Accumulation in Gram-positive and Gram-negative Bacteria as a Mechanism of Resistance to Erythromycin

JAMES C.-H. MAO AND MARY PUTTERMAN

Department of Pharmacology, Abbott Laboratories, North Chicago, Illinois 60064

Received for publication 11 January 1968

Erythromycin was recovered in high yield after incucation with gram-negative bacteria. The cell-free protein-synthesizing preparation from gram-negative bacteria is equally as susceptible to the antibiotic as is that from gram-positive bacteria. Thus, neither destruction of erythromycin nor the absence of the step susceptible to the antibiotic plays an important role in the resistance mechanism of gram-negative bacteria. A 100-fold d fference in accumulation of erythromycin between gram-positive and gram-negative bacteria was observed. This alone explains the resistance of gram-negative bacteria to erythromycin. Furthermore, data showed that the inhibition of growth is closely related to the accumulation of erythromycin. The concentration of intracellular erythromycin in gram-positive bacteria was found to be 44- to 90-fold greater than that of the extracellular medium. However, the antibiotic did not accumulate on the cell walls, nor was the accumulation energy-dependent. It is proposed that it takes place by the binding of erythromycin to the bacterial ribosomes, forming a very stable complex. The dissociation constants of erythromycin-Staphylococcus aureus complex and erythromycin-Bacillus subtilis complex were determined to be 1.1 \times 10⁻⁷ and 3.4 \times 11⁻⁷ M, respectively.

The mechanisms for bacterial resistance to antibiotics can be classified into three categories (8): (i) destruction of the antibiotic, (ii) absence of the step susceptible to the antibiotic, and (iii) impermeability to the drug. No systematic study of resistance mechanisms of gram-negative bacteria to erythromycin has been reported. Although Haight and Finland (2) showed that erythromycin incubated with Escherichia coli and Proteus vulgaris still was biologically active, no attempt was made to quantitate the recovery or to identify the recovered compound. As to resistance mechanism (ii), it is generally accepted that erythromycin inhibits protein synthesis (13; Mao, Abstr. Interscience Conference on Antimicrobial Agents and Chemotherapy, 6th, p. 43, 1966) by binding to ribosomes (6, 12). There is evidence (9, 15) that protein synthesis in E. coli cell-free preparations can be inhibited by erythromycin, and Tanaka et al. (10) have reported that erythromycin can bind to E. coli ribosomes. Relative to mechanism (iii), Taubeneck (11) found that a stable L form of a P. mirabilis strain was susceptible to erythromycin, but the parent culture with the intact cell wall was 1,000-fold more resistant. These reports indicate

MATERIALS AND METHODS Materials. N-¹⁴C-methyl-erythromycin was synthe-

the cell to the antibiotic.

sized by reductive methylation of des-N-methylerythromycin (1), and purified by countercurrent distribution. The product was chromatographically pure on silica gel thin-layer plates in three solvent systems (7), had a specific activity of 15 mc/mmole, and had antibacterial activity of 730 units/ μ mole.

that the erythromycin resistance in gram-negative bacteria probably is due to the impermeability of

To extend and validate the previous observations, a comparison was made between two gram-negative $(E. \text{ coli}, P. \text{ vulgaris})$ and two grampositive (Staphylococcus aureus, Bacillus subtilis) bacteria, considering all three resistance mechanisms. The accumulation of erythromycin in gram-positive bacteria was further investigated.

 $14C$ -phenylalanine (375 mc/mmole), $14C$ -lysine (240 mc/mmole), and '4C-algal protein hydrolysate (1.5 μ c/mg) were purchased from New England Nuclear Corp., Boston, Mass. Triphosphates of adenosine, cytidine, guanosine, and uridine (ATP, CTP, GTP, UTP, respectively), phosphoenolpyruvate, pyruvate kinase, polyuridylic acid (poly U), polyadenylic acid (poly A), and dithiothreitol were obtained from Calbiochem, Los Angeles, Calif. Cell

walls of S. aureus and B. subtilis were kindly donated by J. L. Strominger, University of Wisconsin.

Cultures. E. coli ATCC 11775, P. vulgaris ATCC 7897, S. aureus 209P, and B. subtilis ATCC ¹⁰⁷⁰⁷ were grown in Erlenmeyer flasks overnight at ³⁴ C in 3.7% Brain Heart Infusion broth (Difco). The 50% inhibition concentration of erythromycin for these microorganisms is 2×10^{-5} , 5×10^{-5} , $3 \times$ 10^{-7} , and 2×10^{-7} M, respectively, under our experimental conditions. Samples of ¹ ml were inoculated into flasks containing 125 ml of fresh medium and grown until the optical density at 550 m_{μ} reached 0.2 to 0.3. Most of the experiments were conducted in this early log phase. One optical density unit is approximately equivalent to 3×10^8 bacteria per ml.

Recovery of ¹⁴C-erythromycin from cultures. ¹⁴Cerythromycin (100 μ g) was added to 100 ml of bacterial culture in Brain Heart Infusion broth. After incubation for 30 min at 34 C, the culture was chilled in an ice bath, and the erythromycin was extracted with ethyl ether at pH 9.0 (four times, ¹⁰⁰ ml each time). A 1-ml amount of the ether extract was evaporated in a counting vial, and 10 ml of scintillation fluid was added. The radioactivity was determined by use of a Packard Scintillation Spectrometer with a counting efficiency of about 78 $\%$ for ¹⁴C. The remaining ether extract was dried over anhydrous sodium sulfate and evaporated to 0.5 ml. This sample was applied to three silica gel G thin layer plates and developed in three solvent systems (6).

Assay for polypeptide synthesis. S. aureus and E . coli cell-free extracts (S-30) were prepared and assayed for polypeptide synthesis as described previously (5). The standard reaction mixture contained the following, in a volume of 0.5 ml: 0.1 M tris(hydroxymethyl) aminomethane (Tris)-acetate (pH 7.6), 0.016 M magnesium acetate, 0.05 M ammonium acetate, 0.0001 M dithiothreitol, 0.001 M ATP, 5×10^{-5} M GTP, CTP, and UTP, 0.005 M phosphoenolpyruvate, 0.02 mg of pyruvate kinase, 0.25 μ c of ¹⁴C-labeled amino acid, and 6×10^{-5} M of each of the remaining amino acids. The assay was usually started by adding 0.1 ml of the S-30 fraction and was carried out at 34 C for ³⁰ min. In the studies of '4C-phenylalanine and ¹⁴C-lysine incorporation, 50 μ g of poly U and 100 μ g of poly A, respectively, were added.

¹⁴C-erythromycin uptake by bacteria. The uptake of '4C-erythromycin from the extracellular medium by bacteria was measured by filtering a 5-ml sample of the bacterial suspension through a glass-fiber filter (Reeve Angel, 984H Ultra, 24-mm diameter). The cells were filtered free from medium by suction, and were washed four times with 5 ml of nonradioactive erythromycin solution (10 μ g/ml). The radioactivity became constant after three washes. The bacterial cells washed with Brain Heart Infusion broth containing 10 μ g of cold erythromycin per ml gave similar results. The absorption of '4C-erythromycin on the filter could be minimized by washing the filter with 5 ml of nonradioactive erythromycin solution before the filtration of bacteria. A filter absorption curve with various concentrations of ¹⁴C-erythromycin was constructed to determine the background absorption. It was found that 2.8 \times 10⁻¹² moles of ¹⁴C-erythromycin was absorbed by the filter when 5 ml of 1.36 \times 10⁻⁶ M ¹⁴C-erythromycin solution was filtered. The absorption of 14C-erythromycin by a membrane filter (HA, $0.45-\mu$; Millipore Corp., Bedford, Mass.) was about four times higher than by the glass-fiber filter. Adsorption of '4C-erythromycin on isolated cell walls of S. aureus and B. subtilis was determined either by the filtration method described above, or, alternatively, after incubation with ^{14}C -erythromycin, the cell walls were recovered by centrifugation and resuspended in a nonradioactive erythromycin solution four times.

Formation of the erythromycin-ribosome complex. The reaction mixture contained 120 $\mu\mu$ moles of S. aureus or E. coli ribosomes and various amounts of 14C-erythromycin in 0.5 ml of buffer solution (0.01 M Tris-acetate, pH 7.6, 0.016 M magnesium acetate, 0.05 M ammonium acetate, and 0.0001 M dithiothreitol). The reaction mixtures were incubated at ³⁴ C for ³⁰ min, diluted with ³ ml of the cold buffer solution, filtered through a nitrocellulose membrane filter (B-6, ²⁵ mm; Schleicher & Schuell Co., Keene, N.H.), and washed with three 3-ml portions of cold buffer solution. A filter adsorption curve was constructed at various concentrations of ¹⁴C-erythromycin and used to calculate the net binding of 14C-erythromycin to the ribosomes.

RESULTS

Recovery and identification of erythromycin from gram-negative bacterial cultures. ¹⁴C-erythromycin incubated with $E.$ coli and $P.$ vulgaris for ³⁰ min at ³⁴ C was recovered in yields of ⁹⁷ and 93%, respectively. The recovered compound had R_F values identical to erythromycin in three solvent systems, it had antibacterial activity, and the radioactivity was concurrent with the spot test for erythromycin (7).

Comparison of sensitivity to erythromycin of E. coli and S. aureus in cell-free protein-synthesizing preparations. The effect of erythromycin on the endogenous messenger ribonucleic acid (mRNA)-directed incorporation of "4C-amino acids, poly A-directed incorporation of "4C-lysine, and poly U-directed incorporation of 14C_ phenylalanine was tested with the cell-free extracts from E. coli and S. aureus. The results (Fig. 1) indicate that there is no significant difference between E. coli and S. aureus extracts.

Uptake of 14C-erythromycin by gram-positive and gram-negative bacteria. In a culture with increasing concentrations of erythromycin, the uptake of the antibiotic by gram-positive bacteria rapidly reached a saturation concentration of 0.5×10^{-6} M. The uptake of erythromycin by gram-negative bacteria at any concentration was negligible (Fig. 2).

The time course of erythromycin uptake by bacteria in a medium containing 1.36×10^{-6} M 4C-erythromycin is shown in Fig. 3. The two

FIG. 1. Inhibition of polypeptide synthesis in cell-free extracts from Staphylococcus aureus (\triangle) and from Escherichia coli (O) . (A) endogenous mRNA-directed synthesis of protein; (B) poly A-directed synthesis of polylysine; (C) poly U-directed synthesis of polyphenylalanine. The polypeptide-synthesizing activities in the cell-free extracts of E. coli and S. aureus were similar. The total incorporation of labeled amino acids in controls (without antibiotics) of the endogenous system, the poly A system, and the poly U system of ^a representative experiment were 8,500, 20,000, and 88,000 counts per min, respectively, per mg of protein. The zero-time samples were about 450 counts per min.

FIG. 2. Uptake of erythromycin by bacteria after 30 min of incubation, at various concentrations of $14C$ -erythromycin. Symbols: \bigcirc , Bacillus subtilis; \blacktriangle Staphylococcus aureus; \bigcirc , Escherichia coli; \times , Proteus vulgaris.

gram-positive bacteria accumulated erythromycin rapidly. Maximal accumulation occurred in 5 to 7 min, followed by a slight release, until an equilibrium level was attained. However, no significant accumulation of erythromycin by gram-negative bacteria was observed even after prolonged incubation.

Cell wall adsorption of $14C$ -erythromycin. Isolated cell walls (0.3 mg per sample) of S. aureus and B . subtilis incubated with 14 C-erythromycin showed no adsorption of radioactive material (Fig. 3).

Relation of erythromycin accumulation to growth inhibition of B. subtilis. The amount of '4C-erythromycin accumulation at various concentrations of the antibiotic and the inhibition of growth rate at these concentrations were determined at the end of 30 min of incubation (Fig. 4). The results indicate that the inhibition of grampositive bacteria is a function of erythromycin accumulation.

Effect of uncoupling agents of oxidativephosphorylation on the uptake of $14C$ -erythromycin by S. aureus. Growth of S. aureus was inhibited by potassium cyanide $(5 \times 10^{-3} \text{ m})$ completely, and about 20% by sodium azide $(2 \times 10^{-2} \text{ m})$

FIG. 3. Time course of erythromycin uptake by FIG. 4. Relationship between erythromycin uptake

Dissociation constants of the bacteria-ery-
sample as the control. thromycin complexes. The accumulation of 16 +C-erythromycin by S. aureus and B. subtilis 16 Exportantly constants by the bacteria-ery-
thromycin complexes. The accumulation of
¹⁴C-erythromycin by S. aureus and B. subtilis
after 30 min of exposure to increasing external
concentrations of erythromycin follows a concentrations of erythromycin follows a $\frac{1}{2}$... Langmuir isotherm (Fig. 6). The dissociation constants of the bacteria-erythromycin complexes
were calculated from the plots to be 1.1×10^{-7} were calculated from the plots to be 1.1×10^{-7} $\frac{3}{5}$ if $\frac{1}{10}$

¹⁴C-erythromycin accumulated by the gram-

¹⁴C-erythromycin accumulated by the gram-

¹⁴C-erythromycin accumulated by the gramwere calculated from the plots to be 1.1×10^{-7} and 3.4×10^{-7} M, respectively. The amounts of $\frac{2}{5}$ and $\frac{10}{11}$ $\frac{10}{11}$ 10 after 30 min of exposure to increasing external because the calculated by the gram- $\frac{2}{5}$ so- $\frac{1}{10}$

dissociation constants.

Dissociation constants of the ribosome-ery-

thromycin complexes. Formation of the ribosome-

erythromycin complexes was determined by the

nitrocellulose membrane-filter method. The

binding of e Dissociation constants of the ribosome-erythromycin complexes. Formation of the ribosomeerythromycin complexes was determined by the nitrocellulose membrane-filter method. The binding of erythromycin to ribosomes was complete after 10 min at 34 C, and further incubation up to 60 min had no effect on the complexes. The complexes were very stable, as they remained intact after three washings with ³ ml of cold buffer. The ribosomes isolated from E. coli behaved comparably to those isolated from $\sqrt{\frac{1}{20}}$ Let up to 60 min had no effect on the complexes. The

complexes were very stable, as they remained

intact after three washings with 3 ml of cold

buffer. The ribosomes isolated from E. coli

behaved comparably to those i aureus and E. coli ribosome-erythromycin
FIG. 5. Effect of uncoupling agents on erythromycin respectively. M dinitrophenol; \triangle , 2×10^{-2} M sodium azide.

bacteria and bacterial cell walls. Symbols: \bullet , Bacillus and growth inhibition of Bacillus subtilis. Symbols:
subtilis; \bullet , Staphylococcus aureus; \bigcirc , Escherichia \bullet , amount of erythromycin accumulated; \bigtriangleup , p subtilis; \blacktriangle , Staphylococcus aureus; \bigcirc , Escherichia \blacktriangleright , amount of erythromycin accumulated; \bigtriangleup , per cent coli; \bigtriangleup , Proteus vulgaris; and \times , cell walls of B. growth inhibited. Various amounts of ¹⁴ were added to B. subtilis cultures. After 30 min of incubation at 34 C, 5 ml of the culture was filtered, and 2,4-dinitrophenol $(4 \times 10^{-3} \text{ M})$. Yet, the was measured immediately at the end of $\frac{mg}{30}$ min. The per cent inhibition of growth rate was concentrations of 1.36×10^{-6}) increased (Fig. 5). calculated from the optical density with the nontreated

complexes calculated by the double reciprocal up H \ddot{H} . S. Effect by antoupting agents on expirionized plot (Fig. 7) were 2.8×10^{-6} and 3.6×10^{-6} M, uncoupling agent; \circ , 5×10^{-3} M KCN; \times , 4×10^{-3}

toluene or heat did not show any uptake of lost the ability to accumulate erythromycin.

min ¹⁴C-erythromycin accumulation. Symbols:
Staphylococcus aureus; \times , Bacillus subtilis.

ribosome-erythromycin complexes by the double ence in accumulation of erythromycin between
reciprocal plot Symbols: Q . Escherichia coli ribo- gram-positive and gram-negative bacteria is *reciprocal plot. Symbols:* \overline{O} , *Escherichia coli ribo-* gram-positive and gram-negative bacteria is *some-ervitiromycin complex:* \triangle , *Staphylococcus aureus* sufficient to explain the resistance mechanism of some-erythromycin complex; \triangle , Staphylococcus aureus ribosome-erythromycin complex.

Effect of heat or toluene on the uptake of erythromycin. S. aureus treated with toluene or erythromycin. E. coli and P . vulgaris treated with heat in the same manner as E . coli completely

DISCUSSION

yields from cultures of E . coli and B . subtilis , degradation of erythromycin as the mechanism of resistance in these two gram-negative bacteria can be ruled out.

A study of cell-free protein-synthesizing prep-
arations indicates that the E . coli system is $\begin{array}{ccc} 300 \\ 300 \end{array}$ equally as susceptible to erythromycin as the S. aureus system (Fig. 1). The small difference in susceptibility (about 5%) between E. coli and $\begin{array}{c|c|c|c|c|c} & S. \text{ aureus, shown in Fig. 1, is not statistically significant, since the experimental error in the\n\end{array}$ cell-free protein synthesis assay is about 10% . Preparations from both microorganisms show $\begin{array}{c|c}\n\text{loop} & \nearrow \swarrow\n\end{array}$ that poly A-directed synthesis is most sensitive to erythromycin, the endogenous mRNA-directed system is less sensitive, and the poly U-directed synthesis is least sensitive. Wolfe and Hahn (15) $\begin{bmatrix} 10 & 20 \\ 20 & 30 \end{bmatrix}$ and $\begin{bmatrix} 10 & 20 \\ 40 & 40 \end{bmatrix}$ have shown that *E. coli* cell-free preparations require an extremely high concentration of require an extremely high concentration of erythromycin to inhibit polyphenylalanine syn-FIG. 6. Langmuir adsorption isotherm plots of 30- erythromycin to inhibit polyphenylalanine syn-
in ¹⁴C-erythromycin accumulation. Symbols: \bullet , thesis. Our results show that this is due to the insensitivity of the poly U-directed cell-free system rather than to the $E.$ coli cell-free system per se. Further evidence to support the thesis that 9 the protein-synthesizing apparatus of gram negative bacteria is equally as sensitive to erythromycin as that of the gram-positive bacteria is obtained by comparing the dissociation constants of the ribosome-erythromycin complexes of S. aureus and E. coli. The dissociation constant of the E. coli ribosome-erythromycin complex is 3.6 \times 10⁻⁶ M, which is only slightly higher 20 than that of the S. aureus ribosome-erythromycin complex $(2.8 \times 10^{-6} \text{ m})$. It should be noted in unity. This is the maximal binding capacity of the ribosomes. These data verify our earlier $\begin{array}{c|c|c|c|c|c} \hline \text{if } & \text{if } & \text{if } \\ \hline \text{if } & \text{if } & \text{if } & \text{if } \\ \hline \text{if } & \text{if } & \text{if } & \text{if } & \text{if } \\ \text{if } & \text{if } \\ \hline \text{if } & \text{if } \\ \hline \text{if } & \text$ with erythromycin (6) .

We have found that the uptake of erythromycin by gram-positive bacteria is 100 times greater than the uptake by gram-negative bacteria (Fig. 2 and 3), while the minimal inhibitory concentra- $\frac{1}{10}$ tions of erythromycin for E. coli and P. vulgaris [$µM$ Erythromycin]⁻¹ cultures are about 100 times greater than for $\frac{1}{2}$ curves and *B*. *subtilis* cultures (2). This differ-FIG. 7. Evaluation of dissociation constants of \sum . aureus and B. subtilis cultures (2). This differ-
become erythromycin complexes, by the double ence in accumulation of erythromycin between gram-negative bacteria. A close relationship between accumulation of erythromycin and inhibition of growth in gram-positive bacteria has been established (Fig. 4).

Taubeneck (11) showed that the L form of a P. mirabilis strain is very susceptible to erythromycin, although the parent strain with the intact wall is resistant. Kagan et al. (4) observed that the L form of S. aureus is more sensitive to kanamycin, neomycin, polymyxin, lincomycin, and gentamycin than the intact cell. Thus, if the membranes of the intact cell and the L form are identical, then the transport barrier is probably the cell wall rather than the cell membrane. It has also been reported that exposing E. coli cells to toluene for ¹⁵ min or heating them to ⁷⁰ C for 2 min increased their permeability to streptomycin (3) . However, E. coli and P. vulgaris show no uptake of erythromycin after such treatment. This finding may be interpreted in either of two ways: that the barrier to erythromycin transport cannot be destroyed by heat or toluene; or that the barrier is destroyed but a component essential for the uptake is also destroyed. The latter interpretation seems more likely, since heat- or toluene-treated gram-positive bacteria lose the ability to accumulate erythromycin.

To ascertain that erythromycin is accumulated in gram-positive bacterial cells rather than merely adsorbed on the cell wall surface, the adsorption of erythromycin by isolate cell walls of S. aureus and B. subtilis was determined. No erythromycin was detected on the cell walls. There were 0.3 mg of cell walls per sample. Assuming 20% of the dry cell weight is cell wall, this is equivalent to 1.5 mg of dry cell per sample. In the other experiments conducted in this report, less than ¹ mg of dry cells per sample was used.

At an extracellular erythromycin concentration of 1.36×10^{-6} M, S. aureus could accumulate 18 \times 10^{-12} to 30 \times 10^{-12} moles of erythromycin per 3×10^8 cells, and *B*. *subtilis* could accumulate 20×10^{-12} to 37 $\times 10^{-12}$ moles. Assuming the cell volume of a bacterium is $10⁻¹²$ ml, the total cell volume of 3 \times 10⁸ cells is 3 \times 10⁻⁴ ml. The 18×10^{-12} to 37 $\times 10^{-12}$ moles of erythromycin accumulated in this volume give an intracellular concentration of 60 \times 10⁻⁶ to 123 \times 10⁻⁶ M. This concentration of erythromycin in grampositive bacteria is 44- to 90-fold greater than that of the medium.

Although the intracellular concentration of erythromycin is greater than that of the surrounding medium, active transport does not appear to be involved since uncoupling agents, such as cyanide, azide, and 2, 4-dinitrophenol, do not inhibit the accumulation. The accumulation occurs only in viable cells; heat- or toluene-treated cells lose the ability to accumulate erythromycin.

This can be explained by assuming a binding of erythromycin to ribosomes. It has been shown by sucrose gradient centrifugation or by column chromatography that erythromycin binds to ribosomes of S. aureus (6) , B. subtilis (12) , and E. coli (9). That the ribosome-erythromycin complex can survive prolonged centrifugation through a drug-free sucrose gradient or through a drugfree column indicates that the complex is very stable. The stability of the ribosome-erythromycin complex is quantitated by the dissociation constants of the complexes. The dissociation constants are indeed very small (2.8 \times 10⁻⁶ and 3.6 \times 10⁻⁶ M for *S. aureus* and *E. coli*, respectively). The dissociation constants of bacteria-erythromycin are 1.1×10^{-7} and 3.4×10^{-7} M for S. aureus and B. subtilis. The discrepancy between the ribosome-erythromycin dissociation constants and the bacteria-erythromycin constants probably reflects that in bacterial cells there is a small fraction of erythromycin in addition to that bound to ribosomes.

Tissieres et al. (13) have estimated that one E. coli cell (cell volume about 10^{-12} ml) at the early log phase contains 90,000 ribosomes. Assuming that the density of ribosomes in B. subtilis and S. aureus is approximately the same as in $E.$ coli, and that each ribosome binds one erythromycin molecule, the intracellular concentration can reach 0.15 mm. This agrees with the 0.06 to 0.12 mm concentration of erythromycin in B. subtilis and S. aureus observed in our studies.

LITERATURE CITED

- 1. FLYNN, E. H., H. W. MURPHY, AND R. E. MCMAHON. 1955. Erythromycin. II. Des-Nmethylerythromycin and N-methyl-'4C-erythromycin. J. Am. Chem. Soc. 77:3104-3106.
- 2. HAIGHT, T. H., AND M. FINLAND. 1952. The antibacterial action of erythromycin. Proc. Soc. Exptl. Biol. Med. 81:175-183.
- 3. HURwITZ, C., AND C. L. ROSANO. 1962. Accumulation of label from ¹⁴C-streptomycin by Escherichia coli. J. Bacteriol. 83:1193-1201.
- 4. KAGAN, B. M., S. ZOLLA, R. BUSSER, AND S. LIEPNIEKS. 1964. Sensitivity of coccal and L forms of Staphylococcus aureus to five antibiotics. J. Bacteriol. 88:630-632.
- 5. MAO, J. C.-H. 1967. Protein synthesis in a cellfree extract from Staphylococcus aureus. J. Bacteriol. 94:80-86.
- 6. MAO, J. C.-H. 1967. The stoichiometry of erythromycin binding to ribosomal particles of Staphylococcus aureus. Biochem. Pharmacol. 16:2441- 2443.
- 7. MAO, J. C.-H., AND P. L. TARDREW. 1965. Demethylation of erythromycins by rabbit tissues in vitro. Biochem. Pharmacol. 14:1049- 1058.

- 8. POLLOCK, M. R. 1960. Drug resistance and mechanisms for its development. Brit. Med. Bull. 16:16-22.
- 9. TANAKA, K., AND H. TERAOKA. 1966. Binding of erythromycin to Escherichia coli ribosomes. Biochim. Biophys. Acta 114:204-206.
- 10. TANAKA, K., H. TERAOKA, T. NAGIRA, AND M. TAMAKI. 1966. Formation of ¹⁴C-erythromycinribosome complex. J. Biochem. 59:632-634.
- 11. TAUBENECK, U. 1962. Susceptibility of Proteus mirabilis and its stable L-forms to erythromycin and other macrolides. Nature 196:195-196.
- 12. TAUBMAN, S. B., N. R. JONES, F. E. YOUNG, AND J. W. CORCORAN. 1966. Sensitivity and resistance to erythromycin in Bacillus subtilis 168:

the ribosomal binding of erythromycin and chloramphenicol. Biochim. Biophys. Acta 123:438-440.

- 13. TAUBMAN, S. B., A. G. So, F. E. YOUNG, E. W. DAVIE, AND J. W. CORCORAN. 1964. Effect of erythromycin on protein biosynthesis in Bacillus subtilis. Antimicrobial Agents and Chemotherapy-1963, p. 395-401.
- 14. TISSIÈRES, A., J. D. WATSON, D. SCHLESSINGER, AND B. R. HOLLINGWORTH. 1959. Ribonucleoprotein particles from Escherichia coli. J. Mol. Biol. 1:221-233.
- 15. WOLFE, A. D., AND F. E. HAHN. Erythromycin: mode of action. Science 143:1445-1446.