisotropy. This results in a skeleton consisting of
hundreds or thousands of branches, some of which may be spurious and sensitive to noise. In
contrast, the cm-rep approach yields a single approximating medial surface for each of the six
selected fasciculi. This simple parametric representation allows statistical mapping of
individual fasciculi and provides an easy and attractive way to visualize and interpret statistical
differences. It establishes a canonical two-dimensional coordinate space for the fasciculi (Fig.
14), where the results from different white matter studies can be compared.

There are a number of ways to improve the proposed analysis framework. The framework can
be extended to incorporate fasciculi for which the sheet-like model is inappropriate, such as
the cingulum and the fornix. The tube-based geometrical tract model developed by Jones et al.
(2005b); Corouge et al. (2006); Lin et al. (2006); Maddah et al. (2007) is particularly well-
suited for modeling these structures, and can be used in parallel with our approach.

In the current experiment, cm-rep models were fit to tract segmentations in template space.
The dimensionality reduction of tensor data along spokes also occurs in template space,
meaning that in subject space the averaging takes place along curves that are not guaranteed
to extend from the medial axis to the boundary, since the deformations yielded by registration
algorithms do not preserve the geometrical relationship between the boundaries and skeletons
of structures. An alternative approach is to fit cm-rep models to tract segmentations in subject
space. This can be achieved by warping the binary segmentations from the template to each of
the subjects, and fitting a cm-rep model to each of these warped segmentations. In this way,
the registration component would be leveraged to align the boundary a structure, while the
normalization of the structure’s interior would be based on the geometrical correspondences
generated by cm-rep fitting.
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Reliance on expert-driven segmentation of the fasciculi is another limitation. Although the
segmentation of the fasciculi in atlas space requires less than two hours of expert time,
performing segmentation in subject space would be prohibitively expensive for many studies.
Furthermore, the simple six-parameter tensor-based representation of diffusion in our dataset
and simple streamline-based fiber tracking employed by FACT limit the accuracy with which
white matter tracts can be segmented. For instance, the data near the cortex is too noisy to
accurately model the cortical projections of the fasciculi. However, the limitations of
segmentation method do not preclude us from performing statistical analysis, as long as it is
safe to assume that the segmentation error is independent of the differences between cohorts
in a study. Recent advances in DTI segmentation (Lenglet et al., 2006; O’Donnell and Westin,
2007; Awate et al., 2007) and higher resolution imaging may indeed make it possible to more
accurately label fasciculi in atlas space, as well as in individual subject images, and to do so
automatically or with minimal user interaction. However, given the fact that deformable medial
models are themselves a very powerful segmentation tool (Pizer et al., 1999; Joshi et al.,
2002), a truly attractive approach would be to fit the deformable medial models employed in
this paper directly to DTI data, rather than to segmentations obtained with other techniques.
This would require incorporating tensor-based and connectivity-based likelihood metrics into
cm-rep fitting, as well as training shape priors for each of the fasciculi. In addition to shape,
priors may incorporate the variation in the angle between spokes of the medial model and the
principal direction of diffusion in the underlying DTI data. Model-based segmentation of the
fasciculi is one of the key long-term aims of our research.

The statistical methods used in this paper represent just one of many possible approaches to
structure-specific inference. For example, instead of permutation-based cluster analysis, one
could use point-wise hypothesis testing with false discovery rate correction (Benjamini and
Yekutieli, 2001). It is also possible to subdivide the fasciculi according to cortical regions to
which individual fibers connect, and to compute region-wise statistics. Instead of using features
derived from diffusion tensors averaged along spokes, multivariate analysis may be applied,
where each point on the medial manifold is associated with a tuple of diffusion tensors. Such
a framework would be more sensitive to group differences occurring on opposite sides of the
medial manifold.

In conclusion, we have presented a novel structure-specific framework for analyzing white
matter differences between populations. The technique can be seen both as a model-based
structure-specific alternative to the TBSS method (Smith et al., 2006) and as an extension of
the cortical flat mapping paradigm to white matter structures. The six sheet-like fasciculi in
the human brain are modeled using deformable medial models, which allows the diffusion
tensor data associated with these structures to be projected onto parametric manifolds or even
flattened to a two-dimensional domain. This approach simplifies white matter analysis and
provides a compelling way to present results of white matter studies.
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Fig. 1.
Three orthogonal views through the right CST in the white matter atlas constructed from 31
subjects (13 children with DS22q11.2 and 18 typically developing children). The standard
color-coding scheme for visualizing the principal direction of diffusion is used: red for left-
right, green for anterior-posterior and blue for inferior-superior. The intensity is scaled by FA.
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Fig. 2.
Two-dimensional diagram of medial geometry. The red curve represents the medial surface
(skeleton) m. The circle has radius R, given by the radial scalar field on m. The boundary,
shown in blue, consists of two parts, b+ and b−, derived from the skeleton and radial scalar
field by inverse skeletonization (1). The vector ∇mR lies in the tangent plane of m and points
in the direction of greatest change in R.
The arrows pointing from m to b+ and b− are called spokes.
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Fig. 3.
Model building and fitting, illustrated for the CC. a. The boundary and the pruned skeleton of
the binary segmentation of the CC (in atlas space). The color map plots the distance from the
skeleton to the boundary, i.e., thickness. Red indicates greatest thickness (at the genu and
splenium); blue indicates places where the CC is thinnest. Note that the skeleton is not a
manifold since it may contain any number of branches. b. The two-dimensional embedding of
the skeleton using maximal variance unfolding (Weinberger and Saul, 2006). The two plots
use color to show the u and v parameters assigned to each point on the skeleton. Blue represents
low u, v values and red represents higher u, v. c. A scatter plot of the skeleton’s points in u, v
space and, underneath, the conforming constrained Delaunay triangulation of the region
containing the points. d. The initial cm-rep model for the corpus callosum: on the left is the
skeleton surface with the control mesh displayed as a wireframe; on the right is the boundary
surface derived by inverse skeletonization. e. The result of fitting the cm-rep model to the
binary segmentation (the skeleton and the boundary of the model are shown). Again, thickness
is plotted in color.
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Fig. 4.
Corpus callosum (CC) model-fitting result. Top left: fiber tracking and fiber labeling result.
Top right: binary segmentation derived from the fiber tracking result. Bottom left: the skeleton
surface of the cm-rep model fitted to the binary segmentation. The color map along the skeleton
surface plots the radius scalar field R, i.e., the local thickness of the model. Bottom right: the
boundary surface of the cm-rep model.
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Fig. 5.
Inferior fronto-occipital fasciculus (IFO) model-fitting result.
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Fig. 6.
Uncinate fasciculus (UNC) model-fitting result.
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Fig. 7.
Corticospinal tract (CST) model-fitting result.
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Fig. 8.
Inferior longitudinal fasciculus (ILF) model-fitting result.
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Fig. 9.
Superior longitudinal fasciculus (SLF) model-fitting result.
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Fig. 10.
Top: fiber tracking results for the six selected fasciculi. Bottom: skeletons of the cm-rep models
fitted to the six selected fasciculi.
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Fig. 11.
Visual assessment of registration accuracy. Each plot above shows a coronal slice through one
of the subjects’ DTI images registered to the DTI atlas, except for the last plot, which shows
the atlas itself. The projection of the medial models of the fasciculi into the cut plane are shown
as white curves in each plot. These curves are exactly the same across all nine plots and are
provided as a reference.
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Fig. 12.
Thickness profiles of the medial models fitted to the six fasciculi in atlas space. The bars in
the thickness profiles represent the surface area of the region on the medial manifold where
the thickness falls within the range [i − 0.5, i + 0.5] for i = 0, 1,…, 18. Thickness is defined as
the diameter of the maximal inscribed ball centered at the given point on the medial axis (i.e.,
thickness is twice the radius function R(u, v)).
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Fig. 13.
Results of cluster analysis comparing ADC between DS22q11.2 and TD, displayed in three
dimensions. The medial models are colored by the t-score for the hypothesis ADC(TD) > ADC
(DS22q11.2). Statistically significant clusters are marked by a black outline. Results for both
dimensionality reduction strategies (Max-FA and tensor averaging) are shown.
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Fig. 14.
A statistical analysis of ADC differences between TD vs. DS22q11.2, computed using two
different dimensionality reduction strategies (MaxFA and tensor averaging, see Sec. 3.6) and
visualized in two dimensions. Top row: t-maps for the TD vs. DS22q11.2 group comparison
(t > 0 indicates greater ADC in TD, and vice versa). The t-map in each plot is the same as in
Fig 13, but is projected onto a 2D domain, allowing the t-maps associated with all 11 fasciculi
to be viewed simultaneously. Bottom row: a similar visualization of the statistically significant
clusters in ADC comparison (clusters thresholded at t = ±3.40 with FWER-corrected p-value
below 0.05). The 2D domain for each fasciculus is displayed as a gray mesh (see Fig. 3c), and
the significant clusters are displayed in color. Red clusters correspond to increased ADC in
DS22q11.2, and blue clusters correspond to increased ADC in TD.
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Fig. 15.
Closer examination of the cluster in the right IFO that appears under the tensor averaging
strategy but has no equivalent under the ‘MaxFA’ strategy. Top left: the t-map for the ADC
(TD) vs. ADC(DS22q11.2) comparison produced by the tensor averaging strategy (this is the
same t-map as in Fig. 13). The cluster of interest is the blue spot in the t-map (increased ADC
in DS22q11.2). Top right: the spokes along the medial manifold of the right IFO. Each spoke
is a line segment extending from the medial manifold to the corresponding (and also nearest)
point on the boundary (see Fig. 2). Spoke RU+ is shown in red and spoke RU− in blue. Bottom
left: a color map showing where the ‘MaxFA’ strategy samples the DTI image in relation to
the medial manifold of the right IFO. Red indicates that the tensor with maximal FA is located
at the end of spoke RU+ (on average over all 31 subjects) and blue indicates that the tensor
with maximal FA is at the end of RU−. Green indicates that the tensor with maxFA is, on
average, located along the medial manifold. Bottom right: the medial manifold of the right ILF
is shown next to the right IFO. The two fasciculi pass close to each other. The ‘MaxFA’ strategy
appears to be sampling tensors from the right ILF, which has greater FA values, and causes
the statistically significant differences in the adjacent IFO to be missed.
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Fig. 16.
A closer look at the cluster in the right anterior CC that appears under the ‘MaxFA’ strategy
but has no equivalent under the tensor averaging strategy. The location of the cluster in question
is outlined on the medial surface of the CC. The medial manifold is colored by the relative
position along the spokes of the tensor with maximal FA. Positive values (red) indicate that
on average, the maximal FA tensor is located on the side of the medial manifold away from
the midsagittal plane;. negative values indicate that maximal FA tensors tend to be located one
the side facing the midsagittal plane; and values close to zero indicate no bias in the location
of the maximal FA tensor. The lateral ventricle is in close proximity to the cluster, which may
help explain why tensor averaging, which is more prone to partial volume errors, is less
sensitive in this region.

Yushkevich et al. Page 31

Neuroimage. Author manuscript; available in PMC 2009 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yushkevich et al. Page 32

Table 1
Accuracy of cm-rep model fitting to binary segmentations of the six selected fasciculi, in terms of Dice overlap and
root mean square boundary displacement (RMSBD).

Fasciculus Dice Overlap RMSBD (mm)

CC 0.957 0.332
CST 0.954 0.285
ILF 0.902 0.320
SLF 0.944 0.246
IFO 0.950 0.226
UNC 0.951 0.219
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