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Experiments requiring strong repression and precise control of cloned genes can be difficult to conduct
because of the relatively high basal level of expression of currently employed promoters. We report the
construction of a family of vectors that contain a reengineered lacI?-lac promoter-operator complex in which
cloned genes are strongly repressed in the absence of inducer. The vectors, all based on the broad-host-range
plasmid pBBR1, are mobilizable and stably replicate at moderate copy number in representatives of the alpha-
and gammaproteobacteria. Each vector contains a versatile multiple cloning site that includes an Ndel site
allowing fusion of the cloned gene to the initiation codon of lacZa. In each tested bacterium, a uid4 reporter
fused to the promoter was not expressed at a detectable level in the absence of induction but was inducible by
10- to 100-fold, depending on the bacterium. The degree of induction was controllable by varying the concen-
tration of inducer. When the vector was tested in Agrobacterium tumefaciens, a cloned copy of the traR gene, the
product of which is needed at only a few copies per cell, did not confer activity under noninducing conditions.
We used this attribute of very tight and variably regulatable control to assess the relative amounts of TraR
required to activate the Ti plasmid conjugative transfer system. We identified levels of induction that gave
wild-type transfer frequencies, as well as levels that induced correspondingly lower frequencies of transfer. We
also used this system to show that the antiactivator TraM sets the level of intracellular TraR required for fra

gene activation.

Bacterial expression vectors have been designed for two
main purposes: those with promoters engineered for very
strong expression, from bacteriophage SP6 (34) or T7 (39, 51)
for example, are useful for overexpressing proteins for subse-
quent purification, and those with regulatable promoters, Plac
(42) for example, are useful for studies in which controlled
expression of the cloned gene at physiologically relevant levels
is important. Among the latter, the lac promoter of Escherichia
coli, as well as its mutant and hybrid forms lacUV5 (6), Ptac
(10), and Prrc (4), have been extensively exploited in combi-
nation with its control protein, Lacl. In addition, other regu-
latory elements have been developed and are widely used,
including the arabinose promoter of E. coli (19), the xylene
(xyl) promoter of Pseudomonas putida (35), and the xylose (xy/)
promoter of Caulobacter crescentus (48).

Of these options, the lac promoter has certain advantages.
First, more is known about this promoter and how it is regu-
lated by Lacl and other transcription factors than perhaps any
other bacterial promoter. Second, several versions of the pro-
moter with different strengths are available. Third, a number of
engineered versions of the lac promoter and its regulatory
elements, which include multiple cloning sites and reporter
genes, such as lacZa, have been constructed. Fourth, repres-
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sion by Lacl can be relieved by using several inducers, one of
which, isopropyl-B-p-thiogalactopyranoside (IPTG), appar-
ently is membrane permeable (23). This characteristic allows
the use of the lac system in many bacteria, including those that
do not express their own lactose transporter. The xylene pro-
moter shares this feature; this nonpolar aromatic compound,
while requiring a facilitator for passive diffusion across the
outer membrane, is most probably freely diffusible across bac-
terial inner membranes (24). However, the xyl/ promoter, while
strongly responsive to xylene in its host of origin and close
relatives, does not exhibit regulatory properties in other, more-
distantly related bacteria (25). Moreover, xylene can be toxic to
the bacteria (24). The ara and xylose promoters both require
that the host express a transporter that facilitates uptake of the
inducer. Moreover, if the transporter itself is regulated by the
inducer, predictably dose-dependent induction is problematic
(23, 37, 46). The xylose promoter of C. crescentus has the added
disadvantage that, until recently (33), the regulatory element,
xyIR, had not been identified. To our knowledge, this gene has not
yet been incorporated into the available Pxy/ vectors.

Most of these expression systems share an additional limi-
tation. Although the expression of the cloned gene can be
upregulated by adding inducer, basal levels of expression in the
absence of inducer often are significant. This property can be
particularly troublesome in studies in which the expressed pro-
tein is active in small quantities in vivo.

TraR, the quorum-sensing transcriptional activator that con-
trols conjugative transfer of the Ti plasmids of Agrobacterium
tumefaciens, is active when expressed at only a few copies per
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cell (49). We have need of a vector system in which we can
reliably maintain repression of traR expression at levels below
that which would activate the target operons yet which allows
induction of the expression of this transcription factor at will.
Unfortunately, when cloned in our available expression vec-
tors, the basal, repressed level of expression of fraR is sufficient
to activate the Ti plasmid transfer system, making these vectors
unsuitable for our purposes.

Here we report the construction of a set of broad-host-
range vectors in which we have reengineered the lac pro-
moter system to provide very tight regulation of any prop-
erly cloned gene. The vector promoter system exhibits very
low basal levels of expression in six bacteria representing the
alpha and gamma subdivisions of the Proteobacteriaceae. In
all cases, the addition of IPTG yielded good levels of induc-
tion, and, where tested, such levels could be controlled by
the inducer concentration. We also report the results of
studies in which we have used this expression system to
examine the relative levels of TraR required to activate
conjugative transfer in a donor population and to assess the
role of the antiactivator TraM in controlling the Ti plasmid
quorum-sensing system.

MATERIALS AND METHODS

Bacterial strains and media. The bacterial strains used in the study are listed
in Table 1. E. coli derivatives were grown in LB medium at 37°C. A. tumefaciens
was grown on nutrient agar and in ABM (9) or MG/L (5) at 28°C as described
in the text. Pseudomonas fluorescens 1855-344, Rhizobium leguminosarum bv.
viciae 3841, Sinorhizobium meliloti 1021, and C. crescentus CB15 were grown in
ABM, YEM (52), TY (3), and PYE (12) medium, respectively, at 28°C. Brucella
abortus 2308 was grown in brucella broth (Becton-Dickinson, Franklin Lakes,
NJ) with aeration at 37°C or on Schaedler agar (45) supplemented with 5%
defibrinated bovine blood (SBA) at 37°C under 5% CO,. Antibiotics were added
as required at the following concentrations in ug per ml: ampicillin, 100; kana-
mycin (Km) or neomycin, 45, 50, or 100; gentamicin (Gm), 30 or 50; and
tetracycline (Tc), 5 or 10.

Genetic techniques. Standard methods of plasmid and genomic DNA prepa-
ration and restriction digestion were used (44). DNA fragments were amplified
by using either Platinum Pfx-DNA polymerase (Invitrogen) or Pfu Turbo DNA
polymerase (Stratagene) in a thermal cycler (MJ Scientific). DNA was trans-
formed into E. coli by heat shock (44) and into A. tumefaciens and P. fluorescens
by electroporation (5) using a Gene Pulser equipped with Pulse Controller
(Bio-Rad). DNA was mobilized into R. leguminosarum bv. viciae 3841, S. meliloti
1021, and C. crescentus CB15 by biparental mating using E. coli WM5979 (Table
1) as the donor. Plasmids were transferred into B. abortus 2308 by electropora-
tion as previously described (28).

Construction of plasmid vectors. For the construction of pSRKGm,
pBBRIMCS-5 (26) was digested with Sspl and self-ligated, resulting in the loss
of an internal 704-bp fragment, to give rise to pSRKGm(a ™). This intermediate
lacks the entire lacZa-peptide sequence and the lac promoter of pPBBRIMCS-5.
A 1,321-bp fragment containing a full-length lacI gene with the lacI9 promoter,
the lac promoter-operator complex, and the start codon of lacZ was amplified by
PCR from genomic DNA of E. coli MG1655. The oligonucleotides used were
5'-CGCGTTCGAAATTGAATTCTGATTGACACCATCGAATGGTG-3' and
5'-GCGCGTTCGAATTGCTAGCCATATGCTGTTTCCTGTGTGAAAT-3’
and contain BstBI sites at both ends. Moreover, in the amplified fragment, the
start codon of lacZ is engineered as part of an Ndel site. This fragment was
cloned into pPSRKGm(a ™) at the unique BstBI site, giving pSRKGm(lacl). Fi-
nally, the 366-bp lacZa gene of pBluescript SK(+) was amplified by using
oligonucleotides 5'-GCGCGTTCGAACATATGACCATGATTACGCCAAG
C-3" and 5'-GCGCGTTCGAAGCTAGCTTACAATTTCCATTCGCC-3" and
cloned into pSRKGm(/acl) between the unique Ndel and Nhel sites. In the
resultant plasmid, called pSRKGm, the ATG codon of the a-peptide is part of
the Ndel site.

For the construction of pPSRKKm, pBBRIMCS-2 was digested with BstBI and
self-ligated, resulting in the loss of an internal 1,046-bp fragment, to give rise to
pSRKKm(a ™). Subsequently, a 1,684-bp BstBI fragment containing the lacl9-
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Plac-lacZo region from pSRKGm was ligated into pSRKKm(a ™), yielding
PSRKKm.

pSRKTc was constructed from pBBRIMCS-3 in three steps. First,
pBBRIMCS-3 was digested with EcoRI, resulting in the loss of a ca. 1.7-kb
fragment that contains the tetracycline resistance gene and part of the lacZa
sequence. In this intermediate vector, the Tc resistance gene was reintro-
duced between the EcoRI sites as a PCR-generated 1,285-bp fragment, yield-
ing pPSRKTc(m). In the second step, pSRKTc(m) was digested with Smal and
Sspl, resulting in the loss of a 255-bp fragment containing the remaining
segment of the a-peptide coding region. This vector, called pPSRKTc(a ™), was
subsequently digested with BstBI, and the lacl9-Plac-lacZo region from
pSRKGm was ligated into this site, yielding pSRKTec.

Construction of the reporter and traR expression clones. The B-glucuronidase
gene (uidA) was amplified from genomic DNA of E. coli MG1655 by PCR and
cloned between the Ndel and Nhel sites of pPSRKKm (sites were generated as
part of the primers), generating pPSRKKm::uidA. In this construct, the start
codon of uidA is synonymous with that of lacZa.

The traR gene of pTiC58 was excised from pZLQR (30) as an NdeIl-BamHI
fragment and cloned into pSRKGm, giving rise to pPSRKGm#raR. We also con-
structed another lacl-lac promoter-based vector expressing traR as follows. The
lacI gene, obtained as an EcoRI fragment from pKK38-I (Table 1) was cloned
into pGPO3, a derivative of pDSK519 in which #raR is expressed from the lac
promoter (17) to give pGPO3-1. Subsequently, pGPO3-I was partially digested
with EcoRI and ligated with a gentamicin resistance cassette obtained from
pQKK-gnt, yielding pGPO3-I-gnt.

B-Galactosidase and B-glucuronidase assays. The B-galactosidase or B-glu-
curonidase activity was assessed qualitatively by patching cultures onto solid
medium containing 5-bromo-4-chloro-3-indolyl-B-p-galactopyranoside (X-Gal)
or 5-bromo-4-chloro-3-indolyl-B-p-glucuronoside (X-Gluc), respectively, using
both at a concentration of 50 wg per ml. The colony color and intensity were
visually assessed after 24 to 96 h of growth at appropriate temperatures. B-Ga-
lactosidase activity was quantified according to Miller (36), while B-glucuroni-
dase activity, expressed as modified Miller units, was quantified as described by
Jefferson et al. (22).

Conjugative transfer of Ti plasmids. The conjugative transfer of pTiC58 de-
rivatives was measured by drop-plate mating as described previously (49). Briefly,
5-pl volumes of 10-fold serial dilutions of cultures of donor strains were spotted
onto lawns of A. tumefaciens C58CIRS (Table 1) spread on medium selective for
transconjugants only. The progeny arising from the transfer of the Ti plasmid to
the recipients were counted, and the frequency of transfer was calculated and
expressed as the number of transconjugants obtained per donor cell in each spot
on the lawn.

RESULTS

Construction and properties of the pSRK family of vectors.
Although there are a number of broad-host-range vectors with
expression systems based on lacI9-Plac (2, 7, 16, 18, 30), cloned
genes often are expressed at unacceptably high levels in the
absence of induction. Full repressional control of the lac
operon by Lacl requires cooperative interaction of the tet-
rameric repressor at two of the three operators, O,, O,, and
O, that are located in the operon (38). The lacl-Plac vectors
that we know of have been constructed without regard to the
relative location of O, encoded within the 3’ region of lacl,
with respect to O, in the lac promoter region (7, 30). We
reasoned that the spacing between these two operators may
be critical for maximum repression by tetrameric Lacl (27,
38). With this in mind we set out to construct a series of
vectors in which the region encompassing lacl-O5 and the
lac promoter with its adjacent operator, O, is as similar to
that of the native lac operon as possible. The three new
vectors, pPSRKKm, pSRKGm, and pSRKTc, all based on the
broad-host-range pPBBRIMCS vector family (26), contain a
segment that codes for lacI9 with O, the native lac promoter
with O, and lacZo containing the multiple cloning site of
pBluescript II SK(+) (Fig. 1). While the segment lacks O,,
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TABLE 1. Strains and plasmids used in this study
Strain Characteristics Source or
reference

A. tumefaciens strains

C58 Wild-type pathogenic strain carrying pTiC58 Our collection
NT1 Derivative of C58, cured of pTiC58 53
NTL4 Derivative of C58, cured of pTiC58; AtetRS 31
C58CI1RS Derivative of C58, cured of pTiC58; Rif" Str® Our collection

E. coli strains

MG1655 K-12 derivative; =~ N7ilvG rfb-50 1ph-1 J. Cronan, Jr.
DH5a supE44 AlacU169(blacZAMIS) hsdR17 recAl endAl gyrA96 thi-1 relAl Invitrogen
WMS5979 lacl? rrmB3 AlacZ4787 hsdR514 A(araBAD)567 A(rhaBAD)568 rph-1 Aatt W. Metcalf
N::pAE12-A(oriR6K/cat::fit5) A4229(dapA)::frtA(endA)::frt attHK::
pJK1006::A1/2 (AoriR6K-cat::fit5 AtrfA::frt)
Other strains
Rhizobium leguminosarum bv. Derivative of R. leguminosarum bv. viciae strain 300; Sm" J. A. Downie
viciae 3841
Sinorhizobium meliloti 1021 Derivative of wild-type strain SU47; Sm" S. R. Long
Caulobacter crescentus CB15 Wild-type strain J. M. Slauch
Pseudomonas fluorescens 1855-344 Wild-type strain Our collection
Brucella abortus 2308 Wild-type, smooth, virulent laboratory strain R. M. Roop 11
Ralstonia solanacearum AW1 Wild-type strain T. P. Denny

Plasmids
pTiC58 Wild-type Ti plasmid of strain C58; Noc™ Vir" Tral Our collection
pKPC12 pTiC58 (traR::lacZ) TraR™; Noc™ Vir" Tra~ Km" 41
pBluescript II SK(+) Cloning vector; ColE1 f1(+) Amp" Stratagene
pBBRIMCS-2 Broad-host-range vector; Km" 26
pBBR1IMCS-3 Broad-host-range vector; Tet" 26
pBBRIMCS-5 Broad-host-range vector; Gm" 26
pPZLQ pBBRIMCS2-derived expression vector containing frc promoter; Km" 30
pZLQR pZLQ containing C58 traR under the control of Perc 30
pSRKGm(a ™) pBBRIMCS-5 derivative; AlacZa This study
pSRKKm(a ™) pBBRIMCS-2 derivative; AlacZa This study
pSRKTc(a ™) pBBRIMCS-3 derivative; AlacZa This study
pSRKGm(lacl) pSRKGm(a ) containing lacl and placZ This study
pSRKGm pBBRIMCS-5-derived broad-host-range expression vector containing lac This study
promoter and lacl9, lacZa™, and Gm"
pSRKKm pBBRIMCS-2-derived broad-host-range expression vector containing lac This study
promoter and lacl?, lacZa*, and Km"
pSRKTc pBBRIMCS-3-derived broad-host-range expression vector containing lac This study
promoter and lacl4, lacZa*, and Tet"
pSRKKm::uidA pSRKKm containing placZ::uidA This study
pSRKGmtraR pSRKGm containing #raR from pTiC58 inserted between Ndel and This study
BamHI sites
pZLB251 pRGI70b containing trad to traC intergenic region and traA::lacZ fusion 30
pYZ1 pRK415 containing BamHI fragment 24 of pTiC58, source of fraM gene 21
pGPO3 Derivative of pDSKS519 containing fraR from pTiC58 under the control of 17
Plac; lacI? Kan"
pGPO3-1-gnt pGPO3 containing lac/9 and gentamicin resistance cassette Gm"; Kan" This study
pKK38-1 Expression vector containing Ptrc¢ and lacl?; Tet" 32
pKKTR2-1 pKK38-I expressing traR from pTiC58 under the control of Prrc; lacl? Tet" 32

which is located in the 5’ half of lacZ, the spacing and
sequence are virtually identical to those of lacl and the
promoter-control region of the lac operon of E. coli K-12.
Like the parent vector, these plasmids replicate stably at
moderate copy number in many gram-negative bacteria and
are mobilizable by IncP1 conjugative transfer systems (26).
Because of differences in the antibiotic resistance cassettes,
not all cleavage sites of the pBluescriptll SK(+) multiple
cloning sites are unique in the three vectors. However, in all
three vectors, properly designed insertions at the unique
Ndel site can be used to generate a translational fusion to

the initiation codon of lacZa. Moreover, the entire interval
encompassing the lacl? promoter through the 3’ end of
lacZa can be excised as a BstB1 fragment (Fig. 1), allowing
this segment, either alone or containing a cloned gene, to be
moved to other plasmid backbones.

Regulated expression of lacZa in E. coli. We tested the
regulatory properties of the three vectors in E. coli DH5« by
assessing the expression of B-galactosidase by a-complemen-
tation. On L agar plates containing X-Gal, colonies were white
with no hint of blue in the absence of IPTG but grew with a
deep blue color on plates containing 1 mM inducer (data not
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Eag1

Ndel Sacl SacTl Notl o xbal &% BamH1

catatgaccatgattacgccaagegegeaattaaccetcactaaagggaacaaaagetggagctecaccgeggtggeggecgetctagaactagtogatc

gtatactggtactaatgeggttegegegttaattgggagtgattteecttgttttegacctegaggtggegecacegeeggegagatettgateacctag
1

Ace

ma Hinc 11
Lmall/ Pst]  EcoRI EcoRV Hindlll Clal Sall  Xhol Kpnl
ceecggctgeaggaat ogatatcaaget tatedatacagtegacctegaggggaggceidgtacccaat tegecctatagtgagtegtattacgegeg

ggggcccgacgtecttaagetatagttegaatagetatggeagetggageteceeceegggecatgggttaagegggatateacteageataatgegege

ctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgcg‘é"glétggcgtaat
gagtgaccggcagcaaaatgttgeagcactgaccettttgggacegeaatgggttgaattageggaacgtegtgtagggggaaageggtegacegeatta

Prul Bgl1 Nhel
agcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctéaatggcgaatggaaattqtaagc*mfagc
tegetteteegggegtggetagegggaagggttgteaacgegteggacttacegettacctttaacattegatey

Eagl
c%%ltgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagctggfiag_ccltccac_cgsé'é" gtgqgé'gfccgct'ttag\b“ aa%ﬁgtggatcwmm
gtatactggtactaatgeggttegegegttaattgggagtgattteecttgttttegacetegaggtggegecacegeeggegagatettgateacctag

Accl
Sma 1l Hinc 11

Xmal Pst1 EcoR1 EcoRV Hindlll  Clal Sall Xhol Kpn1 &
ccccgggc tgcaggaattcgatatcaagcttatcgataccgﬁ'gacctcgagggggggcccé’@taumau tcgecctatagtgagtegtattacgegey

ggggeecgacgtecttaagetatagttegaatagetatggeagetggageteceeceegggecatgggttaagegggatateacteageataatgegege

ctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgc@'é‘gltl:tggcgtaat

gagtgaccggcagcaaaatgttgcagcactgaccettttgggacegcaatgggttgaattageggaacgtegtgtagggggaaageggtegacegeatta

Poul Bgll Nhel
agcgaagaggcccgcac@tcgcccttcccaacagtt:gcgcagcct‘éaatggcgaatggaaattgtaagfeﬁgc
tegetteteegggegtggetagegggaagggttgteaacgegteggacttacegettacctttaacattegatey

Eag1
Nde 1 Sacl Sac 11 Not 1 ¢ %%03‘ Spel BamH 1
catatgaccatgattacgecaagegegcaattaacectcactaaagggaacaaaagetggagetecaccgeggtggeggecgett gaaf%agtggatc
gtatactggtactaatgeggttegegegttaattgggagtgattteecttgttttegacctegaggtggegecacegeeggegagatettgatcacctag
Accl
Smal/ Hine 11
Xmal Pst1 EcoR1 EcoRV HindIll  Clal Sal 1 (/ Kpnl
ccdBigoctqoaggaattogatatcaaget tatcgatacagtogaccttgaggggaggeeddgtaccoaat tegecctatagtyagtegtattacgegey
ggggcccgacgtecttaagetatagttegaatagetatggcagetggageteceeecegggecatgggttaagegggatateacteageataatgegege

cteactggeegtegttttacaacgtegtgactgggaaaaccetggegttacceaacttaategecttgeageacateceeett rmm}:va'gg‘tggcgtaat

gagtgaccggcagcaaaatgttgeagcactgaccettttgggacegeaatgggttgaattageggaacgtegtatagggogaaageggtegacegeatta

Pyul Bgl1 Nhe 1
agcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcct%aatggcgaatggaaattgtaagcéagc
tegetteteegggegtggetagegggaagggttgteaacgegteggacttacegettacctttaacattegatey

Nde| Nhel BstBI

FIG. 1. Structures of the pSRK family of broad-host-range expression vectors. The physical maps for each of the three vectors show the locations of
the key genetic determinants, including replication (rep), antibiotic resistance (gentamicin [gnt, Gm], kanamycin [kan, Km], and tetracycline [tet, Tc]),
and mobilization (mob). The expression cassette, composed of lacl9, the lac promoter-O, complex (PlacZ), and the lacZa () coding sequence, is identical
in the three vectors. The sequence of the multiple cloning site, located between the Ndel and Nhel sites, is shown for each vector. While the sequence
of the multiple cloning site is identical among the three vectors, the complements of unique restriction sites (underlined) differ for each.

shown). When tested in L broth without IPTG, 3-galactosidase levels of B-galactosidase activity that were 5- to 10-fold higher
activities in strains harboring each of the vectors were not than the background level (Fig. 2). Adding glucose to the
detectable at levels above that observed in cells in which the medium resulted in the failure to induce, even in the presence
vector lacks lacZa (Fig. 2). The addition of IPTG resulted in of 1 mM IPTG (data not shown). Thus, the promoter complex
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FIG. 2. Levels of expression of lacZa from the three pSRK vectors
under repressed and induced conditions. Cultures of E. coli DH5«
harboring one of the three pSRK vectors or a derivative of pPSRKKm
in which the lacZo coding region has been deleted (pSRKKm(a™)
were grown in LB medium with (filled bars) or without (open bars)
IPTG (1 mM final concentration) for 4 h. The cells were harvested and
assayed for B-galactosidase activity, expressed as Miller units, as de-
scribed in Materials and Methods. Error bars show standard
deviations.

is subjected to glucose-mediated catabolite repression in E. coli
hosts.

Regulated expression of a cloned gene in other bacteria. We
assessed the expression properties of pPSRKKm in several bac-
teria representing the alpha, beta, and gamma families of the
proteobacteria. As a reporter useable in all tested strains, we
cloned the uidA gene of E. coli into pPSRKKm as an Ndel-Nhel

R. leguminosarum

C. crescentus
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fragment, generating a 5’ translational fusion to the initiation
codon of lacZa, all as described in Materials and Methods. The
recombinant clones were then mobilized into the seven tester
strains. We also introduced into these strains pSRKKm(a "), a
derivative of pSRKKm that lacks lacZa and uidA, as a control.
Each pair of strains was grown in the appropriate medium with
and without IPTG. Cultures of A. tumefaciens, R. leguminosa-
rum, S. meliloti, C. crescentus, P. fluorescens, and Ralstonia
solanacearum were grown for 12 h following induction, while
the culture of B. abortus was grown for 24 h after the addition
of IPTG. Cells were harvested and assayed for B-glucuronidase
activity as described in Materials and Methods. We were un-
able to detect expression of the uidA gene in R. solanacearum
under any conditions tested, and this strain was dropped from
the study. In the remaining six strains, levels of B-glucuroni-
dase activity were at or below the background level of the assay
in cells grown in the absence of IPTG (Fig. 3). Growth with
inducer resulted in levels of expression ranging from a low of
30 U in A. tumefaciens to around 300 U in C. crescentus, R.
leguminosarum, and S. meliloti (Fig. 3). These levels represent
induction values of 6- to 100-fold, depending upon the tester
strain, over the levels in uninduced cells.

Response of the promoter to inducer. We assessed the re-
sponse of the promoter to the inducer concentration by using
pSRKGm::uidA in A. tumefaciens strain C58. The strain was
grown in MG/L to about 107 CFU per ml, the culture was
divided into eight subcultures, and IPTG was added to seven of
these at concentrations ranging from 1 uM to 1 mM. The eight
subcultures were reincubated, samples were taken 4 and 8 h
after the addition of inducer, and the collected cells were
assayed for B-glucuronidase activity. Cells not exposed to

P. fluorescens
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FIG. 3. The lac promoter of the pSRK vector family is strongly controlled in diverse bacteria. Cultures of A. tumefaciens C58, B. abortus 2308,
C. crescentus CB15, P. fluorescens 1855-344, R. leguminosarum 3841, and S. meliloti 1021, each harboring pSRKKm::uid4 or pSRKKm(a ™), were
grown in the appropriate medium with (filled bars) or without (open bars) IPTG (1 mM final concentration) as described in Materials and Methods
and Results. The cells were harvested and assayed for B-glucuronidase activity, expressed as modified Miller units, as described in Materials and
Methods. Error bars show standard deviations.
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FIG. 4. Levels of expression from the lac promoter of the pSRK
vector family can be controlled by inducer concentration. A culture of
A. tumefaciens C58 harboring pPSRKGm::uidA was grown in MG/L
medium to early exponential phase and split into eight equal subcul-
tures. IPTG at the indicated final concentrations was added to seven of
the subcultures. The eight cultures were sampled after 4 h (open bars)
and 8 h (filled bars) of additional incubation and assayed for B-glucu-
ronidase activity, expressed as modified Miller units, as described in
Materials and Methods.

IPTG or exposed to inducer at concentrations of 1 and 10 uM
showed background levels of activity at both sampling times
(Fig. 4). In cells grown with IPTG at concentrations of 50 uM
and higher, the levels of B-glucuronidase activity rose in pro-
portion to the concentration of inducer (Fig. 4).

Regulating the expression of a transcriptional activator: a
test of the system. In A. tumefaciens, conjugative transfer of its
Ti plasmids is controlled by a quorum-sensing system involving
the transcriptional activator TraR and its acyl-homoserine lac-
tone (acyl-HSL) ligand, N-(3-oxo-octanoyl)-L-HSL (3-oxo0-C8-
HSL) (54). The expression of traR, in turn, is controlled by
factors called conjugative opines that are produced by the
crown gall tumors induced by the pathogen (14, 40, 41). Con-
jugative transfer thus requires the opine signal from the plant
to induce transcription of #raR and the quorum-sensing signal
to convert TraR to its active form. As with many such regula-
tory factors, only a few molecules of active, ligand-bound TraR
are required to activate the expression of the Ti plasmid tra
regulon (49).

Transfer of the classical nopaline-type Ti plasmid pTiC58 is
induced by agrocinopines A and B, a family of sugar phos-
phodiester opines produced by tumors induced by strain C58
(11, 41). These opines are not commercially available, are very
difficult to synthesize (29), and are not easily obtained from
tumors in useable amounts. To circumvent this problem, we
tried expressing traR from a Lacl9-regulated lac-based pro-
moter system in two of our expression vectors, pGPO3-I (Ta-
ble 1) and pKKTR2-I (32). In each vector, lacI9 is functional
but is not positioned as the gene is in the native lac operon.
When tested in A. tumefaciens NTLA(pKPC12) (pTiC58traR::
lacZ) (Table 1), in which the resident fraR is inactive (41), both
clones of the activator conferred high levels of transfer even
when the donor cells were grown without IPTG (Table 2).
Donors lacking a cloned copy of traR failed to transfer the Ti
plasmid at detectable frequencies. Clearly, the lac promoter in
these two vectors is not sufficiently repressed by Lacl to keep
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TABLE 2. Regulation of fraR expression from different vectors

Frequency of transfer®

Vector? fraR
promoter” - IPTG + IPTG
None NA <1077 <1077
pGP03-1-gnt Plac 55x1073 8.6 X 1073
pKKTR2-1 Ptre 6.4 x 1073 7.9 %1073
pSRKGm#raR Plac <5x107° 5.6 X 1072

“ Vectors were tested in donor strain A. tumefaciens NTL4(pKPC12).
® NA, not applicable.

¢ Expressed as number of transconjugants obtained per input donor.
4 Supplemented at 1 mM final concentration.

the expression of fraR below levels that will activate the fra
regulon.

We then tested a clone of #raR in pSRKGm, constructed as
described in Materials and Methods, in which the activator
gene is fused at its 5" end to the translational start codon of
lacZo. Donors harboring this clone, when grown without in-
ducer, did not transfer the Ti plasmid at detectable frequencies
(Table 2). However, donors grown with IPTG at 1 mM trans-
ferred the Ti plasmid at frequencies similar to that of the Tra®
mutant pTiC58AaccR (~1072; 40) (Table 2).

We examined the kinetics of induction and maintenance of
transfer of pTiC58 by #raR expressed from pSRKGmtraR. Do-
nors harboring pKPC12 and the #raR clone were grown to
mid-exponential phase. The culture was split in two, IPTG was
added to a final concentration of 1 mM to one subculture, and
the two cultures were reincubated. Samples of each culture
were removed at intervals, and the donors tested for conjuga-
tive competence in matings with A. tumefaciens CS8C1RS as
described in Materials and Methods. Donors incubated with-
out IPTG failed to transfer the Ti plasmid at detectable fre-
quencies at any time tested (Fig. 5). However, donors incu-

1 1010
B
(1}
.
1]
c
«©
= 107 1
—
=}
> F100 3
§ S
3 1027
o
o
'S
108 - T T T T 08
wxios | O O 0O 0O O O O ‘
0 5 10 15 20 25 30

Time after induction (hours)

FIG. 5. traR, expressed from pSRKGm, is tightly controlled in
Agrobacterium tumefaciens. A culture of A. tumefaciens NTL4 harbor-
ing pKPC12 (traR::lacZ) and pSRKGmtraR was grown in ABM min-
imal medium to early exponential phase, and the culture was split into
two equal subcultures, to one of which IPTG (1 mM final concentra-
tion) was added. Incubation was continued, each subculture (M, with
IPTG; [, without IPTG) was sampled at the indicated times, and the
cells were tested for donor competency in matings with A. tumefaciens
C58C1RS as described in Materials and Methods. Growth of the
culture, expressed as CFU per ml (O), was monitored by viable-cell
counts of samples taken at each time point. Transfer frequencies are
expressed as the number of transconjugants obtained per input donor.
Error bars show standard deviations.
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FIG. 6. TraM inhibits basal levels of TraR and modulates the ac-
tivity of induced levels of TraR in controlling Ti plasmid conjugative
transfer. Cultures of A. tumefaciens NTL4 harboring one or more
plasmids, as indicated, coding for traR (pSRKGmtraR), traM (pYZ1),
and a TraR-dependent traA::lacZ reporter fusion (pZLB251) were
grown in MG/L medium supplemented with IPTG (1 mM), N-(3-oxo-
octanoyl)-L-HSL (AAI; 10 or 100 nM as noted), or both, as indicated,
for 4 h; samples were harvested; and the cells were assayed for B-ga-
lactosidase activity. Enzyme activity is expressed as Miller units. Error
bars show standard deviations.

bated with IPTG yielded detectable transconjugants at the first
time point, 2 h after induction. Conjugative competence, mea-
sured as the number of transconjugants arising per donor,
increased rapidly for an additional 4 h and remained high for
the duration of the experiment. Consistent with the results in
our previous report (49), donors continued to transfer the Ti
plasmid at high frequency following entry into stationary phase
(Fig. 5).

We also assessed the degrees of repression and induction of
traR expressed from pSRKGm#raR by monitoring the activa-
tion of transcription of a TraR-dependent lacZ fusion carried
by pZLB251 (30). Cells harboring only the reporter clone
failed to express the lacZ reporter at levels above the back-
ground level when grown with IPTG, 3-oxo-C8-HSL, or both
(Fig. 6). On the other hand, cells harboring both the reporter
clone and pSRKGmtraR strongly expressed the reporter when
grown with both IPTG and 3-oxo-C8-HSL. Cells grown only
with IPTG failed to express the reporter, while cells grown only
with 3-oxo-C8-HSL expressed the reporter at a low but detect-
able level (Fig. 6).

In this quorum-sensing regulatory system, the activity of
TraR is inhibited by an antiactivator, TraM, that also is en-
coded by the Ti plasmid (15, 20). TraM binds to TraR and
prevents the activator from binding to its promoter recognition
elements (8, 21, 43, 50). We tested the influence of TraM on
the activity of TraR by using the TraR-dependent lacZ re-
porter. In strains expressing TraM from pYZ1 and TraR from
pSRKGmtraR, no reporter activity was detected in cells grown
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FIG. 7. Influence of the expression level of TraR on Ti plasmid
transfer frequencies. A culture of A. tumefaciens NTL4 harboring
pKPC12 (pTiC58traR::lacZ) and pSRKGm#raR was grown in ABM
minimal medium to early exponential phase and divided into eight
subcultures. One subculture was left unsupplemented (<), while IPTG
was added to the remaining seven at final concentrations of 1 pM (M),
10 pM (2), 50 puM (@), 100 pM (@), 250 pM (O), 500 wM (A), and
1 mM ([). Incubation was continued, each culture was sampled at the
indicated times, and the cells were tested for donor competency by
mating with strain C58C1RS as described in Materials and Methods.
Frequency of transfer is expressed as the number of transconjugants
recovered per input donor. Error bars show standard deviations.

without IPTG or without 3-oxo-C8-HSL (Fig. 6). Significantly,
in contrast to cells lacking the #raM clone (Fig. 6), no activity
was detected in cells grown with the acyl-HSL but without
IPTG. Moreover, while cells grown with both IPTG and 3-oxo-
C8-HSL strongly expressed the fusion, the level of B-galacto-
sidase activity was reduced by about one-fourth in comparison
with the level in cells lacking #raM grown under the same
conditions (Fig. 6).

Assessing the minimum concentrations of IPTG required to
induce Ti plasmid transfer. The fact that the expression of
genes cloned in the pSRK vectors can be modulated by the
concentration of IPTG added to the culture (Fig. 3) allowed us
to assess the relative levels of expression of #raR required to
induce the Ti plasmid transfer system. Donors harboring
pKPC12 (pTiC58traR::lacZ) and pSRKGm#raR were grown
without inducer or with IPTG at concentrations ranging from
1 puM to 1 mM. At intervals after the addition of inducer,
samples were removed from each subculture and donors tested
for conjugative competence. Donors grown without inducer or
with IPTG at 1 or 10 pM failed to transfer the Ti plasmid at
detectable frequencies at any time point tested (Fig. 7). Do-
nors grown with IPTG at 250 uM and higher concentrations
transferred their Ti plasmids at maximum efficiency, while do-
nors grown with inducer at 50 and 100 uM transferred the Ti
plasmid at low to barely detectable frequencies (Fig. 7). At
saturating levels of IPTG, transconjugants were first detected
1 h after the addition of inducer and rose to maximum levels by
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4 h after induction. Donors grown with limiting amounts of
inducer initiated transfer at later times and did not show a
rapid rise in conjugative competence (Fig. 7).

DISCUSSION

The three pSRK vectors described in this work, all based on
the broad-host-range plasmid pBBR1, should prove useful for
studies in which induction from very low basal levels of expres-
sion is essential for evaluating the roles of the respective gene
products in cellular processes. The lac/Lacl promoter-regula-
tor system used in these vectors has two advantages over al-
ternative promoters used in other vectors. First, the lac pro-
moter and its repressor function well in a vast array of bacteria
and certainly in most members of the Proteobacteriaceae in
which the system has been tested. Second, although IPTG is
efficiently transported by the LacY symporter, the inducer also
is membrane permeable (23) and does not require a dedicated
transport system for import into the cells. This being the case,
the lac regulatory system can be used in virtually any cell, and
the addition of IPTG to the culture medium results in synchro-
nous derepression within the entire population. Not only is the
promoter tightly regulated, but the level of induction can be
controlled. The observation that expression from the lac pro-
moter in the pSRK vectors can be precisely modulated in
response to the concentration of inducer (Fig. 4) should prove
particularly valuable and will allow the assessment of the level
of expression of the cloned gene required for a given pheno-
type. In addition, the vectors have an extensive array of cloning
sites (Fig. 1) and, when coupled with IPTG and X-Gal, provide
a blue-white screen for cloned inserts when tested in an a-com-
plementing strain of E. coli.

We designed the pSRK vectors to accommodate two trans-
lation strategies. In the first, cloned genes containing their own
ribosomal binding sites can be translated by using such sites
from transcripts initiated at the lac promoter. In this case, the
gene of interest can be cloned using any of the unique sites in
the polylinker. Alternatively, open reading frames can be cloned
using the unique Ndel site such that the initiation codon coincides
with that of the LacZ a-peptide. This placement ensures proper
spacing of the start codon relative to the lac Shine-Delgarno
sequence and maximizes the probability that the encoded protein
will be correctly and efficiently translated.

The vector backbone itself has a number of useful charac-
teristics. pBBR1 and its derivatives replicate with reasonable
stability in a wide variety of gram-negative bacteria (1, 26). In
this regard, we successfully introduced one of our vectors into
representatives of the alpha-, beta- and gammaproteobacteria,
including such model organisms as E. coli, A. tumefaciens, S.
meliloti, and C. crescentus. In all but the betaproteobacterium
R. solanacearum AW1, the cloned uidA gene was strongly re-
pressed in cells grown in the absence of inducer and showed
significant levels of induction in cells grown with IPTG (Fig. 2
and 3). We have no explanation as to why the uid4 reporter
was not expressed in R. solanacearum. However, a cursory
examination indicated that the reporter vector is stably main-
tained in this bacterium (data not shown). The elements are
small, facilitating efficient gene cloning, and the plasmids rep-
licate at modest copy number, probably around 5 to 10 copies
per cell (13, 26). Although of unknown classification, pBBR1
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and its derivatives, including the pSRK series, are compatible
with other broad-host-range vectors of the IncP, IncQ, and
IncW groups, making them particularly useful in experiments
that require several plasmids to be maintained in the same cell.
Finally, like the rest of the pBBRIMCS family, the three pPSRK
vectors can be transferred to hosts of interest by conjugative
mobilization using E. coli donors, such as strains S17-1 (47)
and WMS5979 (Table 1). In cases in which the pBBR1 back-
bone may not be suitable, the expression unit composed of
lacl9, the lac promoter-operator complex, and lacZo with its
polylinker can be excised intact from any of the three plasmids
with BstBI and transferred to other appropriate vectors.

Our pSRK vectors have proved very useful in our studies of
the quorum-sensing activator TraR. With only a few copies of
TraR being required per cell (49), we used the exceptionally
low basal levels of expression of these vectors to examine the
relationship between the expression of the activator and the
development of Ti plasmid conjugative competence, a pheno-
type directly controlled by this quorum-sensing transcription
factor (41). When in trans to a Ti plasmid mutant for its own
traR, in the absence of inducer the recombinant clone did not
express the activator at levels high enough to phenotypically
complement the mutation (Table 2).

We used this tight regulation of TraR to assess the relative
levels of expression of the activator required to induce the Ti
plasmid transfer system. Growth with IPTG at concentrations
of 250 uM and higher yielded rapid induction to full levels of
transfer (Fig. 7), while growth with concentrations of inducer
between 50 and 100 wM caused the induction of transfer at
considerably lower frequencies. Concentrations of IPTG of 10
uM or lower were not sufficient to activate the transfer system
in a detectable number of donors (Fig. 7). As measured by
B-glucuronidase activities, growth with IPTG at concentrations
between 100 and 250 uM resulted in levels of induction one-
third to one-half that observed in fully induced cells (Fig. 4).
These results suggest that only a few molecules of active TraR
are required to fully induce the conjugative transfer system, a
conclusion consistent with the results of our previous studies
on the amount of the acyl-HSL quormone necessary to trigger
the quorum-sensing system (49).

We also used the vector to assess the role of the antiactivator
TraM in controlling the functional levels of TraR. Despite the
tight regulation from the lac promoter, in the absence of IPTG
traR cloned in pSRKGmraR is expressed at a basal level suf-
ficient to weakly activate the TraR-dependent lacZ reporter
fusion (Fig. 6). However, the coexpression of a cloned copy of
traM from its own promoter abolished this low level of acyl-
HSL-dependent activation. Moreover, in the absence of traM,
the induction of #raR with IPTG resulted in high levels of
expression of the reporter (Fig. 7), while the coexpression of
traM reduced this high-level TraR-dependent expression of the
reporter by about one-quarter. Taken together, these two sets
of results indicate that in the absence of TraM, even very small
amounts of TraR can activate a promoter controlling the Ti
plasmid conjugative transfer system, a conclusion consistent
with the observation that Ti plasmids in which traM is mutant
are constitutive for transfer even though the native traR re-
mains repressed (15, 20). Clearly, TraM serves to prevent this
basal level of expression of #raR from prematurely activating
transfer.



VoL. 74, 2008

The induction of Ti plasmid transfer is initiated by conjuga-

tive opines, novel metabolites produced by the crown gall tu-
mors induced by the pathogenic agrobacteria (11, 40). Most of
these natural products are not commercially available, and
they can be difficult to synthesize (29), making studies on the
regulation of transfer problematic. Having fraR cloned behind
a very tightly regulated promoter has allowed us to substitute
IPTG for the conjugative opine of pTiC58 in our studies of the
interactions between opine-mediated control and its down-
stream quorum-sensing system (49). The vectors should be
equally useful in studies with other organisms that require tight
regulation and controllable promoters.
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