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The analysis of nosocomial infection data for communicable pathogens is complicated by two facts. First, typical
pathogens more commonly cause asymptomatic colonization than overt disease, so transmission can be only
imperfectly observed through a sequence of surveillance swabs, which themselves have imperfect sensitivity. Any
given set of swab results can therefore be consistent with many different patterns of transmission. Second, data are
often highly dependent: the colonization status of one patient affects the risk for others, and, in some wards,
repeated admissions are common. Here, the authors present a method for analyzing typical nosocomial infection
data consisting of results from arbitrarily timed screening swabs that overcomes these problems and enables
simultaneous estimation of transmission and importation parameters, duration of colonization, swab sensitivity,
and ward- and patient-level covariates. The method accounts for dependencies by using a mechanistic stochastic
transmission model, and it allows for uncertainty in the data by imputing the imperfectly observed colonization
status of patients over repeated admissions. The approach uses a Markov chain Monte Carlo algorithm, allowing
inference within a Bayesian framework. The method is applied to illustrative data from an interrupted time-series
study of vancomycin-resistant enterococci transmission in a hematology ward.
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specificity

When patient-to-patient transmission is important, anal-
yses of nosocomial infection data should account for de-
pendencies caused by the fact that the risk for one person
depends on the number of others who are infected. The
importance of accounting for such dependencies has been
widely appreciated for community pathogens (1) but only
recently recognized in the hospital infection literature (2, 3).
Longer-term temporal dependencies can be caused by re-
peated admissions of the same patients, and these readmis-
sions can have profound implications for infection dynamics
in health care settings (4-7). In some settings, such depen-
dencies also need to be accounted for in the analysis.

A second complication arises from the fact that most
hospital pathogens are bacteria frequently carried asymp-
tomatically. At best, hospital transmission is only imper-

fectly observed by taking screening swabs from patients.
In most clinical settings, such swabs are taken rarely (if at
all). Imperfect sensitivity of these swabs further adds to the
uncertainty.

One simple approach that has been used to assess factors
associated with the transmission of nosocomial pathogens is
to attempt to identify the times, and sometimes also the
sources, of transmission events and relate them to the ward-
and patient-level factors of interest (such as isolation precau-
tions, colonization pressure, intervention phase of a study)
(8-11). A limitation of such approaches is the need for
arbitrary assumptions. For example, transmission is often
assumed to occur at the midpoint between consecutive neg-
ative and positive screening swabs, and methods of deter-
mining sources of transmission range from taking the
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closest possible source patient (10) to making subjective
assessments based on temporal, geographic, and staffing
data (8).

Accurately identifying transmission events is itself a prob-
lem. Typically, authors assume that patients found to be
carrying a pathogen within 48 hours of admission are colo-
nized on admission, while pathogens first identified after
this period are taken to be true acquisitions. Such arbitrary
divisions have the virtue of being pragmatic and easily ap-
plied and have undoubtedly been useful, but they may also
lead to systematic distortions: true transmission events oc-
curring within the first 2 days of admission will be misclas-
sified as importations from the community, and true
importations with initial false-negative screening swabs will
be misclassified as transmission events.

In this paper, it is shown that such arbitrary assumptions
are not required. A method of analyzing typical hospital
surveillance data resulting from patient screening swabs is
presented. This method accounts for dependencies in the
data and avoids the need for arbitrary assumptions about
transmission routes and events by adopting a data augmen-
tation approach. The augmented data combine the original
data and the additional information needed to fully define
a possible realization of the epidemic process. Each feasible
set of values for the augmented data corresponds to one
possible realization. Inferences are made by numerically
integrating over all realizations of the augmented data con-
sistent with the observed data. By this means, the method
can accommodate uncertainties in the transmission times
and pathways and in the admission and readmission coloni-
zation status of patients, and it allows for inherent uncer-
tainties in the screening results. The approach extends
recent methodological developments by simultaneously al-
lowing for imperfect screening sensitivity, incorporating
ward- and patient-level covariates, and, by explicitly mod-
eling the loss or acquisition of colonization between
repeated admissions, accounting for longer-term dependen-
cies resulting from repeated admissions of the same patients.
This approach makes it possible to estimate patient-to-patient
transmission rates, importation probabilities, duration of col-
onization between admissions, swab sensitivity, and any
ward- and patient-level covariates of interest, whether con-
stant or time varying.

DATA

Ilustrative data come from a study described in detail by
Bradley et al. (12). This was a prospective, three-phase,
interrupted, time-series study in which colonization with
vancomycin-resistant enterococci was established by rectal
swabs from consenting patients on a three-ward hematology
unit (fewer than 5 percent of new admissions refused con-
sent, and no data from these patients were used in the anal-
ysis). In the first and third phases (both 4 months),
ceftazidime was used as the first-line treatment for febrile
neutropenic episodes; in the second phase (8 months),
piperacillin/tazobactam was used instead (the change apply-
ing to both new and existing neutropenic episodes).

In the second and third phases, there was also an educa-
tion program to improve ward hygiene (12). Molecular typ-
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ing using pulsed-field gel electrophoresis indicated frequent
patient-to-patient transmission (13).

Only those data from the largest ward under study are
considered here (figure 1). Included were 173 patients who
together had 292 admissions to the 18-bed ward during the
study period and 6,057 patient-days on the ward. These pa-
tients had 756 screening swabs taken, of which 241 (32 per-
cent) tested positive for vancomycin-resistant enterococci.
These positive swabs came from 91 (31 percent) distinct
patient episodes.

METHODS

The augmented data approach is illustrated in figure 2. If
we knew the precise times when acquisitions of the organ-
ism occurred and which patients were positive on admis-
sion, then, given a transmission model, we could construct
an expression for the likelihood directly. In practice, we do
not know these factors, and many different patterns of trans-
mission will be consistent with a given set of swab results.
The proposed algorithm samples from all possible sets of
augmented data consistent with the observed swab data and
enables us to make inferences (and quantify uncertainty)
about both the parameters of the transmission model and
the total number of transmission and importation events.

The method uses a hierarchical model with three levels:
an observation model, a transmission and importation
model, and a prior model. The observation model deter-
mines the likelihood of the observed data (the patient swabs)
for a given realization of the epidemic process (the aug-
mented data), and the transmission and importation model
specifies the likelihood of the realization given the model
parameters. The prior model can encapsulate information
(or beliefs) about parameter values obtained from other
sources. When such prior information is not available, or
when we do not want to use it, parameters can be given
diffuse or “‘noninformative” priors.

The following notation is used: the time (in units of days)
is represented by ¢, where 0 < ¢ < T (all times are recorded
to the nearest whole day). Patients’ episodes are indexed
from 1 to N. D represents the observed data, which consist
of the set of swab results {s;;}, the times these swabs were
taken {#:}, and the times when patients were admitted and
discharged, {#/} and {#/}. Here, s;; is the result of the jth
swab taken from patient episode i and is equal to 1 if the
result is positive, and 0 otherwise.

The augmented data A consist of the set of colonization
statuses for each patient on admission to the ward {a;}; a set
of indicator variables, {c;}, to mark whether or not a trans-
mission event occurred for patient i; and the times at which
these transmission events occurred, {#/}. a; is set to 1 if
patient i is assumed to be colonized when admitted to the
ward, and O otherwise. Similarly, ¢; is 1 if the organism
is assumed to be transmitted to patient i, and 0 otherwise.
If ¢; = 0, #{ is undefined.

Patients, once colonized, are assumed to remain colo-
nized for the duration of their stays on the ward (and, since
colonization is asymptomatic and only rarely leads to clin-
ical infection, it is assumed not to affect length of stay). For
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FIGURE 1. Transmission of vancomycin-resistant enterococci on a hematology ward, 1995—-1996 (refer to Bradley et al. (12) for further details).
Upper panel: total number of patients on the ward known to be colonized at any one time assuming colonization is never lost during a single patient
episode; lower panel: colonization status for each patient episode and individual swab results. Open and closed circles represent negative and
positive swabs, respectively. Hatched bars indicate periods during which the patient is known to be colonized (assuming 100% specificity and that,
once colonized, patients remain so for the remaining duration of their current stays). At other times, because of imperfect swab sensitivity, patients
may be uncolonized or colonized. Lines connecting patient episodes indicate readmissions, and vertical dashed lines separate study phases.

notational convenience, the function m,(¢) is defined to be
equal to 1 if patient i is colonized and on the ward at time ¢
based on the augmented data. Thus,

@ Positive swab H]]] Assumed negative % Assumed positive

Patient 1 _
Patient 2 _

Observed data

O Negative swab

Patient 3

Augmented data #1

Augmented data #2

FIGURE 2. Schematic illustration of data augmentation showing
observed data (positive and negative screening swabs) for three
patient stays in a hospital ward and two of many possible realizations
of the augmented data. In the first (augmented data #1), patient 1 is
positive on admission and patient 2 acquires the organism on the
ward, while patient 3 remains negative. The second (augmented data
#2) shows that a completely different set of events is also consistent
with the data; now, patient 2 is positive on admission, and patients 1
and 3 both acquire the organism on the ward.

1if ¢ <r<anda;=1
mi(t)=9q1 if ¢ <r<tlande; =1
0 otherwise.

Similarly, m’(f) is defined to be equal to 1 if a patient is
present on the ward and uncolonized at time ¢, and 0 otherwise.

The augmented number of colonized patients on the ward
at time ¢ is then given by

y(1) =S mifo).

Transmission and importation model

In this section, we describe a baseline transmission and
importation model. Variants of this model are considered
later. In the baseline model, it is assumed that colonized
patients are equally infectious, but susceptibility to becom-
ing colonized may vary with the study phase and patient
characteristics. The probability of patient i (assumed to be
initially uncolonized) becoming colonized in a short interval
(t, t + Ar) is A(D)y(t)At + o(Ar) for some transmission
parameter A,(¢).
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It follows that the likelihood expression for the transmis-
sion model is

1=l oo~ [ Txi<t>y<r>m;<r>dr)] TT 2w,

i:c;=1
(1)

Here, #{_ represents the time immediately before #{. In our
implementation, event times are resolved at the level of
days, so all events are assumed to occur only at the begin-
ning of each day and #{_ is taken as #{ — 1. The product of
exponential terms in equation 1 corresponds to the likeli-
hood of transmission not occurring, and the second product
term gives the likelihood of transmission events that did
occur (refer, for example, to Becker (14) for a generalization
of this formula). Note that this model does not allow infer-
ences about who infected whom.

The importation probability, v, represents the chance that
patients already carry the strain when admitted to the ward.
The likelihood of the set of admission colonization statuses,

{a;}, is therefore
[Tvea—v'—. )
i

This expression encodes the assumption that each patient
admission is associated with an independent probability that
the patient is already colonized when admitted.

The total likelihood of the transmission and importation
model for a given realization of the augmented data is equal
to the product of equations 1 and 2.

A log-link function is used to express the effect of ward-
and patient-level covariates on patient susceptibility:

log(h;(1)) = By + Box2,i(1) + Baxzi(t) +...,

where x,,.(¢) and x3,.(¢) are defined to be equal to 1 if 7 lies in
study phase 2 and in study phase 3, respectively, and O other-
wise (some models considered included additional covariates).
The hazard ratios for colonization associated with these re-
spective phases (due to a single colonized patient) are given
by hy = exp(B,) and h3 = exp(Bs), and h; = exp(B,;) gives
the baseline hazard rate when there is one other colonized
patient on the ward.

Observation model

The observation model defines the probability of the ob-
served data (the swab results), D, for a given set of values in
the augmented data. Assuming there are no false positives,

this probability is O if there exist i, j such that s; ; = 1 and m;
(t;) = 0. Otherwise, it is given by

H E.,S':"(l _ é;)lfs,j7
ij:mi(£,)=1

where & is the probability of correctly detecting the presence
of the organism in a swab taken from a colonized patient
(i.e., the sensitivity).

Prior model

Diffuse priors were used for all parameters: N(0, 1,000)
for the B, B,, ... terms and Beta (1, 1) for v and &.
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Posterior inference

The joint posterior density of A, D, v, &, and By, B,,. .. is
thus given as the product of the observation model, the
transmission model, and the prior model:

p(D5A7Vaiaﬁl5B27' ) :p(D7A|V7éaBlaﬁZa"')

Xp(vvéa Bl ) B27 : )
:p(D|A7E_,)p(A|V7 Bl ’ BZ? . )
Xp(v,&,B1,Bas---)- (3)

The joint posterior density of v, &, By, B,,..., and A is
then estimated numerically by using a Markov chain Monte
Carlo sampling algorithm outlined below (full details are
given in the supplementary technical appendix, which is
posted on the Journal’s website (http://aje.oupjournals.org/)).
The unobserved times when patients acquire the organism (the
latent event times, which are part of the augmented data) are
included in the set of model unknowns. The number of acqui-
sitions of the organism (and hence the number of unknowns) is
itself an unknown, so the dimension of the model can change.
A Markov chain Monte Carlo sampling algorithm with revers-
ible jump extensions is therefore required to explore the joint
posterior distribution of all model unknowns (the augmented
data and the model parameters) (15).

Model variants

Here, we present results for seven variants of the basic
model described above. In model 1, A,(¢) varies only by study
phase, and swab sensitivity is assumed to be 100 percent.
Patient readmissions are not explicitly accounted for, but,
when patient screening swabs are positive in consecutive
admission episodes, it is assumed that the patient was col-
onized on admission in the second episode. Since patients
are assumed not to clear colonization during the course of
a single admission, only those data up to the first positive
swab for each episode are used when fitting model I.

Models II-VII remove the assumption of perfect swab
sensitivity and use all the data. Model II is identical to
model I, except that repeated admissions are not accounted
for in any way. Models III-VII, in contrast, account for
repeated admissions by allowing for the possible loss or
acquisition of colonization between admissions. An expo-
nentially distributed duration of colonization following dis-
charge is assumed. Thus, the probability that a patient who
is colonized when discharged is still colonized when re-
admitted ¢ days later is exp(—¢1), and the mean duration of
colonization outside the ward is 1/¢ days (again, since col-
onization is asymptomatic, it is assumed not to influence the
probability of readmission). In all cases, a diffuse prior,
I'(0.001, 0.001), is used for ¢. Five variants of this readmis-
sion model are considered (all with straightforward modifi-
cations to the likelihood):

1. In model III, patients who are not colonized at discharge
are assumed to have the same phase-independent
probability, v, of being colonized on subsequent re-
admissions as patients with no previous documented
admissions.
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FIGURE 3. Pairwise plots of samples from the posterior distribution for swab sensitivity (£), probability of being admitted colonized (v), rate of
loss of colonization outside the ward (¢), and transmission rates for phases 1-3 (B4, B2, Bs). Plots below the diagonal show results from model ll;
those above show results from model IV (each point shows the value of two parameters from one sample from the posterior). Histograms on the
diagonal show the marginal posterior distributions for model 1V. Correlations between pairs of parameters are indicated in the top right of each

subgraph.

2. Model IV differs from model III only in incorporating
patient-level covariates (age, gender, and protective
isolation).

3. In model V, patients who are not colonized at discharge are
assumed, on subsequent admission, to have phase-specific
probabilities, (vy, Vv,, Vv3), of being colonized on
admission. Patients with no previous documented ad-
missions also have these phase-dependent probabilities
of being colonized when admitted.

4. In model VI, patients without previous documented
admissions have a phase-independent probability of
being colonized on admission, v. Patients who are not
colonized at discharge are assumed to have a probability
of being colonized on subsequent admission ¢ days later,
given by v(f) = v(1 — exp(—d#/(1 — v))). This expression
can be derived by assuming constant rates of acquisition
and loss of colonization outside the ward and that
v represents the long-term equilibrium for the proportion
outside the ward who are colonized.

5. In model VII, patients not colonized at discharge are
treated as in model VI on subsequent admissions.
Patients without previous documented admissions have
phase-specific probabilities of being colonized on ad-
mission, as in model V.

Model comparison and assessment

Model comparison was based on a version of the deviance
information criterion (DIC) (16). This criterion uses the de-
viance penalized by the effective number of parameters.
A lower value indicates a better fit. Usually, it is calculated as
DIC = D + p,. Here, pp is given by D — D(6) (the posterior
mean deviance minus the deviance at the posterior mean)
and is interpreted as the effective number of model param-
eters. In this case, however, the augmented data are categor-
ical, so there is no unique posterior mean. Instead, the
effective number of parameters was estimated with pp =
var(D)/2 (17).

Am J Epidemiol 2008;168:548—-557
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TABLE 1. Parameter estimates: medians and 95% credible intervals for models I-IV*
Model
| 1l 1] [\
Parameter
95% 95% 95% 95%
Median  credible  Median credible = Median credible Median credible
interval interval interval interval
Probability of being admitted
colonized (v) 0.21 0.16,0.26 0.14 0.09,0.19 0.09 0.06,0.14 0.10 0.06,0.15
Baseline transmission X
10%(hy) 5.3 36,74 76 5.1,10.8 6.8 4.6,9.8 3.9 14,91
Phase 2 hazard ratio (h,) 0.50 0.26,0.90 0.38 0.17,0.75 039 0.18,0.78 0.30 0.11,0.64
Phase 3 hazard ratio (hs) 099 0.51,1.82 1.08 0.53,2.05 1.13 0.53,222 090 0.37,2.03
Swab sensitivity (&) 090 085,094 089 0.85 093 089 0.84,0.93
Mean duration of carriage
(days) (1/¢) 98.7 47.4,218.8 97.4 458, 219.2
Protective isolation 1.8 0.8,4.2
Male gender 1.8 0.9, 3.5
Age (second quartile) 0.9 0.4,23
Age (third quartile) 0.8 0.3,20
Age (fourth quartile) 1.6 0.6, 4.0
A DICt NAt 0 Baseline —131 —113

* Model | assumes perfect swab sensitivity, model Il allows for imperfect swab sensitivity but no readmission,
model Il extends model Il to allow for patient readmissions, and model IV extends model lll to adjust for patient-level
covariates. The parameters h, and hz (which are equal to exp(f,) and exp(ps)) represent the ratios of the hazards for
a susceptible patient to acquire the organism in phases 2 and 3 compared with phase 1, given the same number of
colonized patients. Values less than one indicate a decreased risk of transmission.

t DIC, deviance information criterion; NA, not applicable.

Two approaches were used to assess model fit. First,
a cross-validatory approach was used to predict the results
of the screening swabs for each patient in turn given the
preceding day’s augmented data (sampled from the poste-
rior) for other patients. These predictions were made in two
steps. First, predictions for the augmented data for each
ward-day for each patient were obtained from a sequence
of 1-day-ahead Monte Carlo samples from the transmission
model (using one set of values for model parameters and
augmented data sampled from their joint posterior). Second,
the observation model was then used to obtain a sample of
the predicted swab results (i.e., a swab from a patient who
was colonized in the predicted augmented data was positive
with probability &). One thousand such samples were taken
and were used to compare predicted and observed ““apparent
acquisitions” on each study day (the first positive screening
swab following one or more negative screening swabs for the
same patient episode indicated an “apparent acquisition”).

The second approach assessed the ability of the different
models to forecast the time evolution of the epidemic, con-
ditioning on patient colonization statuses on the first day of
the study and observed patient stays. Again, this approach
required two steps: sampling from the transmission model,
then sampling from the observational model. Each predic-
tion sample again used one set of model parameters sampled
from the posterior distribution, but otherwise these predic-
tions made no use of individual swab results. In this case,
observed and predicted swab results for each day of the
study were compared.
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Implementation

A Metropolis sampling algorithm was used to update the
augmented data and model parameters (except v and &, for
which a Gibbs step was used) (18, 19). The algorithm was
implemented in a C++ program (full details are given in the
supplementary technical appendix) and was verified by us-
ing simulated data.

Convergence of the Markov chains was assessed by visual
inspection and through the use of the single-chain diagnos-
tics implemented in the Bayesian Output Analysis Program
(BOA) package (20).

RESULTS

Reported results are based on at least 150,000 values
sampled from the Markov chain, where a sample was taken
at every 100th iteration (although chains up to four times
this length were used to confirm convergence). Acceptance
probabilities for proposed updates to the augmented data
ranged from 28 percent (model VII) to 51 percent (model I).
Samples from the posterior distribution indicated little cor-
relation between parameter values, with the exception of B,
which, in the unadjusted models, was negatively correlated
with both B, and B; (figure 3).

The largest Monte Carlo error was usually associated
with the phase 3 hazard ratio, h;, for which the value of
0.005 obtained with model V and 150,000 values sampled
was typical.
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TABLE 2. Parameter estimates: medians and 95% credible intervals for models V-VII*

Model
\ \ Vi
Parameter
95% 95%
Median credible Median credible Median credible
interval interval interval
Probability of being admitted
colonized (all phases) (v) 0.11  0.07,0.17
Probability of being admitted
colonized (phase 1) (v4) 0.28 0.17,0.41 0.25 0.15,0.37
Probability of being admitted
colonized (phase 2) (vo) 0.03 0.01, 0.09 0.03 0.00, 0.08
Probability of being admitted
colonized (phase 3) (v3) 0.03 0.00, 0.11 0.03 0.00, 0.12
Baseline transmission X
10%(hy) 6.1 3.9, 838 6.9 4.6,9.7 6.5 43,93
Phase 2 hazard ratio (hy) 054 025,105 039 0.17,0.78 0.50 0.25,0.95
Phase 3 hazard ratio (hg) 1.33 062,261 106 050,208 121 057, 237
Swab sensitivity (&) 090 0.85,094 0.89 0.85 093 090 0.85 0.93
Mean duration of carriage
(days) (1/¢) 105.0 51.0,236.7 117.5 56.2,264.3 116.8 57.4, 259.1

A DICt —583

-170 —201

* Models V, VI, and VIl are identical to model Ill (refer to table 1) except in the following
respects: for patients who are uncolonized at the end of a previous admission (or who have no
previous admissions), model V allows the probability of being colonized on admission to depend
on the study phase; model VI allows the probability of being colonized on admission for those
who are not colonized at the end of a previous admission to depend on the time to readmission,
as described in the text; and model VIl combines aspects of models V and VI, with probabilities of
being colonized on admission varying by study phase for those with no previous admissions and
by time since discharge for those uncolonized at the end of their previous admission.

1 DIC, deviance information criterion.

All models considered led to broadly similar conclusions
about the effect of the interventions (tables 1 and 2): esti-
mated values for &, provided good evidence that the phase 2
intervention substantially reduced patient-to-patient trans-
mission (the contribution of each colonized patient to the
transmission rate for each uncolonized patient falling by
about half in phase 2). In contrast, all #3 estimates were
close to 1, with wide credible intervals, indicating that there
was little evidence that the phase 3 transmission rate differed
from that in phase 1, despite the educational intervention.

Removing model I’s arbitrary assumptions about the col-
onization status of readmitted patients and allowing for im-
perfect swab sensitivity led to a much lower estimated
probability that patients were admitted colonized and to
a much higher estimate of the baseline transmission param-
eter (model II). Models allowing for patient readmission
(ITII-VII) all estimated a mean duration of carriage of
vancomycin-resistant enterococci outside the ward of ap-
proximately 100 days (but with wide credible intervals)
and gave similar estimates for swab sensitivity to model II
(close to 90 percent). Comparison of deviance information
criteria between models II through VII (model I uses differ-
ent data and is not comparable) indicated that accounting for
the readmission of patients in models I[I-VII substantially
improved the model fit (lowered the deviance information
criterion). There was no strong evidence that the potential

confounders in model IV were associated with altered trans-
mission, although there was weak evidence that male pa-
tients and those in the oldest quartile were at increased risk
of acquiring vancomycin-resistant enterococci. Including
patient-level covariates (model 1V), however, gave a higher
deviance information criterion than that for model III, in-
dicating a worse fit. Patient-level covariates were therefore
not included in the other models.

Model assessment using the cross-validatory method sug-
gested that models I-IV all gave adequate fits to the data
(figure 4, top). This visual impression was confirmed by
a chi-squared test of goodness of fit, comparing the total
observed and mean predicted numbers of apparent acqui-
sitions by study phase. For example, with model III, the
cross-validatory approach predicted the mean number of
apparent acquisitions to be 20.7, 11.1, and 9.9 in phases 1,
2 and 3, respectively, compared with 21, 13, and 10 ob-
served (x> = 1.07, df = 2; p = 0.59).

In contrast, the forecasting approach found that these
models consistently predicted more swabs positive for
vancomycin-resistant enterococci than observed between
days 275 and 375 (figure 4, bottom). This lack of fit was
confirmed by a further chi-squared goodness-of-fit test com-
paring observed and predicted positive swabs by phase
(Xz = 14.6, df = 2; p = 0.001). It was this discrepancy that
led to consideration of the model variants V-VII. All these
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FIGURE 4. Model assessment using cross-validatory (top) and forecasting (bottom) approaches for models IlI (left) and V (right). The cross-
validatory approach compares the number of observed apparent acquisition events (initial negative followed by positive swabs from the same
patients) with corresponding posterior predictions for each patient, conditioning on the earlier swab results from other patients. The forecasting
approach compares observed and predicted positive swabs taken on each day, conditioning only on the colonization status of patients on the first
study day and on the admission and discharge dates for each patient. In all cases, 50-day moving averages are shown for data (solid line), median
predicted values (dashed line), and 95% credible intervals for predictions (dotted lines).

models had lower deviance information criterion values than
model III, but the largest improvement in model fit was
obtained when the probability of being admitted colonized
(for those who were not previously discharged colonized)
was allowed to vary by study phase (model V). Forecasts
obtained by using this model showed a notable improvement
between day 275 and day 375, with observed data falling
within 95 percent forecast intervals, and adequate goodness
of fit (3 = 3.20, df = 2; p = 0.20). Nonetheless, even with
the best model, there was still a tendency to overestimate the
prevalence of vancomycin-resistant enterococci during this
period.

DISCUSSION

The approach described here builds on methods devel-
oped for studying epidemics in the community (21-23)
and a recent adaptation of these methods to hospital popu-
lations (24). This work extends these approaches to account
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for repeated admissions by explicitly modeling the loss of
carriage following discharge. It also shows how these meth-
ods can be applied to the analysis of interrupted time-series
studies without having to make arbitrary assumptions about
transmission events and allowing for adjustment for poten-
tial confounders and estimation of important parameters,
such as duration of carriage outside the ward and swab
sensitivity.

In addition to the approach described by Forrester et al.
(24), four other approaches to analyzing nosocomial infec-
tion data using stochastic transmission models have been
described. The first used a Markov model to analyze re-
peated cross-sectional screening data (so it would not be
suitable for the arbitrarily timed swab data used here)
(25). The second used a hidden Markov model to analyze
time series of infection counts rather than colonization data
(3). A limitation of this approach is that infections occur
much less frequently and the information content of such
data is much lower. The third approach overcame some of
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these limitations of sparse data by using a Bayesian imple-
mentation of the hidden Markov model (26).

The fourth approach used surveillance data from arbi-
trarily timed swabs to fit a stochastic transmission model
using a likelihood approach, making use of observed stays
of individual patients (27). This approach is the closest of
the four to the method described here, and it has one clear
advantage: model fitting is much speedier. The augmented
data framework adopted here, however, at the cost of being
computationally much more demanding, offers greater flex-
ibility, making it possible to account for important epidemi-
ologic features such as repeated admissions and imperfect
swab sensitivity.

Imperfect observation of highly dependent longitudinal
data poses a number of problems, many of which we have
addressed but some of which remain. Initial conditions pre-
sent a special problem when states are not perfectly ob-
served because, by definition, there are no earlier data, so
the probability that patients already present at t = 0 were
colonized on admission cannot be modeled in the manner
used at subsequent time points. Here, the issue was side-
stepped by assuming that patients initially on the ward were
admitted at r = 0. This censoring may become even more
important when patients are admitted multiple times. The
two best-fitting models (V and VII) were those allowing
phase-specific probabilities of colonization on admission.
Both models estimated large reductions in this probability
after phase 1, almost certainly because patients admitted in
phase 1 who were not known to be previously colonized
would have included many with unobserved prestudy ad-
missions. Any vancomycin-resistant enterococci coloniza-
tion during these earlier admissions would not have been
detected, and such colonized patients would therefore con-
tribute to the estimate of v;, the phase 1 importation prob-
ability. In contrast, patients admitted in phases 2 and 3 who
were colonized during earlier stays on the ward during the
study would be identified as previously colonized patients.
These patients would therefore not contribute to the esti-
mates of the importation probabilities v, and vs, resulting
in much lower estimates.

Recent models of methicillin-resistant Staphylococcus
aureus transmission have allowed for a constant background
rate of acquisition (in addition to importation and patient-to-
patient transmission) to account for other sources of within-
ward acquisitions (such as colonized relatives or staff) (24).
These sources were not believed to be important in the
current context and were not considered in the model.

All the models considered here assumed that patients,
once colonized, remained so until discharge. While a more
general model would allow for within-ward loss of coloni-
zation, it was found that, once colonized, patients invariably
remained so until discharge. Repeated therapy with anti-
anaerobic antibiotics, which appears to promote high-level
carriage persistence, may be one reason rapid carriage clear-
ance appeared to be unimportant (28). A further limitation
of the current work is the absence of a washout period.
However, by accounting for readmissions, the model was
able to capture at least one source of carryover effects.

Understanding the effect of antibiotic use on the trans-
mission and persistence of drug-resistant bacteria presents

major difficulties for conventional approaches to data anal-
ysis: antibiotics may select for resistant strains both by in-
creasing the risk of acquisition (by suppressing competing
organisms) and by increasing transmission from treated colo-
nized patients (by increasing levels of carriage). They may
also alter the probability of detecting colonization (29).
Extensions of methods such as those considered here have
the potential to help overcome these obstacles and could
play a major role in addressing key scientific questions in
this field.
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