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Abstract
Graves disease (GD) is an autoimmune disorder with genetic predisposition. The polymorphisms
47A→G (Arg16Gly) and 79C→G (Gln27Glu) of the adrenergic ß-2 receptor (ADRB2) gene in the
5q32 region affect the functional reaction to adrenergic stimulation, which contributes to the
regulation of immunological response. The -367T→C polymorphism within the 5’-leading
regulatory sequence affects ADRB2 transcriptional activity. The aim of the present study was to
investigate whether ADRB2 gene variants are associated with susceptibility to GD. All
polymorphisms were studied in Polish GD patients (n=300) and healthy control subjects without a
family history of autoimmune disorders (n=301). Genotypes were determined by the MassARRAY™
system (Sequenom, San Diego, CA). Gly16 and Gln27 allele frequencies were 61.4% and 55.2%
among healthy controls, almost the same as previously reported in 4441 white participants of a
cardiovascular health study. We found a higher risk of GD in Gln27 carriers (CC or CG genotypes)
than in Glu27 homozygous (GG genotype) participants (OR=1.99, 95% CI: 1.27-3.12, p=0.003,
pcorr=0.03). The frequency of the 79GG protective genotype was significantly smaller in the GD
patients without symptoms of Graves ophthalmopathy compared to controls (10% vs 22%, OR=0.41,
95% CI: 0.234-0.706, p=0.0017, pcorr=0.015). We didn’t find any association of -367T→C or
47A→G genotypes/alleles with Graves disease, however, haplotype analysis has shown a significant
difference in haplotype distribution between patients and controls (the global p=0.001) with increased
-367T/47A/ 79C haplotype frequency in GD patients compared to controls (34% vs 25%, p=0.00073,
pcorr=0.0044). In conclusion, Gln27 carriers (79CC or 79GC genotypes) have increased risk of
Graves disease. Our results suggest that ADRB2 plays a role in susceptibility to Graves disease in
humans.
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Introduction
Graves disease (GD) is an autoimmune disorder with inflammatory cytokine imbalance and
varying degrees of hyperthyroidism and ophthalmopathy (Graves ophthalmopathy, GO). GD
is considered to be a complex trait to which genetic, environmental, and demographic factors
contribute interactively (1). Recent genome-wide searches have provided evidence for linkage
to loci on multiple chromosomes, however the significance of a particular locus has rarely been
confirmed in more than one population (2). Association studies have shown that major
histocompatibility complex (MHC) alleles (3), the cytotoxic T lymphocyte antigen-4
(CTLA-4) gene (4-6) and the lymphoid tyrosine phosphatase (PTPN22/LYP) gene (7) confer
risk for GD. Products from all of those genes are potentially involved in antigen presentation
and T cell recognition. The list of additional candidate genes comprises thyrotropin receptor
(TSHR), CD40, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin (IL)-13,
but their contribution to the susceptibility to GD awaits confirmation.

The adrenergic ß-2 receptor (ADRB2) is a G protein-coupled receptor that mediates the actions
of catecholamines in multiple tissues (8). ADRB2 located on T helper 1 (TH1) cells is an
important immunoregulatory factor which upon activation decreases the level of Th1-specific
cytokines such as IFN-γ, IL-12, TNF-α and IL-1ß, which leads to the over-representation of
TH2 cytokines such as IL-4 and IL-13 and the domination of humoral immune activity (9). In
thyroid autoimmunity, a mixed TH1 and TH2 pattern has been found in GD tissue samples,
however some studies have shown a TH1 response in Hashimoto thyroiditis and TH2 response
in GD (10-13). It was recently reported that both the population of TH1 cells and the ratio of
Th1/Th2 cells were lower in GD and higher in GO as compared to those in controls (14). In
the same study the authors found a positive correlation of Th1 cell percentage and Th1/Th2
cell ratio with clinical activity score (CAS) in GO (14). Thus, the adrenergic ß-2 receptor acting
as selective suppressor of TH1-cellular immunity axis may be a potential candidate contributing
to the development of GD and/or GO. Of note, the ADRB2 gene is located in the 5q32-3 region
linked to GD in three linkage studies (15-17).

Several single nucleotide polymorphisms (SNP) have been detected within the ADRB2 gene
intronless sequence and its 5’ upstream regulatory region. In particular, a few of them present
both evidence of functional relevance and a high degree of heterozygosity, which are the basis
for a possible pathophysiological role in the modulation of ‘complex’ traits. The 47A→G
(Arg16Gly, dbSNP125: rs17859732) and the 79C→G (Gln27Glu, dbSNP125: rs17859733)
polymorphisms influence a rate of agonist-induced receptor down-regulation (18-20). The
haplotype within the 5’ upstream regulatory region comprising the -367T→C (dbSNP125:
rs11959427) polymorphism impacts promoter activity and transcription rate (21,22).

The ADRB2 gene SNPs have been reported to be associated with susceptibility to some
inflammatory disorders such as asthma (23,24) and cardiovascular diseases such as coronary
heart disease (25), congestive heart failure (26,27) and hypertension in diabetics (28). No data
concerning ADRB2 gene association with Graves disease have been reported.

The aim of the present study was to investigate whether polymorphisms of the ADRB2 gene
are associated with the development of GD and/or GO.

Materials and methods
Subjects

We studied a total of 300 Polish patients (237 females and 63 males, aged 6-78 years old, mean
age 41.1±15.3 years) with Graves disease diagnosed based on the presence of hyperthyroidism,
diffuse goiter, detectable thyroid-stimulating hormone receptor autoantibodies (TRAK
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Lumitest, BRAHMS Diagnostica, Germany) and/or increased radioiodine uptake, as described
previously (29). Thyroid-associated ophthalmopathy (GO) was classified according to the
clinical activity score system recommended by the American Thyroid Association (ATA)
Committee (30). Of the GD patients, 108 (82 females and 26 males, mean age 45.1±14.3 years)
showed ophthalmopathy defined as ATA class III or greater and were classified as GO(+). One
hundred and ninety-two patients showed no ophthalmopathy (ATA class 0), signs of
ophthalmopathy without symptoms (ATA class I), or only soft tissue involvement (ATA class
II). The control group comprised 301 healthy unrelated Polish individuals (206 females and
95 males; aged 15-82 years; mean age 39.3±13.6 years) with no family history of autoimmune
diseases. All study participants were white and of Polish origin. The research program was
approved by the local ethics committee, and all subjects provided written informed consent for
genetic studies.

Genotyping
Genomic DNA was extracted from peripheral blood using standard techniques. All SNPs were
defined by PCR and MassARRAY™ system (Sequenom, San Diego, CA). PCR was performed
using 2 ng genomic DNA in 5 μl reaction with a mixture containing 1X dilution of 10X PCR
buffer (Applied Biosystems, Foster City, CA), 200 nmol of each primer, 0.4 mmol dATP,
dGTP, dTTP, dCTP, and 0.5 U of Amplitaq Gold DNA polymerase (Applied Biosystems)
under the following conditions: 94°C for 15 min, followed by 45 cycles at 95°C for 20 sec,
56°C for 30 sec, 72°C for 1 min, and a final extension step 72°C for 3 min. MassARRAY
Homogenous MassEXTEND™ (hME) assay (Sequenom) was conducted according to the
manufacturer’s instructions. The primer sequences are available upon request.

Statistical analysis
Statistical analysis was conducted using R software (http://cran.r-project.org) with additional
packages ‘survival’ and ‘genetics’. The Chi-square test was applied to check the homogeneity
in genotype frequency distributions between the patient group and controls. If any of the
expected counts was <5, the Fisher’s exact test was applied. p values were corrected by
multiplying by the number of alleles, genotypes or haplotypes tested (Bonferroni correction).
A corrected p value (pcorr) of <0.05 was considered statistically significant. Genotype
frequencies in all groups were checked for the Hardy-Weinberg equilibrium using the Chi-
square test. Cox proportional hazard regression model was applied to estimate any association
between the GD age of onset and the genotypes. ANOVA analysis was used to compare
differences in age of disease onset between patient subgroups. Odds ratios were calculated by
Woolf’s method. The population haplotype frequency distribution was estimated from
population genotype data by PHASE version 2.02 software (31,32). The differences in
estimated haplotype frequencies were analyzed by a case-control permutation test with 1000
iterations implemented in the PHASE software package. Linkage disequilibrium (LD) was
estimated for all possible SNP pairs using two-side LD parameters: D, D’ and r2. The LD
coefficient D represents the difference between the observed frequency of a two-locus
haplotype and the frequency it would be expected to show if the alleles were segregating at
random. The D’ parameter is calculated by dividing D by its maximum possible value given
the allele frequencies at the two loci. A D’ value of 1 or -1 indicates that two SNPs are in
complete LD. Power calculation was performed using PAWE software
(http://linkage.rockefeller.edu/pawe (33,34).

Results
Association of ADRB2 gene polymorphisms with Graves disease

The genotype distributions of all SNPs for both groups (cases and controls) were consistent
with the Hardy-Weinberg equilibrium. Genotype frequencies for ADRB2 gene polymorphisms
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are summarized in Table I. Allele frequencies for ADRB2 gene polymorphisms are summarized
in Table II.

We found a higher risk of GD in Gln27 carriers (CC or CG genotypes) than in Glu27
homozygous (GG genotype) participants (OR=1.99, 95% CI: 1.27-3.12, p=0.003, pcorr=0.03).
The 79C allele frequency appeared to be greater in the GD patients compared to the controls,
but this difference was not significant (62% vs 55%; OR=1.32, 95% CI: 1.05-1.79, p=0.024,
pcorr=0.14, power 69%).

We didn’t find any association of -367T→C or 47A→G genotypes/alleles with Graves disease
(power <57%).

There were six haplotypes of ADRB2 gene polymorphisms in the present study (Table III).
Haplotype analysis showed a significant difference in haplotype frequency distribution
between patients and controls (the global p=0.001) with increased -367T/47A/79C haplotype
frequency in GD patients compared to controls (34% vs 25%, OR=1.55, 95% CI: 1.208-1.999,
p=0.00073, pcorr=0.0044).

The linkage disequilibrium (LD) among ADRB2 gene SNPs in GD is summarized in Table IV.
We found marked LD between -367T→C/47A→G polymorphisms (D’=0.97, r2=0.62), also
for 367T→C/79C>G polymorphisms (D’=0.67, r2=0.64) and 47A>G/79C>G polymorphisms
(D’=0.60, r2=0.41).

Association between the ADRB2 gene polymorphisms and Graves ophthalmopathy
The frequency of the 79GG protective genotype was significantly smaller in the GD patients
without GO (ATA class ≤ II, n=192) compared to the controls (10% vs 22%, OR=0.41, 95%
CI: 0.234-0.706, p=0.0017, pcorr=0.015; Table I). The 79G allele frequency appeared to be
smaller in the GD patients without GO compared to the controls, but this difference was not
significant (37% vs 45%; OR=0.73, 95% CI: 0.558-0.955, p=0.026, pcorr=0.16, power 71%;
Table II).

Age of onset
The mean age of GD onset was 37 years for females and 42 years for males; this difference
was significant (p=0.015). The results of the Cox proportional hazards regression indicated no
association between age of GD onset and any genotype (p>0.3). Patients with ophthalmopathy
(ATA ≥ III) were significantly older (mean 41 years) than cases without evident eye symptoms
(ATA ≤ II, mean 36 years) with p=0.002. There was no difference in age of GO onset between
genders (p=0.11).

Discussion
The evidence for genetic involvement in the pathogenesis of GD disease comes from the study
of twins, in addition to the observation of familial clustering of the disease. In the study of
8966 Danish twin pairs Brix et al found a crude concordance rate of 35% for MZ pairs and 3%
for DZ pairs, and estimated that 79% of the liability to the development of GD is attributable
to genetic factors (35). Although several susceptibility loci were noted in a linkage analysis
performed in multiplex families, the results from only three of them were replicated
(chromosomes 5, 8 and 20) and only one replication (5q31) was convincing (36). Sakai et al
in a genome-wide analysis performed on 123 GD and/or Hashimoto affected Japanese sib-pairs
(15) found significant linkage for microsatellite marker D5S436 in the region 5q31
(LOD=3.14). This result was replicated in 54 Chinese multiplex GD pedigrees with a maximum
two-point LOD score of 2.8 for D5S436, and an LOD score of 4.31 for D5S2090, another
marker in this region (16). Akamizu et al performed an association study in 440 Japanese GD
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patients and 218 controls and confirmed a significant association between GD and two more
markers in the 5q31-33 region (17). The ADRB2 gene is located 3 Mb downstream from marker
D5S436 and 1 Mb downstream from marker D5S2090.

The sympathetic nervous system via ß-2-adrenergic receptors causes selective suppression of
the Th1-cellular immunity axis and a shift toward Th2-mediated humoral immunity (9,37). It
might be of great importance in GD since this disorder is characterized by an abnormality in
immune regulation.

The present report is the first clinical study on the significance of the functional polymorphisms
of the ADRB2 gene in Graves disease. We have demonstrated that the Gln27 carriers (CC or
GC genotypes) are at a higher risk of GD than Glu27 homozygous participants. Studies of the
effects of ADRB2 gene polymorphisms on its product function showed enhanced agonist-
induced receptor desensitization (in vitro) in the 16Gly variant and resistance to desensitization
in the 27Glu variant as compared to wild-type alleles (16Arg and Gln27, respectively (18,
19). For that reason, our findings may lead to the conclusion that the ADRB2 receptor variant
characterized by increased agonist-mediated down-regulation is responsive for susceptibility
to GD, but a single SNP result should be considered in terms of larger haplotype, as it is possible
that another SNP, linked to Gln27Glu, is of superior functional importance. The Arg16Gly
polymorphism, in strong linkage disequilibrium with Gln27Glu, seems to play the dominant
role, since the 16Gly phenotype was observed regardless of whether the position 27 amino acid
was Glu or Gln (38). We performed the haplotype analysis and found the -367T/47A/79C
haplotype to be substantially more prevalent in GD patients than in controls and thus conferring
a higher risk of GD. This haplotype appears to be resistant to agonist-induced receptor
desensitization (proved for 47A/79C diplotype) in addition to having a higher ‘baseline’
expression level (proved for -367T, which always goes with 47A/79C) and therefore appears
to represent the highly functional ADRB2 receptor variant. However, this function of the entire
-367T/47A/79C haplotype needs to be confirmed experimentally (discussed further in ref.
39).

The role of ADRB2 gene polymorphisms as disease risk factors has been demonstrated in
asthma (23,24), coronary heart disease (25), congestive heart failure (26,27), hypertension in
diabetics (28) and recently in sudden cardiac death (40). Interestingly, the 47A/79C diplotype
(Arg16/Gln27) was reported to be associated with an elevated total IgE level in pollen allergy
(41). The increased level of IgE is also observed in GD patients. Of note, cigarette smoking, a
known environmental factor involved in the development of autoimmune diseases, has a
similar to 47A/79C diplotype impact on the sympathetic outflow, i.e. it increases adrenergic
action (42).

We speculate that the highly functional ADRB2 receptor variant confers an increased risk for
GD by more efficiently polarizing the immune response towards antibody production.
Additional studies must be conducted to clarify whether the differences in GD risk are related
to the changes in immune response described for the -367T/47A/79C haplotype, and whether
the haplotype is a marker for other determinants of GD risk. Also the final tissue- and time-
dependent impact of this haplotype on receptor function is yet to be evaluated (43). We didn’t
find any direct association of either the Arg16Gly or the -167T→C polymorphism with
susceptibility to GD, probably because our study was under-powered to full address this. Since
we observed the Gly16 and Gln27 allele frequencies among healthy controls to be 61.4% and
55.2%, respectively, almost the same as previously reported in 4441 white participants of a
cardiovascular health study (40), we report that the control group data was correct.
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Table I
Genotype frequencies of the ADRB2 gene polymorphisms in healthy subjects and patients with Graves disease with or
without ophthalmopathy.

Healthy subjects
n=301

GD total
n=300

Ophthalmopathy ATA
class 0-II

n=192

Ophthalmopathy ATA
class III-VI

n=108

-367T→C
 TT 98 (0.35) 99 (0.42) 59 (0.40) 40 (0.47)
 CT 128 (0.46) 103 (0.44) 69 (0.46) 34 (0.40)
 CC 51 (0.18) 32 (0.14) 21 (0.14) 11 (0.13)
47A→G
 AA 39 (0.14) 49 (0.17) 29 (0.16) 20 (0.19)
 AG 139 (0.49) 144 (0.50) 92 (0.51) 52 (0.49)
 GG 103 (0.37) 93 (0.33) 59 (0.33) 34 (0.32)
79C→G
 CC 91 (0.32) 105 (0.36) 66 (0.36) 39 (0.37)
 CG 128 (0.46) 148 (0.51) 99 (0.54) 49 (0.47)
 GG 62 (0.22) 36 (0.12)a 19 (0.10)b 17 (0.16)

a
Chi-square test, GG vs CC+GC, χ2=8.57, df =1, p=0.0034, pcorr=0.030.

b
Chi-square test, GG vs CC+GC, χ2=9.85, df=1, p=0.0017, pcorr=0.015.

GD, Graves disease; ATA, American Thyroid Association. Values in parentheses represent proportion of individuals expressed as a percentage.
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Table II
Allelic frequencies of the ADRB2 gene polymorphisms in healthy subjects and patients with Graves disease with or
without ophthalmopathy.

Healthy subjects
n=301

GD total
n=300

Ophthalmopathy ATA
class 0-II

n=192

Ophthalmopathy ATA
class III-VI

n=108

 -367T→C
 T allele 324 (0.58) 301 (0.64) 187 (0.63) 114 (0.67)
 C allele 230 (0.42) 167 (0.36) 111 (0.37) 56 (0.33)
47A→G
 A allele 217 (0.39) 242 (0.42) 150 (0.42) 92 (0.43)
 G allele 345 (0.61) 330 (0.58) 210 (0.58) 120 (0.57)
79C→G
 C allele 310 (0.55) 358 (0.62) 231 (0.63) 127 (0.60)
 G allele 252 (0.45) 220 (0.38)a 137 (0.37)b 83 (0.40)

a
Chi-square test, χ2=5.12, df =1, p=0.024, pcorr=0.14, power 69%.

b
Chi-square test, χ2=4.99, df =1, p=0.026, pcorr=0.16, power 71%.

GD, Graves disease; ATA, American Thyroid Association. Values in parentheses represent proportion of individuals expressed as a percentage.
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Table IV
The linkage disequilibrium (LD) among ADRB2 gene polymorphisms in patients with Graves disease.

367T>C 47A>G 79C>G

-367T>C D’ =0.97 D’ =0.67
 47A>G r2 =0.62 D’ =0.60
 79C>G r2 =0.64 r2 =0.41
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