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Avian lineage H4N6 influenza viruses previously isolated from pigs differ at hemagglutinin amino acids
226 and 228 from H4 subtype viruses isolated from birds. Using a parental H4N6 swine isolate and
hemagglutinin mutant viruses (at residues 226 and/or 228), we determined that viruses which contain
L226 had a higher affinity for sialic acid �2,6 galactose (SA�2,6Gal) and a higher infectivity level for
primary swine and human respiratory epithelial cells, whereas viruses which contain Q226 had lower
SA�2,6Gal affinity and lower infectivity levels for both types of cells. Using specific neuraminidases, we
found that irrespective of their relative binding preferences, all of the influenza viruses examined utilized
SA�2,6Gal to infect swine and human cells.

Influenza A viruses are important pathogens of human dis-
eases and those of many other species. All hemagglutinin (HA)
and neuraminidase (NA) subtypes of influenza A viruses have
been isolated from wild waterfowl (32), but only subtypes H1
to H3 have spread widely among humans, and only subtypes
H1 and H3 have circulated in swine populations (33, 46).
However, in recent years, both humans and pigs have been
infected with avian influenza viruses of multiple subtypes, in-
cluding H5N1 and H9N2 (22, 36, 49).

One factor believed to be important in determining the
influenza virus host range is sialic acid binding preference (14,
26). Avian influenza viruses preferentially bind cell surface
sialic acid �2,3 galactose (SA�2,3Gal), whereas human and
swine influenza viruses preferentially bind SA�2,6Gal (10, 26,
37, 38). Since swine cells express both SA�2,3Gal and
SA�2,6Gal (14) and since avian influenza virus replication in
pigs can result in a mutation toward a mammalian-like binding
preference (25), it has been postulated that pigs serve as in-
termediate hosts for the generation of human pandemic vi-
ruses (reviewed in references 21, 34, 43, and 46).

Our previous full-length sequence analyses of H4N6 influ-
enza viruses isolated from pigs in Canada revealed that all gene
segments were of avian origin, indicative of in toto transmis-
sion of an avian virus to pigs (15). Compared to the avian H4
sequences in GenBank, these swine isolates differed at HA
amino acids 226 and 228 (H3 numbering [31]). These amino
acid positions are major determinants of the binding prefer-
ence of virus subtypes H2, H3, and H9 (7, 27).

To determine if residues 226 and 228 are important in H4

influenza virus binding, we generated the parental H4N6 swine
isolate, A/swine/Ontario/01911-1/99 (rgONT/99) (15), and
three HA mutant viruses, in which residues 226 and/or 228
were mutated to avian residues (Table 1), using site-directed
mutagenesis and reverse genetics (29). Binding affinities were
examined by direct virus binding to biotinylated synthetic gly-
copolymers as described previously (25), with the modification
that viruses were equilibrated to 25,000 copies of matrix gene
RNA (19) bound per well. Linear regression analysis of Scat-
chard plots was performed using Prism software (GraphPad,
La Jolla, CA). The Neu5Ac�2,3Gal�1-4Glc� (2,3SL) polymer
is widely utilized as the avian-like receptor analog, while the
Neu5Ac�2,6Gal�1-4GlcNAc� (2,6SLN) polymer is utilized as
the human-like analog (11, 24–26, 35). To ensure that the
different polymer backbones (lactose versus lactosamine) did
not have major effects on binding affinity, we included 2,3SLN
and found that viruses bound to 2,3SL and 2,3SLN with similar
levels of affinity (Table 1). The 2,6SL polymer was not used
because it is believed not to be an appropriate analog for the
human influenza virus receptor (8).

Based on calculated approximate constants of dissociation
(where lower values represent higher affinity), rgONT/99 and
the S228G virus had similar binding profiles, with much higher
affinity for SA�2,6Gal (2,6SLN) than for SA�2,3Gal (2,3SL
and 2,3SLN) (Table 1). The L226Q virus also had a higher
affinity for SA�2,6Gal than for SA�2,3Gal, but compared to
that of rgONT/99, the L226Q virus had a lower affinity for
SA�2,6Gal. The L226Q/S228G virus had an avian-like virus
binding preference, with a higher affinity for SA�2,3Gal than
for SA�2,6Gal. Taken together, the results indicate that com-
pared to the affinity of rgONT/99, the virus affinity for
SA�2,3Gal increases only when amino acids 226 and 228 are
both mutated to avian residues, whereas amino acid 226 is
the dominant factor in determining the virus’ affinity for
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SA�2,6Gal. This is consistent with data for the H2, H3, and
H9 influenza viruses, where amino acid 226 either plays the
predominant role (e.g., H2 and H3 [7]) or is solely responsible
(e.g., H9 [27]) for sialic acid binding preference.

To determine if changes at amino acids 226 and 228 influ-
ence infectivity, we infected primary swine and human respi-
ratory epithelial cells (SRECs and HRECs, respectively) with
each of the viruses. We have previously shown that SRECs are
a useful system with which to model influenza virus infection of
pigs (3), and primary HRECs have been similarly utilized to
investigate infections with rhinovirus, respiratory syncytial vi-
rus, parainfluenza virus, and influenza A virus (1, 13, 16, 17).
Although medium-submerged cell monolayers lack the differ-
entiation of cells grown at an air-liquid interface (12, 28), when
these cells are grown as monolayers, they have the necessary
receptors and intracellular factors to support influenza A virus
infection and replication (3, 13). SRECs and HRECs were
grown (3, 40), infected with three 50% tissue culture infective
doses (TCID50s)/cell, and stained for the expression of influ-
enza virus nucleoprotein (NP) as described previously (3, 20).
By visual inspection of immunocytochemical staining, we de-
termined that the infectivity levels of SRECs and HRECs were
similar (Fig. 1). Viruses with L226 infected the majority of the
cells, while viruses with Q226 exhibited lower infectivity levels.
Detection of NP-positive cells by flow cytometry confirmed this
assessment (Fig. 2C and D), demonstrating that amino acid
226 is the major determinant of virus infectivity of SRECs and
HRECs.

Although the relative virus infectivity patterns were similar
for SRECs and HRECs, the absolute infectivity of each virus
was higher for HRECs than for SRECs (Fig. 2C and D). This
difference may be due to variations in inner carbohydrate moi-
eties on the cell surface (4, 9), or it could be due to different
expression levels of sialic acid species on each cell type. Pigs
express both N-acetylneuraminic (Neu5Ac) and N-glycolyl-
neuraminic acid (Neu5Gc), whereas humans express only
Neu5Ac (5, 44). Infectivity may be dependent upon levels of
Neu5Ac, in which case the Neu5Gc on SRECs may lead to a
lower expression of Neu5Ac, or it may interfere with the avail-
ability of Neu5Ac on SRECs.

To verify the association between binding preference and
sialic acid utilization to infect cells, prior to the inoculation of
cells with viruses, cells were treated for 3 h with 300 U of either
an �2,3-specific NA (Salmonella enterica serovar Typhi-
murium; New England Biolabs, Beverly, MA) or an NA that
removes both �2,3- and �2,6-linked sialic acids (Clostridium
perfringens; New England Biolabs). Based on lectin staining

(16), we determined that treatment with the �2,3-specific NA
decreased the level of �2,3-linked sialic acids on SRECs con-
siderably (with Maackia amurensis agglutinin [MAA; Roche
Diagnostics, Mannheim, Germany] staining, to less than 32%
of untreated SRECs [Fig. 2A]) without depleting �2,6-linked
sialic acids (using Sambucus nigra agglutinin [SNA; Roche
Diagnostics, Mannheim, Germany] staining). Treatment with
the �2,3/�2,6 NA decreased the level of �2,3- and �2,6-linked
sialic acids (with MAA and SNA staining, to less than 23 and
27% of the untreated SRECs, respectively). Similar results
were obtained with HRECs (Fig. 2B). However, treatment
with the �2,3-specific NA had no effect on the virus infectivity
of SRECs or HRECs (Fig. 2C and D), while treatment with the
�2,3/�2,6 NA decreased the infectivity of all viruses for both
cell types.

The NA treatments did not cleave all of the sialic acids from
the cell surfaces, so it is possible that the viruses utilized the
remaining �2,3-linked sialic acid to infect cells. However, treat-
ment with the �2,3-specific NA decreased the �2,3-linked sialic
acid but not the �2,6-linked sialic acid and resulted in no
change in infectivity levels, while treatment with the �2,3/�2,6
NA decreased both the �2,3- and the �2,6-linked sialic acids,
and the infectivity levels of all the viruses decreased signifi-
cantly. This strongly suggests that these viruses do not gener-
ally utilize �2,3-linked sialic acid to infect swine or human
cells. Instead, all four viruses, independently of their relative
binding preferences, preferentially utilized �2,6-linked sialic
acid to infect both SRECs and HRECs.

To determine if the changes at amino acids 226 and 228
might represent swine adaptations that occurred after the in-
troduction of an avian influenza virus into pigs, rgONT/99 and
the mutant viruses derived from it were serially passaged in
SRECs. Cells were initially inoculated with either 0.5 TCID50/
cell (with rgONT/99 and the L226Q and S228G viruses) or 2.0
TCID50s/cell (with the L226Q/S228G virus) and incubated
with 0.5 �g/ml tolylsulfonyl phenylalanyl chloromethyl ketone-
treated trypsin at 37°C for 3 days. The supernatant of each well
was then collected, diluted 1:3 in fresh medium, and added to
confluent SRECs for the next passage. After 10 passages, the
amino acid at position 228 remained unaltered in each virus
(Table 2). However, the L226 that was carried initially by some
viruses was maintained as L226 throughout, while the Q226
carried initially by other viruses changed to L226 within four
passages and was maintained as L226 for the remaining pas-
sages. This indicates that the Q226L mutation may represent a
swine adaptation. Furthermore, beyond being exclusively a
swine adaptation, virus infectivity of HRECs indicates that the

TABLE 1. Amino acid composition and binding affinity of reverse genetics-generated virusesa

Virus

Amino acid composition at: Polymer binding affinity

HA
position

226

HA
position

228

2,3SL 2,3SLN 2,6SLN

�Kd R2 �Kd R2 �Kd R2

rgONT/99 L S 288 0.88 371 0.90 4 0.99
L226Q Q S 311 0.91 314 0.96 90 0.89
S228G L G 443 0.88 389 0.90 3 1.00
L226Q/S228G Q G 31 0.87 25 0.83 156 0.89

a Approximate constant of dissociation (�Kd) values are expressed in nM�1 sialic acid. Lower values indicate higher affinity binding. R2 is the correlation coefficient.
Values shown are from one representative experiment, but highly similar results were obtained in repeated experiments.
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Q226L mutation may also be an adaptation used for additional
mammalian species.

Reassortant H2N3 influenza viruses with an HA of avian
lineage have recently been isolated from pigs (23). These vi-
ruses had the Q226L mutation in their HA, suggesting that this
is a swine adaptation for the H2 subtype viruses as well. Unlike
the H4N6 viruses, the H2N3 viruses did not differ from the
avian consensus sequence at amino acid 228. However, based
on our passage experiments, the G228S mutation found in
the H4N6 swine isolates may not be essential for adaptation
to pigs.

Polymer binding studies using assays similar to that pre-
sented here have been utilized extensively to investigate influ-
enza virus binding preference (10, 18, 24, 25, 27, 35, 47). How-
ever, data presented herein suggest that binding preference in
such assays does not correlate uniformly with the receptor
determinants utilized for infection. The L226Q/S228G virus
had a higher affinity for SA�2,3Gal than for SA�2,6Gal, but
based on the infectivity level in NA-treated cells, this virus
appears to utilize �2,6-linked sialic acids to infect both SRECs
and HRECs. This finding has potential implications for other
avian influenza virus subtypes. Our results demonstrate that

FIG. 1. Infectivity levels of the H4N6 influenza viruses in SRECs and HRECs. Cells were infected with three TCID50s/cell for each virus, and
infected cells were identified by immunocytochemistry (ICC) using the anti-influenza A NP antibody 68D2 (kindly provided by Y. Kawaoka,
University of Wisconsin-Madison). Following ICC staining, the brightness and contrast of HREC micrographs were adjusted with ACDSee Photo
Editor (ACD Systems) and PowerPoint (Microsoft) software to match that of the SREC micrographs. Similar patterns were observed in repeated
experiments and with cells from different pig and human donors. Magnification, �60.
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the polymer to which viruses bind with the highest affinity in
binding assays may not necessarily be the receptor that the
viruses utilize for infection. Therefore, even though �2,3-
linked sialic acids are found in the lower human respiratory
tract (41, 48) and the H5 influenza viruses can bind to the
lower human respiratory tract (45), H5 viruses may still infect
human cells via �2,6-linked sialic acids. Indeed, a recent report
states that the distribution of SA�2,3Gal in the human respi-
ratory tract is partially inconsistent with the pattern of H5N1-
infected cells (48), and Nicholls et al. (30) suggest that binding
sites other than SA�2,3Gal may mediate the H5N1 virus in-
fection of human epithelium. In addition to �2,3- and �2,6-

linked sialic acids, alternate or coreceptors may also be in-
volved in influenza virus infection, because influenza viruses
have been shown to infect desialylated cells (42). The partic-
ular proteins or lipids to which sialic acid-containing oligosac-
charides are attached are also likely to be important, as cell
surface N-linked glycoproteins are necessary for influenza vi-
rus infection (6).

Amino acid 226 in the HA of rgONT/99 and related mu-
tant viruses predominantly controls virus affinity for
SA�2,6Gal and infectivity of SRECs and HRECs. Indepen-
dent of binding preference, these viruses appear to utilize
�2,6-linked sialic acids to infect both cell types. Thus, in
order to establish an efficient infection in pigs, it appears
that viruses either must already bind or must rapidly adapt
to bind �2,6-linked sialic acids. This finding does not negate
the “mixing vessel” hypothesis (39), but it does indicate that
a main rationale for this theory (i.e., that pigs express both
SA�2,3Gal and SA�2,6Gal) may be less important than
previously hypothesized. Pigs still hold considerable poten-
tial to serve as mixing vessels, as they are susceptible to both
avian and human viruses (2, 34, 46), and viral replication in
pigs can lead to a mammalian-like virus binding preference
(25). Furthermore, the avian-to-mammalian Q226L muta-
tion that occurred upon virus passage in SRECs suggests
that this change is a swine adaptation mutation that may
also be an adaptation used for infection of additional spe-
cies, providing more support for the hypothesis that pigs are

FIG. 2. Lectin staining and H4N6 influenza virus infectivity after NA depletion of cell surface sialic acid are shown. Removal of sialic acids from
the surfaces of SRECs (A) and HRECs (B). Cells were treated with either an �2,3-specific NA or an �2,3/�2,6 NA, followed by cell surface lectin
staining with MAA (SA�2,3Gal) or SNA (SA�2,6Gal). Values shown are the geometric means of fluorescent intensity (� standard errors of the
means [SEM]) normalized such that the fluorescence intensity of untreated cells is 100% and the fluorescence intensity of mock lectin-treated cells
is 0%. Data are the results of four separate experiments performed in duplicate. Virus infectivity levels after NA treatment of SRECs (C) and
HRECs (D) are shown. Data are the results of four separate experiments with each virus assayed in triplicate for each experiment. Results are
the means � SEM. Statistically significant differences were observed between the infectivity levels of untreated and �2,3/�2,6 NA-treated cells
(analysis of variance-protected Student’s t tests; �, P 	 0.05; ��, P 	 0.01).

TABLE 2. Virus passaging in SRECsa

Passage

aa mutations at HA positions for the indicated virus

rgONT/99 L226Q S228G L226Q/S228G

aa
226

aa
228

aa
226

aa
228

aa
226

aa
228

aa
226

aa
228

0 L S Q S L G Q G
1 L S Q S L G Q G
2 L S Q/L S L G Q G
3 L S L S L G Q/L G
4 L S L S L G L G
10 L S L S L G L G

a Amino acid (aa) residues at HA positions 226 and 228 are shown for each
virus at each passage. No other mutations in the HA were found upon passaging.
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an intermediate adaptation host for the generation of pan-
demic human viruses.
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