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Abstract

Background: Familial Mediterranean fever (FMF) is an autoinflammatory condition, which is characterized by acute, self-
limiting episodes of fever and serositis and chronic subclinical inflammation in remission. Here we investigated the
consequence of this condition on the level of systemic antibodies directed towards common intestinal bacteria.

Methodology/Principal Findings: The level of systemic antibodies towards the antigens of Bacteroides, Parabacteroides,
Escherichia, Enteroccocus and Lactobaccilus was measured by ELISA in FMF patients at various stages of the disease and in
healthy controls. The difference between remission and attack was not significant. IgG antibodies against the antigens of
Bacteroides, Parabacteroides, Escherichia and Enteroccocus were significantly increased in FMF compared to control while IgA
levels were not significantly affected. Western blot analyses demonstrated the IgG reactivity against multiple antigens of
commensal bacteria in FMF. Serological expression cloning was performed to identify these antigens. No single dominant
antigen was identified; the response was generalized and directed against a variety of proteins from Bacteroides,
Parabacteroides, Escherichia, and other gut commensals.

Conclusions/Significance: This autoinflammatory syndrome is characterized by the increased systemic reactivity against
commensal gut microbiota. This is probably the consequence of hypersensitivity of the inflammasome in FMF that triggers
the inflammation and contributes to the excessive translocation of bacteria and bacterial antigens through the gut barrier.
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Introduction

Familial Mediterranean fever [FMF, MIM249100] is one the

most common hereditary autoinflammatory syndromes [1]. It

occurs in populations originating from the Mediterranean basin,

mainly in Jews, Armenians, Arabs, and Turks. The genetic cause

of FMF is the mutated version of pyrin/marenostrin, which is

primarily expressed in neutrophils, eosinophils, monocytes,

dendritic cells, and sinovial fibroblasts [2,3,4,5]. Clinically, the

disease is characterized by acute self-resolving attacks of fever with

serositis such as peritonitis, pleuritis, and arthritis, with a massive

influx of polymorphonuclear leukocytes into the affected tissues. In

remission the patients are clinically asymptomatic, although a

number of inflammation markers are elevated suggesting persisting

subclinical inflammation [6]. Antimitotic drug colchicine reduces

the frequency, duration and intensity of attacks and extends the

remission periods. It is also effective in prevention of FMF

complications such as amyloidosis and renal failure.

Although the genetic basis of FMF is clearly defined and

genotyping for the corresponding mutations becomes a standard

diagnostic tool for this disease, the environmental factors such as

diet, stress, or physical activity were also implicated in the initiation

of disease attacks [7,8]. In this regard, the gut mucosal interface can

be considered as one of the major areas where the organism

interacts with the environment, in particular, with the diverse gut

microbiota. Under the normal circumstances, the passive protection

of the host against commensal bacteria in the intestine is achieved by

the secretion of mucin by goblet cells while the active control

involves a number of nonspecific cytotoxic cells and phagocytes as

well as humoral mechanisms with the synthesis and translocation of

antimicrobials such as defensins [9], the production of large

quantities of intestinal IgA that are secreted into the lumen [10],

complement fragments, cytokines, and chemokines. The interplay

between the host and gut microbiota includes sensing bacterial

signals through an impressive host array of the innate immunity

receptors such as TLR, NLR, and C-type lectins. This signaling

appeared to be important not only for the recognition of, and

launching defenses against, the bacteria but also for the normal

development of immune system [11], maintenance of intestinal

epithelial homeostasis, protection against gut injury and associated

mortality [12], regulation of mucosal inflammation and mainte-

nance of intestinal epithelial barrier integrity [13,14].

The breakdown in recognition of commensal bacteria by the

host may result in severe inflammatory disease. In some Crohn’s
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disease (CD) patients, for example, mutations in a microbial

product sensor NLR, the NOD2/CARD15 protein, is associated

with the disease susceptibility [15,16]. Bacterial ligand for this

receptor was identified as bacterial muramyl dipeptide [17,18] and

the failure to recognize this ligand in CD patients apparently

initiates the cascade(s) eventually resulting in breach of tolerance

and the launch of an aggressive Th1-skewed response against the

components of normal diet and commensal bacteria [19,20,21,22].

Structurally, pyrin is a 781-residue protein and consists of a 92-

amino acid N-terminal PYRIN (PYD) domain, a B-box zinc

finger, a coiled-coil region and a ,200-amino acid C-terminal

B30.2/rfp/SPRY domain [23], with no LRR that is usually

present in innate immunity receptors. The innate immunity

regulation functions of pyrin are carried out through the

interaction of two domains of the protein, PYRIN and B30.2/

rfp/SPRY, with the proinflammatory caspase-1 activating com-

plex, the inflammasome. The PYRIN domain binds and competes

for ASC (apoptosis-associated speck-like protein containing a

caspase-recruitment domain), an inflammasome component, thus

decreasing its availability for the cryopyrin/NALP3/CIAS1

inflammasome. This decreases caspase-1 activation and pro-

interleukin-1b processing and secretion thus lessening the extent of

the inflammatory response [24]. The mutational hotspot in FMF,

however, is located in the C-terminal B30.2/rfp/SPRY domain,

which modulates the inflammatory response through the interac-

tion with several components of the inflammasome. In addition to

interaction with cryopyrin/NALP3/CIAS1, it interacts directly

with caspase-1 and its substrate pro-IL-1b [25,26]. The net effect

of these interactions is the suppression of IL-1b activation and

block of inflammation. It was suggested that the heightened IL-1b
responsiveness could be a factor selecting for mutations in the

MEFV gene [25]. Taking into consideration the overall role of

pyrin as a modulator/suppressor of the inflammatory response,

another factor contributing to the autoinflammatory nature of the

disease could be the reduced MEFV messenger RNA expression in

FMF [27]. First, it may contribute to the lower titer of pyrin and its

PYRIN domain molecules in the cell thus making more ASC

molecules available to initiate caspase-1 activation. Second, the

reduced concentration of pyrin and therefore of its B30.2/rfp/

SPRY domain, which, in addition, is mutated to the loss of

caspase-1 suppressor function in most of FMF cases, may provoke

easier triggering the inflammation cascade through caspase-1

activation. Thus, both consequences of MEFV mutations may lead

to the heightened responsiveness of cryopyrin/NALP3/CIAS1,

which can be oligomerized and activated in response to a very

diverse range of ligands such as bacterial muramyl dipeptide,

ATP, toxins, bacterial and viral RNA, small antiviral compounds,

Staphylococcus, Listeria, and uric acid crystals as well as by low

intracellular potassium concentration [28–33]. While these exo-

and endogenous stimuli are not perceived as danger signals or are

efficiently suppressed by the normal innate immunity, the

facilitated oligomerization of the cryopyrin/NALP3/CIAS1,

which is not adequately suppressed by the mutated pyrin in

FMF, may be the underlying cause in this disease, resulting in

excessive pro-caspase-1 and pro-IL1b processing. Indeed, mono-

cytes from FMF patients in remission fail to induce LPS

homologous tolerance and exhibit heightened sensitivity to

bacterial endotoxin [34], one of the important activators of the

cryopyrin/NALP3/CIAS1 inflammasome [35].

We hypothesized therefore that the neutrophils, monocytes and

dendritic cells in the lamina propria of FMF patients may exhibit

heightened sensitivity to the physiologically normal concentrations

of bacterial ligands entering from the gut lumen and may provoke

the episodes of acute inflammation as well as contribute to the

chronic subclinical inflammation in remission. One of the

consequences of such continuous stimulation of the innate

immunity resulting in inflammation may be the priming of

adaptive immune responses directed towards the antigens of gut

commensal bacteria. To test this, we examined the systemic

immune reactivity directed against gut commensal bacteria in the

sera of FMF patients and healthy control subjects. We found a

substantially increased IgG reactivity against multiple antigens of

common gut bacteria in FMF. Using the serological expression

cloning approach we also identified bacterial antigens that are

involved in these immune reactions. The antigens were from the

variety of gut commensals, mostly from Bacteroides and Parabacter-

oides species.

Materials and Methods

Subjects and sampling
Thirteen FMF patients (aged from 14 to 50 years old, mean age

– 24.3 years) and 11 healthy volunteers (aged from 24 to 52 years

old, mean age – 32.4 years) were enrolled in this study (Table 1).

Blood serum and fecal samples from FMF patients were obtained

from the Department of Gastroenterology and FMF at the

Medical Centre Armenia in Yerevan, Armenia. The clinical

diagnosis of FMF was based on Tel-Hashomer criteria [36] and

genetic confirmation of the MEFV mutation carrier status was

performed at the Centre of Medical Genetics in Yerevan,

Armenia. Control group consisted of healthy volunteers without

the family history of FMF. Except colchicine, none of the study

subjects were taking any other medication at least three months

prior sampling. All participants were informed about the study

aims and gave their consent to participate in it. The corresponding

protocols were approved by the local ethical committee at the

Institute of Molecular Biology (IMB).

Blood samples were collected from all FMF patients and healthy

subjects, and fecal samples from 6 FMF patients and 3 healthy

controls (Table 1). The blood samples were centrifuged and cell-

free supernatants were stored at 225uC until analyzed.

Determination of systemic immune responses against
gut bacteria

Isolation and identification of gut bacteria. Fresh fecal

samples were collected from three FMF patients in remission

period (FMF155 (R), FMF177 (R), and FMF179 (R)) and one

healthy control (C 15) (Table 1). Fecal samples were placed in

sterile bottles and processed within one hour after collection.

Approximately 0.9 g of a fecal sample was serially diluted in 0.9%

NaCl and 100 ml aliquots were spread on plates with selective and

nonselective media: Wilkins-Chalgren agar, Schaedler agar,

Bacteroides-Bile-Esculin agar, Blaurock agar, Reinforced-

Clostridial agar, MRS agar, Endo agar, and Sabouraud Maltose

agar. All anaerobic strains on the anaerobic selective media were

incubated in an anaerobic chamber with a 10% CO2 and 90% N2

mix at 37uC. Plates with media for aerobic strains were incubated

aerobically for 24–48 h at 37uC. A total of 120 isolates were

obtained, the identity of bacterial strains obtained after

purification was verified by Gram staining, microscopy, and

sequencing of the 16S rRNA genes.

Colony PCR was applied to amplify the 16S rRNA gene

directly from bacterial colonies (one-quarter of a one-mm colony)

using the set of bacterial primers 27F (59-AGAGTTT-

GATCCTGGCTCAG -39, positions 8 to 27 in the Escherichia coli

16S rRNA gene) and 1492R (59-ACGGCTACCTTGTTAC-

GACTT-39; positions 1510 to 1492 in the E. coli gene) [37]. The

GoTaq PCR kit (Promega, UK) was used for amplification, with

Gut Bacteria Antibodies in FMF
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10.0 pmol of each primer. PCR was performed as follows: one

cycle of 95uC for 7 min, followed by 30 cycles of denaturation at

95uC for 30 sec, annealing at 57uC for 30 sec and elongation at

72uC for 2 min, with a final extension at 72uC for 10 min. The

resulting amplicons were purified using a Wizard SV Gel and

PCR Clean-Up System (Promega, UK), according to the

manufacturer’s instructions. PCR products were analyzed by

electrophoresis on a 1% agarose gel. Sequencing primers used

were: 519F (59-CAGCAGCCGCGGTAATAC-39, E. coli positions

519 to 536), 519R (59-GTATTACCGCGGCTGCTG-39, posi-

tions 536 to 519), 926F (59-AAACTCAAAGGAATTGACGG-39,

positions 907 to 926), 926R (59-CCGTCAATTCCTTT-

GAGTTT-39; positions 926 to 907) [38], and the previously

described 27F and 1492R. Sequences were read on an automated

Beckman sequencer (Beckman, UK) and assembled with the

ChromasPro v1.33 program. The almost complete 16S rRNA

gene sequences were searched against the GenBank entries using

on-line BLAST (http://www.ncbi.nlm.nih.gov/blast). Sequences

with more than 99% similarity to the validly described taxa were

considered as the same species/phylotypes.

Measurement of bacterial specific IgG and IgA antibodies

in serum. The level of antibodies in the serum that react with

bacteria was determined by a sandwich enzyme-linked

immunosorbent assay (ELISA). Briefly, to prepare the bacterial

lysates for ELISA the overnight colonies were scraped off from the

surface of agar media and resuspended in 0.5 ml of cold

carbonate-bicarbonate buffer (pH 9.6). The bacterial suspension

was homogenized by a mechanical attrition procedure using

Lysing Matrix E (MP Biomedicals, UK) in a mini-bead beater

(FastPrep FP120) for 40 seconds. The debris was removed by

5 min centrifugation at 14,0006g and the supernatant was used as

the coating antigen in ELISA assay. To ensure the reproducibility

of ELISA, the protein concentration in bacterial lysates was

determined using a standard Bicinchoninic acid (BCA) protein

assay (Pierce, UK) and adjusted to 0.5 mg/ml.

For the assay, the cell-free bacterial extracts (0.5 mg of total

protein per well) were subsequently coated onto a 96-well

microtiter plate (Immulon 4 HBX, flat bottom) and kept at 4uC
overnight. The plate then was washed with PBS containing 0.05%

Tween 20 (PBST), and then blocked with 1% BSA in PBS for 1 h

at room temperature. The blood serum samples were serially

diluted in PBS (1:500, 1:1000, 1:2000, and 1:4000) and loaded

onto the plate. All four dilutions against a single bacterial lysate

were run on the same plate to minimize plate-to-plate variations.

After incubation for 2 h at room temperature, the plate was

washed and peroxidase-conjugated goat anti-human IgG

(1:12000) antibody (Sigma-Aldrich, UK) in PBS was added to

each well. The plate was then left for 1 h at room temperature,

washed, and the tetramethyl-benzidine (TMB) liquid substrate for

ELISA (Sigma-Aldrich, UK) was added. Color development was

allowed for 20 min in the dark and then stopped. The absorbance

in each well was measured at 450 and 630 nm using a plate

reader. The OD data were imported into the Excel software and

the serum titers towards a given bacterial lysate were calculated

based on an arbitrary ELISA OD cut-off value that targeted the

linear areas of OD vs. dilution curves.

The evaluation of specific IgA was performed using sandwich

ELISA similarly to IgG determination until the secondary

antibody addition step. At this point, the goat anti-human IgA

(1:2000) antibody (Sigma-Aldrich, UK) in PBS was added and

incubated for 1 h, again washed and anti-goat IgG (1:1000) biotin

conjugated antibody (Sigma-Aldrich, UK) was loaded for 1 h.

Plate was washed before the addition of extravidin-peroxidase

(Sigma-Aldrich, UK) diluted 1:1000 in PBS and incubated for a

further 1 h at room temperature. The addition of substrate, OD

measurement, and titer calculation were performed as described

above.

Measurement of total Ig classes (IgG, IgA, and IgM) and

total IgG in serum. The evaluation of total antibody classes

(IgG, IgA, and IgM) was performed by an indirect ELISA. Serum

samples were serially diluted (1:5000, 1:10000, 1:20000, 1:40000,

1:800000, 1:160000, 1:320000 and 1:640000 dilution), 100 ml of

each dilution was applied per well of a 96-well microtiter plate

(Immulon 4HBX, flat bottom) and kept overnight at 4uC. Plate

was washed with PBST and blocked with 1% BSA in PBS for 1 h

at room temperature. The plate was washed and peroxidase-

conjugated goat anti-human polyvalent immunoglobulins (IgG,

IgA, and IgM) (1:10000) or peroxidase-conjugated goat anti-

human IgG (1:12000) antibody (Sigma-Aldrich, UK) in PBS was

added to each well for 1 h. The addition of substrate, OD

measurement, and titer determination were performed as

described above.

Immunoblotting. SDS-PAGE separation of bacterial

proteins was performed by using 9% acrylamide minigels under

denaturing conditions. Cell-free bacterial extracts were dissolved

in 26Laemmli sample buffer (Sigma-Aldrich, UK) and heated for

Table 1. Subjects and analytical methods applied.

Subjects Gender Colchicine therapy Analysis applied

FMF87 (R)* F 2 SE{; E{{; W{{{

FMF107 (R) M 2 SE; E; W

FMF155 (R) M 2 SE; E; W

FMF156 (R) F + SE; E; W

FMF176 (R) M + E

FMF177 (R) M + E; W

FMF179 (R) M + E; W

FMF181 (R) M + E; W

FMF183 (R) M + E

FMF172 (A) ** M 2 E

FMF186 (A) M + E; W

FMF187 (A) F + E

FMF190 (A) M + E; W

C4*** F SE; E; W

C6 F E

Cm13 M SE; E

C15 F E; W

C104 M E

C105 F E

C106 F E

C108 F E; W

C109 M E

C110 M E; W

C111 M E; W

*– FMF patients in remission period.
**– FMF patients in attack period.
***– Healthy controls.
{– Serological expression cloning analysis.
{{– ELISA.
{{{– Western blot analysis.
doi:10.1371/journal.pone.0003172.t001
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10 min at 100uC. Samples were run along with the biotinylated

SDS-6B molecular weight standards (Sigma-Aldrich, UK).

Proteins were transferred to a polyvinylidine fluoride membrane

(Immobilon-P, Millipore, UK) in a tank system. The membranes

were blocked in PBS containing 1% BSA for 1 h, washed with

PBS, and incubated with the human serum diluted to 1:3000 in

PBS with 1% BSA at 4uC overnight. After the wash with PBS, the

membranes were incubated with peroxidase-conjugated goat anti-

human polyvalent immunoglobulins (IgG, IgA, and IgM) diluted

to 1:10000 in PBS with 1% BSA for 1 h at room temperature. The

membranes were washed again and extravidine-peroxidase was

added and membranes were further incubated for 1 h. After the

PBS wash, the reaction was developed by adding diaminobenzi-

dine reagent and incubating for 30 min.

The same procedure was performed with the peroxidase-

conjugated goat anti-human IgG (Sigma-Aldrich, UK) diluted to

1:12000 in PBS with 1% BSA.

Serological expression cloning
Isolation of genomic DNA from fecal specimens. Total

DNA was isolated directly from the fecal samples obtained from

four FMF patients and two healthy controls (Table 1). The

samples were vigorously resuspended in PBS (1:9) and centrifuged

at low speed (7006g) to remove debris. The supernatant was

centrifuged at 10,0006g for 10 min to collect bacteria. Bacterial

pellets were washed in PBS and TES buffers, inactivated at 80uC
and stored lyophilized until DNA isolation. Genomic DNA was

isolated with Wizard Genomic DNA purification kit (Promega,

UK). The second DNA purification step was done by TE-

saturated phenol:chloroform:isoamyl alcohol (25:24:1) extraction

and ethanol precipitation. Finally, DNA was purified by passing

through the SPIN Column-1000 (Sigma, UK).

Genomic expression library construction. A detailed

description of library construction can be found elsewhere [39].

Libraries were generated using the Lambda Zap II predigested /

EcoR I/CIAP – treated vector kit (Stratagene, UK). In brief, total

genomic DNA was digested with EcoRI restriction enzyme

(Promega, UK) and approximately 0.25 mg of fragments ranging

from 0.7 kb to 3 kb were ligated to 1.0 mg of the vector. The

ligation mix was packed using Gigapack III Gold packaging

extract (Stratagene, UK) and the plaque-forming units (PFU) of

packaging reaction were titrated following the manufacturer’s

instructions. Blue or white colony color selection was used to

distinguish between non-recombinants and recombinants E. coli

clones using 5-bromo-4-chloro-3-indolyl-b-D-galactopy-ranoside

(X-Gal) on Luria-Bertani (LB) agar plates. Protein expression was

induced with 10 mM isopropyl b-thiogalactopyranoside (IPTG).

Expression screening. Immunological screening of the

libraries was carried out using the pool of corresponding serum

samples (Table 1). Immunoreactive proteins were screened on the

plates with approximately 66105 PFU of the unamplified fecal

bacteria expression lambda library. Each library was plated on 150-

mm agar plates with E. coli XL1-Blue MRF’ host cells and incubated

at 37uC until plaques formed. Immobilon-P transfer membranes

(Millipore, UK) pre-wet with 10 mM IPTG were placed on the

plates, which were then incubated overnight at 37uC. Filters were

removed and washed three times with PBS containing 0.1% Tween

20 (PBST) (Sigma-Aldrich, UK), blocked with 1% BSA in PBST, and

washed three times with PBST. The filters then were incubated

overnight with E. coli lysate-depleted sera of investigated subjects

(1:500 dilution in PBST), washed three times with PBST, and

incubated with a anti-human polyvalent immunoglobulins (IgG, IgA,

and IgM) peroxidase-conjugated secondary antibody (Sigma-Aldrich,

UK) at a dilution of 1:10000 with PBST for 1 h. Membranes were

finally washed and visualized with 3,39,5,59-tetramethyl-benzidine

(TMB) (Sigma-Aldrich, UK). Reactive plaques were then isolated and

subjected to the second and third rounds of purification.

The inserts were recovered by excision using Exassist helper

phage according to the manufacturer’s instructions (Stratagene,

UK) and introduced into E. coli SOLR. The resulting recombinant

plasmid DNA was sequenced on an automated Beckman

sequencer (Beckman, UK) using the M13 forward and reverse

primers as well as by primer walking using custom primers.

Sequences were assembled as described before for the 16S rRNA

gene sequences. Nucleotide and translated amino acid sequences

were searched using on-line BLAST (http://www.ncbi.nlm.nih.

gov/blast), PFAM (http://www.sanger.ac.uk/Software/Pfam) and

PSORT (http://psort.nibb.ac.jp) programs.

Statistical analyses
Statistical analyses were carried out using the Statsoft Statistica

package (www.statsoft.com). Student’s t-test for independent

samples was applied to determine statistical significance between

the mean values of two study groups. P-values below 0.05 were

considered statistically significant.

Accession numbers
Nucleotide sequences generated during this work have been

submitted to GenBank under accession numbers EU722733–

EU722747.

Results

Representatives of gut commensal bacteria
From a total of 120 gut bacterial isolates, 15 were selected for

immunological analyses. These bacteria belonged to the Bacteroides,

Parabacteroides, Enterococcus, Escherichia and Lactobacillus genera

(Tables 2, 3, 4, 5). Thus the isolates covered a range of typical

gut commensal bacteria from the Bacteroidetes, Firmicutes and

Proteobacteria phyla.

Level of total systemic antibodies
Irrespectively of the disease state, the titer of polyvalent

antibodies (IgG, IgA, and IgM) in the serum of FMF patients

exceeded that of the healthy subjects by 42%. Among them, the

total IgG titer in FMF was elevated by 35% compared to control.

Both changes were statistically not significant (data not shown).

Commensal bacteria-specific antibodies
The level of IgG and IgA towards the commensal bacterial

antigens was evaluated by the reactivity of the sera of FMF

patients and healthy controls with the corresponding bacterial

lysates. For this, total lysates of pure bacterial cultures were coated

onto a 96-well plate and probed with the corresponding sera as

described in Materials and Methods.

In respect to the disease stage (attack vs. remission) there was

little difference in specific IgG or IgA titers directed against the

antigens of all commensal bacteria investigated. The differences

included the increase of the IgG titer for Bacteroides sp. strain and

the decrease of it for B. fragilis and Escherichia sp. strain in attack

compared to remission (Table 2). The IgA titers towards the two

strains of Parabacteroides were lower in attack than in remission

(Table 3). The highest difference in specific IgG titers was obtained

in the case of Escherichia and Parabacteroides antigens, with

respectively 2.2 to 3.2-fold and 2.5 to 3.3-fold increase of IgG in

the sera of FMF patients in comparison with control. Very similar

results were obtained using the antigens of strains belonging to the

Bacteroides genus, where the level of IgG against these bacteria was

Gut Bacteria Antibodies in FMF
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Table 2. Titers of IgG reacting with antigens of commensal bacteria in three investigated groups.

Phylum (genus) Strain Antibody titers Mean6SD
OD cut-off
value*

Control FMF patients

Remission Attack

Bacteroidetes (Bacteriodes) Bacteroides ovatus 890.96433.1 (11)** 2587.561670.0{{ (8) 2487.561750.8{{ (4) 0.8

Bacteroides sp. 1072.76593.8 (11) 1877.861386.5 (9) 2616.761695.6{ (3) 1.0

Bacteroides dorei 2347.261108.2 (9) 3355.56931.3{ (9) 3525.06721.4 (4) 1.7

Bacteroides thetaiotaomicron 1250.06490.8 (11) 2155.561250.9{ (9) 2356.261213.5{ (4) 0.63

Bacteroides finegoldii 1145.56743.2 (11) 2047.261540.6 (9) 2041.761739.7 (3) 1.2

Bacteroides fragilis 800.06273.4 (11) 2177.861387.8{{ (9) 1306.261300.7 (4) 0.9

Bacteroides uniformis 827.36383.8 (11) 1725.061107.0{ (9) 1737.561132.4{ (4) 0.7

Bacteroidetes
(Parabacteriodes)

Parabacteroides distasonis 658.36161.5 (9) 2180.561148.8{{{ (9) 2383.361207.4{{{ (3) 2.7

Parabacteroides merdae 995.56363.3 (11) 2508.361241.3{{{ (9) 2393.761069.7{{ (4) 0.9

Proteobacteria (Escherichia) Escherichia sp. 954.56261.4 (11) 2136.161606.8{ (9) 1568.761628.2 (4) 1.22

Escherichia coli 742.56324.1 (10) 2358.361051.6{{{ (9) 2656.261592.2{{ (4) 1.52

Firmicutes (Lactobacillus) Lactobacillus delbrueckii 1297.761016.8 (11) 1655.561281.0 (9) 1862.561593.9 (4) 1.4

Lactobacillus reuteri 1675.061280.7 (11) 2322.261492.6 (9) 2587.561637.3 (4) 0.8

Firmicutes (Enterococcus) Enterococcus hirae 1034.16898.7 (11) 2097.261391.3{ (9) 1862.561520.6 (4) 1.2

Enterococcus faecium 975.06881.1 (11) 2380.561386.0{ (9) 2075.061419.6 (4) 1.22

*ELISA OD cut-off value used to determine the titer of serum.
**The values in parentheses are the numbers of subjects studied.
{p,0.05 as compared to healthy controls.
{{p,0.01 as compared to healthy controls.
{{{p,0.001 as compared to healthy controls.
doi:10.1371/journal.pone.0003172.t002

Table 3. Titers of IgA reacting with antigens of commensal bacteria in three investigated groups.

Phylum (genus) Strain Antibody titers Mean6SD
OD cut-off
value*

Control FMF patients

Remission Attack

Bacteroidetes (Bacteriodes) Bacteroides ovatus 1290.96772.8 (11)** 1938.961366.1 (9) 1937.561340.6 (4) 0.6

Bacteroides sp. 2018.261024.0 (11) 2763.96797.7 (9) 2306.261622.3 (4) 2.2

Bacteroides dorei 1720.561322.0 (11) 2108.361368.1 (9) 2531.261357.3 (4) 1.2

Bacteroides thetaiotaomicron 1040.96550.3 (11) 1911.161396.5 (9) 1787.561555.8 (4) 0.9

Bacteroides fragilis 2040.961114.6 (11) 2563.961072.4 (9) 1881.261346.5 (4) 0.6

Bacteroides uniformis 1609.16737.5 (11) 2102.861412.9 (9) 2181.261339.1 (4) 1.26

Bacteroidetes
(Parabacteriodes)

Parabacteroides distasonis 1106.86642.2 (11) 2138.961405.3{ (9) 1318.76744.2 (4) 0.75

Parabacteroides merdae 984.16304.4 (11) 1888.961302.1{ (9) 1506.261138.4 (4) 0.9

Proteobacteria
(Escherichia)

Escherichia sp. 1577.36855.0 (11) 2488.961490.4 (9) 1212.56804.5 (4) 0.8

Escherichia coli 1265.96609.7 (11) 2002.861380.7 (9) 2237.561554.6 (4) 0.5

Firmicutes (Lactobacillus) Lactobacillus delbrueckii 1668.261263.8 (11) 1838.961232.6 (9) 14506144.5 (4) 0.9

Lactobacillus reuteri 1634.161215.3 (11) 2180.66968.1 (9) 1941.761784.7 (3) 0.8

Firmicutes (Enterococcus) Enterococcus hirae 1520.56857.2 (11) 1961.161212.1 (9) 1768.761188.0 (4) 0.5

*ELISA OD cut-off value used to determine the titer of serum.
**The values in parentheses are the numbers of subjects studied.
{p,0.05 as compared to healthy controls.
doi:10.1371/journal.pone.0003172.t003
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approximately from 1.4 to 2.9-fold higher in FMF patients than in

control (Table 2). Measurement of IgG titers against Enterococcus

bacteria revealed significant elevation of specific antibodies in

FMF subjects, namely in E. faecium and E. hirae. However, there

was no difference in Lactobacillus-specific systemic IgG levels in

healthy and diseased subjects (Table 2). It is also noteworthy that

in healthy subjects the variation of specific titers was quite low,

while in the diseased subjects very broad fluctuations of the

corresponding parameters were observed.

In contrast to IgG, there was essentially no difference in the

level of bacteria-specific IgA in the blood sera of FMF patients and

healthy subjects (Table 3). Only the titers of IgA directed against

the strains of Parabacteroides were elevated in the sera of FMF

patients compared to control (p,0.05).

In respect to colchicine treatment, no significant changes in IgG

titers between the treated and untreated patients were observed

(Table 4). On the other hand, systemic IgA titers against the

antigens of commensal bacteria were found to be significantly

higher in the sera of colchicine-free FMF patients in comparison

with the cohort undergoing the therapy, except B. uniformis, B. dorei

and L. reuteri (Table 5). In the case of the last two bacteria, though,

there was no statistically significant difference with the healthy

cohort either. The level of systemic IgA directed against

commensal bacteria was very similar between the colchicine-

treated FMF patients and control, suggesting the normalization of

this parameter following the colchicine therapy.

Western blot
Bacterial lysates were run on SDS-PAGE, transferred to a

membrane and probed with the sera of FMF patients and healthy

control subjects, the representative examples are shown in Fig. 1.

Since the protein concentration applied to each lane was

normalized, the presence of more intense bands on the gels

probed with the sera of FMF patients in comparison with control

confirms the earlier ELISA findings, that is the blood sera of

diseased subjects contains higher concentrations of bacteria-

specific antibodies. The Western blot analysis also demonstrated

that there are no isolated major bacterial antigens against which

the host mounts humoral response. The responses were rather

non-specific and included multiple antigens of different commen-

sal bacteria. The most intense responses were seen against the

antigens of B. ovatus, P. distasonis, E. coli, and Bacteroides sp. but the

reactivity against the antigens of Lactobacillus and Enterococcus was

less pronounced (Fig. 1A and 1C), thus confirming our earlier

ELISA findings. The response against the B. ovatus lysate showed

very strong reactivity against numerous antigens, with multiple

epitopes, while in the case of P. distasonis, E. coli and Bacteroides sp.

the antibodies reacted with fewer major antigens. Interestingly, in

some cases the blood sera of healthy control subjects reacted with

the same bacterial antigens, although the reactivity was generally

very low (Fig. 1B and 1D).

Serological expression cloning
With the aim of identifying the antigens of commensal gut

bacteria that elicit systemic response in FMF we adopted a

serological expression cloning approach. For this, we constructed

six metagenomic lambda expression libraries from feces of four

FMF patients and two healthy subjects and screened them with the

corresponding host sera (see Materials and Methods). The libraries

from healthy subjects produced no positive clones and all 35 clones

Table 4. Effect of colchicine therapy on IgG titers.

Phylum (genus) Strain Antibody titers Mean6SD
OD cut-off
value*

Control FMF patients

Colchicine treated Colchicine untreated

Bacteroidetes (Bacteriodes) Bacteroides ovatus 890.96433.1 (11)** 1981.261681.2{ (8) 3700.06600.0{{{ (4) 0.8

Bacteroides sp. 1072.76593.8 (11) 2025.061465.1 (9) 2175.061602.1 (3) 1.0

Bacteroides dorei 2347.261108.2 (9) 3222.26961.1 (9) 3825.06247.5{ (4) 1.7

Bacteroides thetaiotaomicron 1250.06490.8 (11) 1991.761227.1 (9) 2725.061081.9{{ (4) 0.63

Bacteroides finegoldii 1145.56743.2 (11) 1888.961606.3 (9) 2516.761325.1{ (3) 1.2

Bacteroides fragilis 800.06273.4 (11) 1913.961518.0{ (9) 1900.061176.3{{ (4) 0.9

Bacteroides uniformis 827.36383.8 (11) 1400.06906.3 (9) 2468.761144.8{{{ (4) 0.7

Bacteroidetes
(Parabacteriodes)

Parabacteroides distasonis 658.36161.5 (9) 2461.161201.4{{{ (9) 1541.76240.2{{{ (3) 2.7

Parabacteroides merdae 995.56363.3 (11) 2169.461171.3{{ (9) 3156.26841.2{{{ (4) 0.9

Proteobacteria (Escherichia) Escherichia sp. 954.56261.4 (11) 1736.161561.9 (9) 2468.761682.9{{ (4) 1.22

Escherichia coli 742.56324.1 (10) 2602.861326.1{{{ (9) 2106.26805.8{{{ (4) 1.52

Firmicutes (Lactobacillus) Lactobacillus delbrueckii 1297.761016.8 (11) 1500.061330.4 (9) 2212.561329.5 (4) 1.4

Lactobacillus reuteri 1675.061280.7 (11) 2005.661393.7 (9) 3300.061400.0{ (4) 0.8

Firmicutes (Enterococcus) Enterococcus hirae 1034.16898.7 (11) 1961.161469.1 (9) 2168.761315.5 (4) 1.2

Enterococcus faecium 975.06881.1 (11) 2005.661378.6 (9) 2918.761177.6{{ (4) 1.22

*ELISA OD cut-off value used to determine the titer of serum.
**The values in parentheses are the numbers of subjects studied.
{p,0.05 as compared to healthy controls.
{{p,0.01 as compared to healthy controls.
{{{p,0.001 as compared to healthy controls.
doi:10.1371/journal.pone.0003172.t004
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isolated were from the libraries of FMF patients (six clones from

FMF107, seven clones from FMF155, nine clones from FMF156,

and 13 clones from FMF87) (supplementary material, Table S1).

The majority of ORFs in these clones had the closest matches with

proteins from intestinal Bacteroides and Parabacteroides species. Most

of the ORF-encoded proteins were isolated on a single occasion

thus confirming the results of Western blot analysis suggesting that

the immune response is directed against a broad range of gut

commensal bacterial antigens. The most notable exception was an

ORF sharing 28–33% identity with the hypothetical cell surface

protein precursor from Lactobacillus sakei, which was isolated in

eight independent occasions but from the same patient, FMF87 (in

clones 18, 20, 21, 28, 30, 31, 36, and 38). Since the libraries were

not amplified before the screening, this suggests either the

overrepresentation of this gene in the corresponding gut

metagenome or possibly an enhanced translocation of this antigen

through the gut epithelial barrier. The metagenomic DNA

fragment encoding an ORF with 71% similarity to the

hypothetical protein PARMER_04074 from Parabacteroides merdae

was encountered in four occasions, also only in a single patient,

FMF155. Clones 53 and 66 from patient FMF156 both contained

the identical insert encoding a protein with 82% of similarity to

chaperonin GroEL from Bacteroides vulgatus. Two other clones from

the same patient, 64 and 65, were also identical and encoded a

peptide with 54% similarity to the hypothetical protein from

Bacteroides fragilis. The remaining 20 clones encoded ORFs that

were encountered only once during the analysis. One of the ORFs,

ORF1 from clone 55 came with an unexpectedly high similarity to

the unnamed protein product of Homo sapiens (Table S1). More

careful inspection with human genome databases, however, failed

to confirm that the protein is indeed of the human origin, thus the

GenBank entry BAC86097 most likely is an artifact of cloning.

Domain structure analysis of translated ORF1 from clone 55

suggested that it is a putative transmembrane CorC/HlyC family

transporter protein, with highest similarity to the protein from

Bacteroides coprocola.

Discussion

In this work, we demonstrated the elevated level of systemic

antibody response towards the antigens of common gut commensal

bacteria in autoinflammatory condition. Under the normal

circumstances, it is unusual for the systemic adaptive immunity to

be primed against the intestinal microbiota and we detected no such

responses in healthy subjects. The mechanisms that protect the host

from bacterial translocation in the gut include passive physical

barriers such the mucus layer that protects the epithelium and traps

the bacteria, as well as a number of more pro-active cellular and

humoral mechanisms. Defects in any of these defense systems result

in severe abnormalities and disease. For example, Muc2-deficient

mice spontaneously develop colitis [40] while Ig-deficient mice show

hyperplasia of intestinal lymphoid follicles and the overgrowth of a

segmented filamentous bacterium [41]. In humans, mutations in

NOD2/CARD15 are associated with the decrease in alpha-

defensin expression [42], which may predispose an individual to

CD. In CD, bacterial translocation, with subsequent generation of

strong systemic response is paramount and involves a generalized

increase of IgG against commensal intestinal microbiota [22].

In our work, to establish whether an autoinflammatory

condition such as FMF also generates a substantial systemic

Table 5. Effect of colchicine therapy on IgA titers.

Phylum (genus) Strain Antibody titers Mean6SD
OD cut-off
value*

Control FMF patients

Colchicine treated Colchicine untreated

Bacteroidetes (Bacteriodes) Bacteroides ovatus 1290.96772.8 (11)** 1316.76938.4## (9) 3337.56809.7{{{## (4) 0.6

Bacteroides sp. 2018.261024.0 (11) 2233.361046.2# (9) 3500.06349.4{# (4) 2.2

Bacteroides dorei 1720.561322.0 (11) 1886.161141.4 (9) 3031.261521.1 (4) 1.2

Bacteroides thetaiotaomicron 1040.96550.3 (11) 1266.761047.2## (9) 3237.561060.9{{{## (4) 0.9

Bacteroides fragilis 2040.961114.6 (11) 1825.06922.2## (9) 3543.76561.4{## (4) 0.6

Bacteroides uniformis 1609.16737.5 (11) 1744.46981.4 (9) 2987.561768.4{ (4) 1.26

Bacteroidetes
(Parabacteriodes)

Parabacteroides distasonis 1106.86642.2 (11) 1352.86857.3# (9) 3087.561305.3{{# (4) 0.75

Parabacteroides merdae 984.16304.4 (11) 1250.06823.5# (9) 2943.761223.1{{{# (4) 0.9

Proteobacteria
(Escherichia)

Escherichia sp. 1577.36855.0 (11) 1494.461118.3# (9) 3450.061100.0{{# (4) 0.8

Escherichia coli 1265.96609.7 (11) 1405.661047.2## (9) 3581.26507.2{{{## (4) 0.5

Firmicutes (Lactobacillus) Lactobacillus delbrueckii 1668.261263.8 (11) 1280.66892.7# (9) 2706.261224.5# (4) 0.9

Lactobacillus reuteri 1634.161215.3 (11) 2027.861276.7 (9) 2400.06567.9 (3) 0.8

Firmicutes (Enterococcus) Enterococcus hirae 1520.56857.2 (11) 1463.96823.5# (9) 2887.561297.7{# (4) 0.5

*ELISA OD cut-off value used to determine the titer of serum.
**The values in parentheses are the numbers of subjects studied.
{p,0.05 as compared to healthy controls.
{{p,0.01 as compared to healthy controls.
{{{p,0.001 as compared to healthy controls.
#p,0.05 colchicine treated vs. colchicine untreated.
##p,0.01 colchicine treated vs. colchicine untreated.
###p,0.001 colchicine treated vs. colchicine untreated.
doi:10.1371/journal.pone.0003172.t005
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response against the commensal gut microbiota, we initially

isolated and identified a number of intestinal bacteria from three

FMF patients and a healthy control subject. The rich media and

anaerobic conditions used for isolation allowed us to isolate the

predominant intestinal bacteria while selective media was used to

represent a broader selection of bacterial diversity. According to

sequence analysis of the 16S rRNA genes, the most abundant

bacteria isolated by culturing appeared to be the species of

Bacteroides, which coincides with gut molecular diversity analysis

[43]. Very few representatives of the Firmicutes were isolated,

mostly limited to enterococci and lactobacilli. The selected 15

isolates represented the three main phyla (Bacteroidetes, Firmicutes,

and Proteobacteria) and five genera (Bacteroides, Parabacteroides,

Escherichia, Enteroccocus, and Lactobacillus) thus covering a broad

range diversity to screen for possible antigens originating from gut

commensal bacteria.

The cell-free lysates of these bacteria were probed with the

blood sera to establish whether the adaptive immune system of

FMF patients and healthy control subjects is different in terms of

specific antibody titers directed against the gut microbiota. In

FMF patients, we observed exaggerated systemic IgG response

primed against the harmless intestinal bacteria; the highest titers

were against the species belonging to the Parabacteroides, Bacteroides,

Escherichia and Enterococcus genera. At the same time, the reactivity

of systemic IgA antibodies against the epitopes of selected bacteria

was not different between FMF patients and control. Need to say,

however, that the majority IgA synthesis is confined to lamina

propria, where it is produced in quantities that exceeds the sum of

all other immunoglobulin isotypes combined [10]. In contrast to

secretory IgA at mucosal surfaces, serum IgA, however, is a potent

trigger of (pro)-inflammatory activity upon binding to the myeloid

IgA receptor, FcaR [44]. We did not detect any substantial

increase of systemic IgA levels in FMF patients in comparison with

control subjects; in this regard, mucosal IgA seems an attractive

target to study, especially in the light of its role in controlling the

composition of gut microbiota [41]. We also assessed the influence

of colchicine treatment of FMF patients on systemic immuno-

globulin isotypes and found its ‘‘normalizing’’ effect on the level of

serum IgA that is directed against the antigens of commensal gut

bacteria. Historically, the antimitotic drug colchicine has been,

and still is, extensively used for the management of consequences

of gout and pseudogout, that is, of inflammation attacks [45],

which are caused by uric acid crystals that activate the NALP3

inflammasome [32]. In FMF, as we hypothesized before, the

lamina propria neutrophils that carry the mutated version of pyrin

may have the heightened sensitivity of the NALP3 inflammasome

Figure 1. Western blot of bacterial lysates probed with the corresponding sera. A: bacterial lysates probed with the serum of FMF190(A); B
– with C110; C – with FMF87(R); and D – with C111. In A and B: line 1 – B. ovatus, line 2 – P. distasonis, line 3 – Bacteroides sp., line 4 – L. reuteri, line 5 –
E. coli, and line M – biotinylated molecular weight standard mixture SDS-6B (Sigma-Aldrich, UK). In C and D: line 1 – E. hirae, line 2 – L. reuteri, line 3 –
B. ovatus, and line M – biotinylated molecular weight standard mixture SDS-6B (Sigma-Aldrich, UK).
doi:10.1371/journal.pone.0003172.g001
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to the bacterial antigens continuously escaping from the lumen

and thus the inflammasome may be easily activated, even under

the antigen load, which is well tolerated in the norm. Colchicine is

also used for the management of Behcet’s disease and cirrhosis so

is difficult to propose the unifying mechanistic explanation for the

positive effect of colchicine for the diseases with such different

ethiology. Colchicine may interfere with microtubule formation,

thereby affecting mitosis and other microtubule-dependent

functions such as diapedesis [46]. As a consequence of the reduced

mobility, the infiltration of leukocytes to the affected sites may be

impeded, thus reducing the extent of inflammation and tissue

damage. In the case of FMF, its positive effect can also be

explained by the reduction in bacterial translocation through the

gut epithelial barrier as it has been demonstrated for T84 epithelial

cells under the metabolic stress [47]. Reduced translocation of

bacteria and bacterial ligands due to colchicine therapy may halt

the initiation of inflammation by the pyrin-deficient hypersensitive

NALP3 inflammasome present in neutrophils, monocytes and

dendritic cells circulating in the lamina propria of FMF patients.

Western blot results essentially confirmed ELISA data on the

elevated adaptive immunity in FMF patients that is directed

against commensal bacteria. The IgG response against E. coli, P.

distasonis and all Bacteroides strains, especially B. ovatus, was much

higher in FMF patients than in controls. More importantly, this

analysis added another piece in understanding the nature of

adaptive immunity in FMF such as the absence of unique or major

bacterial antigen(s) responsible for priming the adaptive immunity.

The serum antibodies reacted with a wide range of proteins from

different bacteria including B. ovatus, P. distasonis, E. coli and others.

Therefore the systemic response in FMF is not directed against a

specific epitope or bacterium thus excluding the possibility of the

involvement of a specific pathogen in this disease.

With the aim of identifying the nature of these bacterial

antigens, we performed serological expression screening of the gut

metagenomes. The libraries were not amplified prior the screening

to avoid a potential selection of clones. The majority of ORFs was

unique and, unlike the Crohn’s disease [20,21], no single

dominant antigen, which is characteristic for FMF, can be

identified. The best matches were with proteins from intestinal

Bacteroides and Parabacteroides species, which is not surprising since

these bacteria belong to one of the two dominant bacterial phyla in

the intestine, the Bacteroidetes and Firmicutes [43]. There were very

few sequences from the latter phylum, though, exemplified by

ORFs with similarity to proteins from the Lactobacillus, Clostridium,

Dorea and Eubacterium. Interestingly, the antigen with a 28–33%

similarity to the hypothetical surface protein precursor from L.

sakei was cloned from the fecal metagenome of FMF87 patient

eight times, which seems contradict ELISA and Western blot data

that suggested a generally very low reactivity of sera against the

antigens of Lactobacillus species. However, the similarity value is

fairly low and we cannot exclude that this ORF was cloned from

bacteria other than the lactobacilli. Two clones encoded the

ORFs, which translations displayed the best matches with proteins

of the Proteobacteria, in particular, of E. coli. Thus the results of

serological expression study confirmed our ELISA and Western

blot analyses data suggesting that the systemic immune response in

autoinflammatory condition such as FMF is directed mostly

against the multiple antigens of the Bacteroidetes and Proteobacteria.

Despite the numerical prevalence of the Firmicutes in the gut [43],

all three analyses demonstrated very low level of antibodies

directed against, and antigens cloned from, this group of bacteria.

In the other inflammatory condition, CD, it has been suggested

that the majority of bacteria implicated in this disease are the

Firmicutes and the dominant antigen is the bacterial flagellin from

them [20]. At the same time, a recent work suggested that the

markers such as antibodies against flagellins are the surrogate

markers of a more generalized response against the common

intestinal microbiota [22]. In this regard, despite the different

genetics and ethiology, both inflammatory conditions, CD and

FMF, share the same feature as a generalized adaptive response

directed towards gut commensal bacteria.

Under the normal circumstances, adaptive immunity in the gut

is confined and limited mostly to mucosal secretory IgA producing

cells, including the cells that undergo isotype switching at the

mucosal surfaces. Initially, the luminal antigens are sampled by the

Peyer’s patch M cells and DC, then the antigens are processed and

presented to immunocompetent T-cells. The circuit includes the

maturation of gut antigen-primed B and T cells in GALT and

MLN and through the peripheral blood back to lamina propria

following the homing signals. In healthy individuals, the rate of

bacterial translocation, which is defined by bacterial analysis of

intestinal serosa and mesenteric lymph nodes, is 5–10% [48]. This

seems has no any deleterious consequence for the health. In our

healthy subjects the antibody level towards gut commensal

bacteria was generally low and we were unable to clone any

bacterial antigen from the libraries produced from the fecal

samples of two control individuals. Thus in the norm the antigens

of gut commensal microbiota are not exposed to systemic

circulation. It is not clear, however, how the systemic adaptive

immunity becomes primed against these bacteria in FMF patients.

As we hypothesized before, because of the mutated version of

pyrin in FMF, the NALP3 inflammasome in neutrophils,

monocytes and dendritic cells of the lamina propria may be

highly sensitive to exo- and endogenous stimuli and, in particular,

to bacteria/bacterial ligands translocating from the gut lumen.

While these physiologically conventional concentrations of bacte-

ria/bacterial ligands are handled without deleterious consequences

by the normal immune system, in a genetically susceptible host

with the hypersensitive inflammasome it may trigger the IL-1b
cascade. Indeed, the massive influx of polymorphonuclear

leukocytes into the affected tissues is one of the clinical symptoms

of acute FMF (1). The overproduction of nitric oxide by PMN

could be one of the factors compromising the integrity of mucosal

barrier, by directly increasing its permeability and bacterial

translocation [49,50]. Also, in our previous work we observed

extremely high levels of systemic IL-6 in acute FMF, which was

still elevated in remission [6]. This cytokine is essential for the

development of gut barrier dysfunction following injury [51].

These and possibly other factors in FMF may contribute to the

enhanced translocation of commensal gut bacteria resulting in the

increased level of systemic antibodies observed in our work.

Supporting Information

Table S1 Closest matches of ORFs from serologically expressed

clones to database entries. This is a supplementary Table S1,

which describes the closest matches of ORFs from serologically

expressed clones to database entries.

Found at: doi:10.1371/journal.pone.0003172.s001 (0.07 MB

DOC)
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