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Abstract

It has been many years since position-specific residue preference around the ends of a helix was
revealed. However, all the existing secondary structure prediction methods did not exploit this
preference feature, resulting in low accuracy in predicting the ends of secondary structures. In this
study, we collected a relatively large data set consisting of 1860 high-resolution, non-homology proteins
from the PDB, and further analyzed the residue distributions around the ends of regular secondary
structures. It was found that there exist position-specific residue preferences (PSRP) around the ends of
not only helices but also strands. Based on the unique features, we proposed a novel strategy and
developed a tool named E-SSpred that treats the secondary structure as a whole and builds models to
predict entire secondary structure segments directly by integrating relevant features. In E-SSpred, the
support vector machine (SVM) method is adopted to model and predict the ends of helices and strands
according to the unique residue distributions around them. A simple linear discriminate analysis method
is applied to model and predict entire secondary structure segments by integrating end-prediction
results, tri-peptide composition, and length distribution features of secondary structures, as well as the
prediction results of the most famous program PSIPRED. The results of fivefold cross-validation on a
widely used data set demonstrate that the accuracy of E-SSpred in predicting ends of secondary
structures is about 10% higher than PSIPRED, and the overall prediction accuracy (Q3 value) of
E-SSpred (82.2%) is also better than PSIPRED (80.3%). The E-SSpred web server is available at
http://bioinfo.hust.edu.cn/bio/tools/E-SSpred/index.html.

Keywords: secondary structure prediction; position-specific residue preference; ends of secondary
structures; protein structure prediction

The knowledge of protein structures plays an important role
in understanding protein functions (Watson et al. 2005),
reconstructing protein structures (Dwyer et al. 2004), study-

ing protein–protein interactions (Russell et al. 2004), and
rationally designing drugs (Thiel 2004). Recently, the gap
between available protein sequences and the experimental
determination of their structures increased rapidly, making
the prediction of protein structures more and more impor-
tant (Koehl and Levitt 1999; Dunbrack 1999; Baker and Sali
2001). Accurate prediction of protein secondary structures
can provide constraints for or be part of a tertiary structure
prediction (Russell et al. 1996; Rost 1997; Jones 1999a).
Furthermore, knowledge of secondary structures alone can
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also help the design of site-directed mutants that will not
destroy the native protein structures (Chasman and Adams
2001; Bao and Cui 2005).

Secondary structure predictions methods have been
developing for many years. The early methods were
based on simple statistics (Chou and Fasman 1974; Lim
1974) or stereochemistry principles (Garnier et al. 1978).
Thereafter, Qian and his coworkers used the neural
network to take the influence of local interactions on
secondary structure formation into account, which effec-
tively improved the prediction accuracy (Qian and
Sejnowski 1988). In the early 1990s, Rost and Sander
(1993) proposed the method of using a sequence profile
constructed by a similar sequence search and multiple
sequence alignment to predict secondary structures,
which exploited the evolution information and improved
the prediction accuracy significantly. Later, based on
Rost’s method (Rost and Sander 1993), Jones (1999b)
used PSI-BLAST to improve the homology sequence
search, and developed a famous tool named PSIPRED
that can get better results.

Today, almost all secondary structure prediction meth-
ods follow the Rost’s idea (Rost and Sander 1993). These
methods build models to predict the secondary structure
class of a single residue position according to the infor-
mation of its neighboring residues (Hua and Sun 2001;
Kim and Park 2003; Guo et al. 2004; Qin et al. 2005).
Apparently, these methods treat different positions on a
protein sequence equally since they predict the secondary
structure class of each residue position with the same
models. That is, these methods assume that the residue
distributions are distinctive for different secondary struc-
ture classes, but nondistinctive for different positions of a
specific secondary structure class. In fact, the residue
distributions on some positions of regular secondary struc-
tures are of specificity, which is especially obvious for
positions around the ends of regular secondary structures
and can be proved by the concept of helix capping (Presta
and Rose 1988; Richardson and Richardson 1988;
Padmanabhan et al. 1990; Blader et al. 1993; Aurora
et al. 1994). Some researchers even declared that the helix
ends are determined by the residues around them (Baldwin
and Rose 1999). Unfortunately, this position-specific resi-
due preference feature has not been exploited to predict
secondary structures. As a result, their prediction perform-
ance around the ends of regular secondary structures are
quite unsatisfactory, which remarkably limits the applica-
tion of secondary structure prediction results (Russell and
Barton 1993; Rost et al. 1994).

In this study, we collected a relatively large data set
consisting of 1860 high-resolution, non-homology pro-
teins from PDB, and further analyzed the residue distri-
butions around the ends of regular secondary structures
(i.e., a-helix and b-strands). It was found that there exist

position-specific residue preferences around the ends of
not only helices but also strands. On this basis, we pro-
posed a novel strategy and developed a tool named
E-SSpred to predict the secondary structures. This strat-
egy treats the secondary structure as a whole, and builds
models to predict entire secondary structure segments,
instead of the class of a single residue, by integrating such
information as the residue distribution features around
ends, the composition and length distribution features of
secondary structure segments, and so on. The results of
fivefold cross-validation on the widely used data set
CB513 (Cuff and Barton 1999) demonstrate that the
accuracy of E-SSpred in predicting ends of secondary
structures is about 10% higher than PSIPRED, and the
whole prediction accuracy (Q3 value) of E-SSpred
(82.2%) is also better than PSIPRED (80.3%).

Results

Position-specific residue preference around the ends
of helices and strands

Based on the DB1860 data set, we analyzed the residue
distribution on positions around the ends of helices and
strands. Similar to Aurora and coworkers (Aurora et al.
1994), the nomenclatures for these positions are labeled
as follows:

� � �N0
a � N9

a � Nend
a � N1

a � N2
a � N3

a � � � � � C3
a � C2

a

� C1
a � Cend

a � C9
a � C0

a � � � ;

� � �N0
b � N9

b � Nend
b � N1

b � N2
b � � � � � C2

b � C1
b � Cend

b

� C9
b � C0

b � � � ;

where Nend
a , Cend

a represent the N-terminal and C-terminal
of the a-helices, respectively, and Nend

b and Cend
b

represent the N-terminal and C-terminal of the b-
strands.

We calculated the residue preference scores (see
Equation 1 in Materials and Methods) for each of theses
positions. The results for partial positions are given in
Table 1. For the purpose of comparison, Richardson’s
position-specific residue preference results around helix
ends (Richardson and Richardson 1988) are also listed in
Table 1 (R+ denotes that a residue appears on a position
with high frequency, and R� means that the frequency is
low). From Table 1, it can be found that many positions
exhibit strong position-specific residue preference. For
example, on the N-terminal of the helices, the hydro-
phobic residues such as Val, Leu, and Ile appear infre-
quently, and the electronegative, polar residues like Asp
and Glu, are more likely to present.
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In order to find out whether the residue distributions
are influenced by the length of the secondary structures,
we further calculated and compared the position-specific
residue preference scores for secondary structures of
different lengths. Shown in Figure 1 are the results for
four selected positions.

From Figure 1 it can be seen that the residue preference
scores for the position N1

a (Fig. 1A) and Cend
b (Fig. 1B) are

almost not varying with the length of the secondary
structures. It implies that the residue distributions on
positions close to the ends of the helices and strands are
scarcely influenced by the length of the secondary
structures. On the contrary, the residue preference scores
for the sixth position of helices (Fig. 1C) and the third
position of stands (Fig. 1D), both of them are relatively
far away from the ends of secondary structures, greatly
vary with the structure length. The results suggest that it
is feasible to build a unified model to predict the ends of
helices and strands of different lengths.

Accuracy of secondary structure prediction

Fivefold cross-validation has been used on RS126 and
CB513 to test the performance of E-SSpred, and the results
are given in Tables 2 and 3. For the purpose of comparison,
the prediction performance of the PMSVM (Guo et al.
2004), SVMpsi (Kim and Park 2003), and PSIPRED (Jones
1999b) on the same data sets, are also given in these tables.
In Table 2, three kinds of widely used measures, the per-
residue accuracy for overall proteins (Q3 value) and for

each class of secondary structure (QH, QE, QC, QH
pre, QE

pre,
Qc

pre), Matthew correlation coefficient for each class of
secondary structure (CH, CE, CC) (Matthews 1975), and
segment overlap measure score (SOV) (Zemla et al. 1999)
are used to evaluate the prediction results. The details for
calculating per-residue accuracy Q3, QI, and QI

pre, Matthew
correlation coefficient CI (here, I ¼ H, E, and C), and the
segment overlap measure score SOV are given in a previous
paper (Kim and Park 2003). In Table 3, three measures, the
sensitivity Sn, specificity Sp, and Matthew correlation
coefficient CC, are used to evaluate the performance for
predicting the ends of helices and strands. The sensitivity is
defined as Sn ¼ TP/(TP + FN), the specificity is Sp ¼ TP/
(TP + FP), and the Matthews correlation coefficient CC is

CC =
TP � TN � FN � FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FNð Þ TP + FPð Þ TN + FNð Þ TN + FPð Þ
p

where the symbols TP, TN, FP, and FN denote the number
of true positives, true negatives, false positives, and false
negatives, respectively.

It can be seen from Table 2 that the results from the E-
SSpred method are very good. On both data sets of RS126
and CB513, the Q3 value of E-SSpred is improved >5%
compared with the recently developed tools PMSVM and
SVMpsi, and compared with PSIPRED, one of the most
popular secondary structure prediction tools, E-SSpred
can also get better performance in terms of the Q3

(increased 2%), correlation coefficient, and SOV value.

Table 1. Residue preference scores for partial positions around the ends of helices and strands

a.a.

Positions around helix ends Positions around strand ends

N0a N9a Nend
a N1

a N2
a N3

a Cend
a N9b Nend

b Cend
b C9b

Gly 1.41 1.66 1.76R+ 1.31R� 0.77 0.72 2.36R+ 1.77 1.23 0.94 1.72

Ala 0.42 0.80 0.90 0.85 1.05 1.06 1.18 0.73 0.93 0.77 0.87

Val 0.26 1.06 0.66R� 0.99 1.70 0.68 0.46R� 0.61 0.87 0.61 0.77

Leu 0.36 0.88 0.51R� 0.68 1.45 1.17 1.05 0.51 0.79 0.68 0.78

Ile 0.29 0.89 0.53 0.71 1.78 0.73 0.48 0.50 0.85 0.62 0.60

Pro — — — — — — — 1.84 0.63 2.15 1.05

Ser 2.56 1.13 1.49R+ 1.10 0.65 1.43 1.19 0.98 1.03 1.23 1.28

Thr 2.18 1.11 1.14 1.45 0.93 1.20 0.70 1.02 1.14 0.91 1.29

Cys 0.95 0.68 0.60 0.74 1.21 1.06 1.11 0.82 0.80 0.92 1.20

Met 0.42 0.82 0.52 0.72 1.35 1.11 1.07 0.65 0.95 0.67 0.77

Asn 2.24 0.78 1.16R+ 0.94 0.63 1.52 1.68 1.58 0.98 1.55 1.71

Gln 0.60 0.78 1.04 1.38 0.83 1.00 1.21 0.95 1.27 0.93 0.67

Phe 0.52 1.07 0.67 0.91 1.52 1.07 0.90 0.66 0.90 0.74 0.72

Tyr 0.63 1.09 0.82 0.89 1.30 1.20 0.98 0.73 1.00 0.73 0.77

Trp 0.42 1.34 0.90 0.93 1.38 0.73 0.55 0.87 0.90 0.78 0.70

Lys 0.56 0.93 0.95 0.73 0.69 1.23 1.14 1.15 1.52 0.86 0.88

Arg 0.61 0.87 0.78 0.65 1.05 1.08 1.06 1.09 1.27 0.86 0.80

His 1.18 0.88 1.05 1.17 0.85 1.28 1.32 1.06 1.10 1.07 1.08

Asp 2.56 1.07 2.06R+ 1.95 0.47R+ 0.80R+ 0.78 1.65 0.73 2.06 1.59

Glu 0.58 0.93 1.94 1.63R+ 0.40R+ 0.93R+ 0.80 0.83 1.12 0.93 0.74

The scores larger than 1.4 are in bold type, smaller than 0.6 are underlined. Data of proline on positions of the helices are omitted.

Protein secondary structure prediction
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The data in Table 3 demonstrate that the performances
of both PMSVM and PSIPRED for the prediction of
secondary structure ends are quite low. For example, the
prediction sensitivity and specificity for helix C-terminal,
strand N-terminal, and C-terminal are all under 40%,
implying that these tools are incompetent to locate
secondary structures exactly. Compared with PMSVM
and PSIPRED, the performance of E-SSpred for locating
the ends of secondary structures is significantly better. It
can be seen from Table 3 that the overall performance
(CC) of E-SSpred for predicting helix N-terminal, helix
C-terminal, strand N-terminal, and strand C-terminal are
higher than PSIPRED, respectively.

Discussion

Position-specific residue preference around the ends
of helices and strands

The residue distribution around the ends of helices has
been analyzed by Richardson and Richardson (1988)
using a small data set containing 45 protein sequences.
It was found that, on certain positions, some resi-
dues present with preference (e.g., Asp on Nend

a, Gly on
Cend

a, etc.), and some others are unlikely to occur (e.g., Leu
on Nend

a, Val on Cend
a, etc.). In this study, we collected a

large data set containing 1860 high-resolution, non-
homology proteins to further analyze the residue distri-
butions around the ends of regular secondary structures. It
was found that there exist more position-specific residue

preferences around the ends of not only helices but also
strands (see Table 1). For example, Glu also presents high
frequently on position Nend

a as Asp, and Asp also prefers to
occur on position N1

a as Glu.
From our results, some interesting conclusions about

the residue distribution around the ends of helices and
strands can be obtained. For instance, polar and electro-
negative residues Glu and Asp prefer to present on the
first (Nend

a ) and second positions (N1
a) of a-helices, but

hydrophobic residues such as Val, Leu, Ile, and Met are
unlikely to appear on these positions. On the third
position of the a-helices (N2

a), however, hydrophobic
residues are of preference but electronegative residues
are unlikely to occur. This residue preference on positions
next to the helix starts may be one of the requirements to
form the helix structure.

Our results show that the position-specific residue
preference around the ends of helices and strands is more
obvious than the inner positions, which is consistent with
the results of Richardson and Richardson (1988). In
addition, we also analyzed the residue distributions of
secondary structures with different length, and found that
the influences of structure length on residue distributions
for positions around the ends of helices and strands are
much less than those inner positions. These results imply
that it is necessary to build specific models to predict the
end positions of regular secondary structures.

There are also some conflicts between Richardson and
Richardson’s (1988) results and ours. For example, their
research showed that both Asp and Glu prefer to present

Table 2. The prediction performance of E-SSpred and the comparison with PMSVM, SVMpsi, and PSIPRED

Q3 (%) QH (%) QH
pre (%) QE (%) QE

pre (%) QC (%) QC
pre (%) CH CE CC SOVa

PMSVMb 75.81 79.41 79.5 69.33 66.52 72.11 73.65 0.71 0.61 0.61 74.21

SVMpsic 76.1 77.2 — 63.9 — 81.5 — — — — 72.0

SVMpsib 76.6 78.1 — 65.6 — 81.1 — — — — 73.5

PSIPREDc 79.69 84.01 81.41 72.71 71.59 79.31 78.15 0.75 0.69 0.63 76.0

PSIPREDb 80.30 84.76 83.01 74.30 75.76 79.84 80.37 0.76 0.69 0.63 76.20

E-SSpredc 81.63 84.43 82.31 73.59 71.43 80.39 81.85 0.76 0.69 0.65 76.39

E-SSpredb 82.15 84.91 83.74 75.78 75.28 80.67 82.84 0.78 0.70 0.65 76.72

a SOV: this criterion is following the definition of Zemla et al. (1999).
b SVMpsi, PSIPRED, E-SSpred: result obtained on RS126 set. SVMpsi results are from Kim and Park (2003). E-SSpred is the new method proposed in
this paper.
c PMSVM, SVMpsi, PSIPRED, E-SSpred: results obtained on CB513 set.

Table 3. The prediction performance of E-SSpred for the ends of helices and strands and the comparison with PMSVM and PSIPRED

Helix N-terminal Helix C-terminal Strand N-terminal Strand C-terminal

Sn (%) Sp (%) CC Sn (%) Sp (%) CC Sn (%) Sp (%) CC Sn (%) Sp (%) CC

PMSVM 38.34 36.69 0.366 27.02 36.09 0.304 32.36 34.33 0.325 29.35 31.14 0.293

PSIPRED 51.96 50.14 0.503 34.69 32.14 0.325 39.50 38.11 0.38 36.19 34.92 0.347

E-SSpred 61.73 60.56 0.606 45.06 45.73 0.447 50.15 47.61 0.482 46.04 45.35 0.45

Protein secondary structure prediction
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on N2
a, but our results indicate that these two residues are

unlikely to present on N2
a (Richardson and Richardson

1988). The main cause for these conflicts is possibly that
too few protein sequences were used in Richardson and
Richardson’s (1988) research to estimate the residue
distributions, which might lead to some statistical biases.

The performance of secondary structure prediction

From Table 3 it can be seen that the performance of E-
SSpred for predicting the ends of a-helices and b-strands is
significantly better than PMSVM, SVMpsi, and PSIPRED,
indicating that the position-specific residue preference
around the ends of helices and strands is a very useful
feature to help predict the ends of secondary structures and
locate secondary structures more accurately. Moreover, it
means that E-SSpred can locate the secondary structures on
protein sequences more accurately, and therefore its pre-
diction results can be applied to solve related problems such
as protein tertiary structure prediction, protein function
analysis, and so on, more effectively. However, from Table
2, it can also be seen that, with the help of this feature, the
improvement of secondary structure prediction perform-
ance in terms of the measures Q3, Matthew correlation
coefficient, and SOV is not very significant. The possible
causes include: (1) The number of ends is very small
relative to the number of residues in helices and strands;
thus, the direct contribution of improving the prediction of
ends is limited to the improvement of secondary structure
prediction accuracy measured by Q3, etc.; (2) the main
cause that greatly influences the performance of existing
secondary structure prediction tools is that some helices and
strands are easily predicted as loops completely. The novel
strategy proposed in this study, to predict entire secondary
structure segments directly by integrating relevant features
in such aspects as the residue distribution around ends, tri-
peptide composition, and so on, has the potential to change
this situation. However, the algorithms currently used in E-
SSpred are still too simple to adequately bring into play the
potential of this novel strategy. We expect to develop, in the
near future, more advanced algorithms that can signifi-
cantly improve the prediction performance.

Materials and Methods

Data sets

Three data sets were used in this study. One is the data set we
collected to analyze the statistical features of secondary struc-
tures and to train models for secondary structure ends predic-
tion. This data set contains 1860 non-homology proteins and is
called DB1860. The proteins in this data set were picked from
the PDB database using the tool, PISCES, developed by
Dunbrack (Wang and Dunbrack 2003). These proteins meet
the following criterions: (1) they were detected by an X-ray

diffraction method; (2) the sequence identity between any two
of them is <30%; (3) the experiment resolution is <2.0
angstroms; (4) there are no homology proteins between
DB1860 with RS126 and CB513 data sets. The list of proteins
in DB1860 can be downloaded from the website: http://bioinfo.
hust.edu.cn/bio/tools/E-SSpred/.

The other two data sets are RS126 (constructed by Rost and
Sander [1993]) and CB513 (constructed by Cuff and Barton
[1999]); these two data sets contains 126 and 513 non-homology
proteins, respectively, and have been widely used to test
secondary structure prediction methods (Hua and Sun 2001;
Kim and Park 2003), and they also are used to compare the
prediction performance of our method with that of other
methods.

The secondary structure of proteins in these data sets is
assigned from the experimentally determined tertiary structure
by DSSP (Kabsch and Sander 1983), which has been the most
widely used secondary structure definition. It has eight secon-
dary structure classes: H(a-helix), G(310-helix), I(p-helix), E(b-
strand), B(isolated b-bridge), T(turn), S(bend), and –(rest). We
reduced the eight classes to three states, helix(H), sheet(E), and
coil(C) using the following strategy: H, G to H; E, B to E; all
other states to C. This strategy is now widely used, and
considered to be the strictest definition in secondary structure
prediction methods (Hua and Sun 2001; Kim and Park 2003;
Guo et al. 2004).

Assessment of position-specific residue preference around
ends of secondary structures

The position-specific residue preference is defined as the
statistical frequencies where residues occur on a certain position
around the ends of secondary structures. The preference score
for residue a on position i of secondary structure class ss is
denoted as fss (a, i), and is determined by:

f ssða; iÞ= pssða; iÞ=p0
ssðaÞ; ð1Þ

where pss (a, i) is the frequency of residue a occurring on
position i of secondary structure class ss, and p0

ss (a) is the
average frequency of residue a on all positions of ss.

The position-specific residue preference for secondary struc-
tures of different lengths is denoted as f l

ss (a, i), and is
determined by

f l
ssða; iÞ = pl

ssða; iÞ=pl0
ssðaÞ; ð2Þ

where l is the length of secondary structures, pl
ss (a, i) is the

frequency of residues a occurring on position i of structure ss
whose length is l, and pl0

ss (a) is the average frequency.

Prediction of ends of secondary structures

We first predict the probabilities of each position in the pro-
tein belonging to the end positions of regular secondary
structures. The SVM method is adopted to do this job according
to the residue distributions around each position. For each kind
of ends, the helix N-terminal, helix C-terminal, strand N-
terminal, and strand C-terminal, a binary SVM classifier, is
built to predict them, respectively. By the analysis of the
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position-specific residue preference scores of different positions
in secondary structures, we find that the position-specific
residue preference features on some positions, such as nine
positions around the helix N-terminal (i.e., upstream three
residues, downstream five residues, and the helix N-terminal
itself), and seven positions around other terminals (i.e.,
upstream three residues, downstream three residues, and the
end itself), is more intense than on other positions. Based on
this, to predict the helix N-terminal, nine residues are encoded
with PSSM (position-specific scores matrix) scores to construct
feature vectors, and for the prediction of the other three ends,
seven residues are selected to construct feature vectors.

In this study, the LIBSVM (http://www.csie.ntu.edu.tw/
;cjlin/libsvm/) program is used as the implementation of
SVM, in which the radial basis function kernel is adopted and
the two parameters, C and g, are empirically set to 10 and
0.0015, respectively.

In the course of prediction, for each position of a protein
sequence, these SVMs can output four scores reflecting the
probabilities of this position being a helix N-terminal, helix C-
terminal, strand N-terminal, and strand C-terminal, respectively,
and these scores will be used as features in the secondary
structure prediction of the whole protein.

Tri-peptide composition in secondary structures

Similar to the idea of using codon usage to help distinguish
exons from introns in the field of predicting gene structures in
eukaryotic DNA sequences, in this study, the tri-peptide com-
position is used as an additional feature to help distinguish
different secondary structures. For a tri-peptide, its probability
score, appearing in secondary structure ss, is defined as:

pðaiajak j ssÞ = nðaiajakjssÞ
.
+
i

+
j

+
k

nðaiajakjssÞ; ð3Þ

where ai, aj, ak denote a residue type, respectively, n(aiajak j ss)
is the number that the tri-peptide aiajak appears as in ss.

Length distribution of secondary structures

As shown in Figure 2, the length distribution of helices is
different from that of strands. Thus, the length can be used as an
additional feature to help distinguish different secondary struc-
tures. In this study, the length score for predicting a segment of
length l as a helix or strand is determined by:

Slenðl; ssÞ= lnðnss
l
�
nssÞ; ð4Þ

where nss
l is the number of secondary structures of length l of

secondary structures of class ss, and nss is the average number of
all lengths of ss. Both nss

l and nss are determined by the training
data set DB1860.

Linear discriminate analysis of secondary structures

Similar to the strategy widely used in predicting exons and
introns of genes from DNA sequences, in this study, the linear
discriminate analysis method is used to integrate the end-
prediction results, tri-peptide composition score, length distri-
bution score, and the PSIPRED prediction results to predict
entire secondary structure segments.

For a protein sequence, let Seg[i, j] be a segment of this
sequence (i and j are the start and end position, respectively),
then the potential score where this segment belongs to helices or
strands is determined by:

Sss
ij = p1 � sss;n

i + p2 � sss;c
j + p3 � s

ss;psipred
ij + p4 � sss;tri�res

ij +

p5 � sss;len
ij + p6;

ð5Þ

where, sss,n
i is the probability score for position i to be the N-

terminal of class ss, sss,c
j is the score for position j to be the C-

terminal of ss, sss,len
ij and sss,tri–res

ij are the length distribution score
and average tri-peptide composition score of this segment, respec-
tively. sss,psipred

ij is the PSIPRED prediction score determined by

sss;psipred
ij =

1

l
+
j

k = i

sss; psipred
k ;

and the sss,psipred
k is the score of residues k predicted to be ss by

PSIPRED. The parameters p1 – p6 are weight coefficients that
are determined by the least-square approach used for the
REGRESS function of Matlab7.0.

A segment whose potential score Sss
ij is bigger than a threshold

Sss
threshold is predicted as an ss candidate, and all the candidates

in a protein sequence can be obtained after scanning the whole
sequence. For overlapped candidates of the same class, only the
one with the biggest Sss

ij value is kept. Then, for overlapped
candidates of different classes (for example, a helix candidate
from position i to j, a strand candidate from k to l, and i < k < j <
l), the following rules are used to make the decision:

Figure 2. The length distribution of (A) helices and (B) strands in DB1860.
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structði! jÞ= H; structðj! lÞ= E � � � � � � if ðSH
ij > SE

klÞ
structði! kÞ= H; structðk! lÞ= E � � � � � � others

�
; ð6Þ

where H and E represent the helix and the strand, respectively,
and struct(i ! j) ¼ H means the segment from position i to j is
predicted as a helix and so do the others.
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