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Abstract

Sensory systems adapt their neural code to changes in the sensory environment, often on multiple time scales. Here, we
report a new form of adaptation in a first-order auditory interneuron (AN2) of crickets. We characterize the response of the
AN2 neuron to amplitude-modulated sound stimuli and find that adaptation shifts the stimulus–response curves toward
higher stimulus intensities, with a time constant of 1.5 s for adaptation and recovery. The spike responses were thus
reduced for low-intensity sounds. We then address the question whether adaptation leads to an improvement of the
signal’s representation and compare the experimental results with the predictions of two competing hypotheses: infomax,
which predicts that information conveyed about the entire signal range should be maximized, and selective coding, which
predicts that ‘‘foreground’’ signals should be enhanced while ‘‘background’’ signals should be selectively suppressed. We
test how adaptation changes the input–response curve when presenting signals with two or three peaks in their amplitude
distributions, for which selective coding and infomax predict conflicting changes. By means of Bayesian data analysis, we
quantify the shifts of the measured response curves and also find a slight reduction of their slopes. These decreases in
slopes are smaller, and the absolute response thresholds are higher than those predicted by infomax. Most remarkably, and
in contrast to the infomax principle, adaptation actually reduces the amount of encoded information when considering the
whole range of input signals. The response curve changes are also not consistent with the selective coding hypothesis,
because the amount of information conveyed about the loudest part of the signal does not increase as predicted but
remains nearly constant. Less information is transmitted about signals with lower intensity.

Citation: Wimmer K, Hildebrandt KJ, Hennig RM, Obermayer K (2008) Adaptation and Selective Information Transmission in the Cricket Auditory Neuron
AN2. PLoS Comput Biol 4(9): e1000182. doi:10.1371/journal.pcbi.1000182

Editor: Peter E. Latham, Gatsby Computational Neuroscience Unit, United Kingdom

Received February 8, 2008; Accepted August 8, 2008; Published September 26, 2008

Copyright: � 2008 Wimmer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Support was contributed by the BMBF under grant no. 01GQ0414 (KO) and the DFG/SFB 618 (KJH and RMH).

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: klaus@cs.tu-berlin.de

. These authors contributed equally to this work.

Introduction

Efficient encoding of natural signals is one of the major tasks

sensory pathways have to accomplish. In order to do this, neural

representation should be matched to the relevant part of incoming

signals. Statistical properties of incoming signals are highly

variable in a natural environment (e.g., the mean light level

changes dramatically from a sunny region to a dark forest) but are

mostly changing slowly over time [1]. Since the neural

representation in sensory cells is limited to a certain range and

resolution, the principle of efficient coding suggests that the

nervous system should continually adapt its responses to changing

statistical properties of the stimuli [2]. Firing rate adaptation

changes the input-response curves of neurons in sensory pathways

and has been shown to provide a mechanism for the adjustment of

the encoding scheme in multiple systems [3–9]. How the input-

response curve is altered in response to a given stimulus should

depend on what the relevant information is in the given context.

Here, we want to explore the response properties of a single cell

(AN2) in the auditory pathway of crickets and test for two different

principles that have been proposed to underlie adaptation of the

input-response curve: the principle of maximum information

preservation (infomax) [10] and that of selective coding [11]. The

AN2 neuron provides an ideal model for studying the computa-

tional principles underlying adaptation, since (1) it receives direct

input from auditory receptors and local interneurons at the first

processing level [12], (2) on present evidence, it constitutes the only

ascending representation of the auditory environment in the high

frequency channel and thus a bottleneck for information

transmission to higher centers [13–15], and (3) it has a clear

behavioral role because it is intimately involved in evasive

behavior in response to ultrasonic signals [16–18]. Several time

constants of adaptation in the range from below 100 ms to several

seconds are known for the receptor cells [19], local interneurons

[20], and the ascending neurons [21,22] in this model system.

Since auditory processing at the stage of the AN2 neuron is mainly

feed-forward, adaptation is likely driven by the stimulus only

rather than by task-dependent top-down processes.

The above mentioned principles lead to conflicting hypotheses

about changes of the input-response curve when more than one

‘signal’ is present in an environment (Figure 1). Following the

infomax principle, the input–output transformation (the neuronal

response curve) should maximize the information transmission

between the neural representation and the stimulus. The optimal
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response curve depends on the statistical properties of the input

signals, but internal noise and constraints on the possible changes

limit the amount of information that can be conveyed.

The infomax principle leads to the theoretical result that the

derivative of the response curve should be proportional to the

probability distribution of the stimuli, so that all available signals in

a given environment are represented and every possible output

rate occurs with equal probability. Laughlin [23] tested this

prediction and showed that contrast response curves in the fly

visual system are matched to the statistics of natural images in

order to maximize information transmission. Similar results have

been reported for contrast response curves of retinal and LGN

neurons in cat and monkey [24]. Information maximization can

explain retinal coding in the spatial, temporal and chromatic

domain [25].

A consequence of the infomax principle is that a change in the

statistics of the sensory input must be compensated by a change in

the input–response curve. Experimental evidence from the

motion-sensitive H1 neuron in the fly supports this hypothesis:

this neuron adapts its response curve to changing statistics of

stimuli on several time scales [4,6], in a way which is compatible

with the infomax prediction. Experiments have also shown that

adaptation enhances information transmission in visual cortex

[26]. Sharpee et al. estimated neural filters for the responses to

natural inputs and to noise inputs matched for luminance and

contrast, showing that neural filters adaptively changed with

higher order statistics of input signals, so as to increase the mutual

information between stimulus and neural response. Theoretical

work also suggested that contrast adaptation in the mammalian

visual system [3,9,27–29] can be understood as a consequence of

the infomax principle [30,31]. However, it is difficult to quantify

the role of adaptation in enhancing coding efficiency at higher

stages in vertebrate sensory pathways since in these, coding is

distributed among large populations of neurons and their

responses are modulated by the activity of other neural

populations or brain areas. Thus, simple sensory networks of

invertebrates, whose representation are not heavily influenced by

feedback signals, may provide a more suitable model to

understand the principles lying behind sensory adaptation.

An alternative principle that may underlie adaptation is

selective coding (or ‘background suppression’), a form of temporal

inhibition in which a loud sound suppresses the response to

subsequent sounds. This could serve to segregate a single, most

important signal from other signals or background noise. It has

been shown that an auditory interneuron (ON1) represents mainly

the louder part of a stimulus with a bimodal intensity distribution

[20]. Calcium aggregation in the omega neuron is a possible

mechanism underlying this background suppression [11,32].

Similar findings have been made in bushcrickets: while multiple

songs in choruses of singing males are present, only the most

intense song was found to be represented in the auditory pathway

[33]. These previous studies, however, address the phenomenon

only qualitatively and not under the viewpoint of an encoding

scheme and information transfer. Segregation of different auditory

objects into different channels has also been studied in vertebrate

hearing [34–36]. In vertebrates, however, modulation of carrier

frequency is assumed to play a crucial role in this stream

segregation [37], complicating a detailed analysis. Information

conveyed by carrier frequency modulation is very limited in

crickets, as they possess only two broadly tuned frequency

channels, one in the range around the carrier frequency of the

calling songs (,5 kHz) and another one mainly for frequencies

above 12 kHz. Thus, crickets provide an ideal model system to

study object-background segregation—in this simple auditory

system, for a given frequency range, an auditory object can simply

be seen as the loudest peak in the entire stimulus distribution.

The questions we sought to answer were: How does the neural

response curve adapt to the statistics of the acoustic environment?

Can this sensory system be characterized as a communication

channel optimized for coding the inputs such that as much

information as possible is preserved (infomax principle)? Or does

the system perform a preprocessing that leads to a high fidelity

representation of only the loudest part of the stimuli (selective coding)?

To address these questions, we measured the neural response

curve of AN2 neurons after adaptation to sound stimuli with either

two or three peaks in their intensity distribution, depicted in

Figure 1. Optimal sigmoidal stimulus response curves (solid
lines) for a stimulus distribution consisting of three peaks
(shaded areas) as predicted by two coding hypotheses. (A)
Infomax: the dynamic range of the adapted response curve covers the
whole range of input signals. Note that the optimal sigmoidal response
curve is shown; generic optimal transmission would be attained by a
response curve that has a derivative proportional to the local stimulus
distribution. Such a response curve would be steep within peaks of the
stimulus distribution and much flatter in between, thus it would be
more staircase-like. (B) Selective coding: the response function
optimally represents the most intense signal (light gray) whereas other
signals (dark gray) are suppressed.
doi:10.1371/journal.pcbi.1000182.g001

Author Summary

Sensory systems have the ability to adapt to changes in
the environment. In a quiet room, the nervous system is
very responsive, so that even a whisper can be easily
understood. In contrast, the perceived loudness on a
crowded street will be reduced to prevent an overload of
the nervous system. Two different hypotheses have been
proposed to explain how the nervous system achieves this
adaptation. According to one idea, all present sensory
signals are equally enhanced, so that the whole range of
input signals is reliably represented. On the other hand,
the aim of the nervous system may be to extract the most
important parts of the acoustic signal, for example, an
approaching car, and thus abolish the irrelevant rest. To
address which of these two principles is implemented in
the auditory system of the cricket, we investigated the
responses of a single auditory neuron, called interneuron
AN2, to different sound signals. We found that adaptation
actually reduces the amount of encoded information when
considering the whole range of input signals. However, the
changes were also not in agreement with the idea that
only the most important signal is transmitted, because the
amount of information conveyed about the loudest part of
the signal does not increase. Thus, we here report the
unusual case of a reduction of information transfer by
adaptation, while in most other systems reported of so far
adaptation actually enhances coding of sensory informa-
tion.

Adaptation in the Cricket Auditory Neuron AN2
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Figure 1. The two principles studied here predict conflicting

changes of the form of the input-response curve when presenting a

stimulus composed of more than one signal. Optimal selective

coding should lead to a shift of the response curve in a way that

only the peak with the highest intensity is represented (Figure 1B).

If infomax is the underlying principle, adaptation pursues the

objective to maximize the information that the neuron’s output

conveys about its sensory input. Adaptation should thus change

the response curve in a way that the whole stimulus range is

encoded reliably (Figure 1A).

Firing rate adaptation can change the stimulus–response curve

basically in two ways [38]: shifting the threshold to larger

intensities and changing the slope of the curve. We first compare

the experimentally observed changes in the slope and the shift in

response curves to the optimal changes predicted by the two

competing hypotheses. Differences between model prediction and

data, however, do not necessarily imply that a particular

hypothesis is unlikely to be true, because additional constraints

may limit the potential of tuning curve changes. Therefore, in a

second step, we calculate the mutual information between the

sensory input and the neuronal response using the measured

response curves. The infomax principle predicts that the mutual

information between a particular stimulus distribution and the

response should be highest for the response curve that is adapted

to the stimulus distribution. The response curve adapted to the

stimulus with three peaks should encode the three-peak stimulus

better than the response curve adapted to the stimulus with two

peaks. Selective coding, on the other hand, predicts, that the

mutual information should decrease for the ‘background’ signals

and should increase for the most intense peak.

Methods

Animal Preparation
Crickets of the species T. oceanicus and T. leo were used in the

experiments to characterize the time course of adaptation. For the

experiments with the multimodal stimuli (cf. Methods, Stimulus

protocols), mainly T. leo individuals were used. All animals were

laboratory reared. For preparation, both pairs of wings and the

meso- and metathoracic legs were removed. The animal was fixed

ventral side up to a small platform and the prothoracic legs with

the ears were waxed to pins at the coxae and the tarsi in a normal

walking position. Ascending and descending connectives from the

prothoracic ganglion were cut in order to reduce neuronal

background activity. See [12] for a more detailed description.

Recordings and Acoustical Stimulation
Two extra-cellular hook-electrodes were made from tungsten

wire and placed in parallel around one of the two connectives

ascending from the prothoracic ganglion. These connectives

contain the axon of the ascending interneuron we wanted to record

from (AN2). Vaseline was placed around connectives and hooks in

order to isolate the electrodes electrically and keep the connective

from drying out. The voltage trace was amplified differentially (npi,

EXT-10C, Tamm, Germany) and bandpass-filtered with cut-off

frequencies of 300 Hz and 3 kHz (npi, DPA 2F). The trace was then

digitized at 20 kHz sampling rate (National Instruments, PCI-6014,

Austin, TX) and stored to the hard disk of a personal computer.

Spikes of the AN2 were detected on the basis of the amplitude peaks

of the voltage trace using custom Software (MATLAB 7, The

MathWorks, Natick, MA). Figure 2 shows an example recording

and the spike detection window.

The recording set-up was lined with sound-absorbing foam to

reduce echoes. Acoustic stimuli were presented through a

loudspeaker positioned ipsilaterally to the recorded connective at

a distance of 36 cm. The main input to the AN2 neuron comes from

receptors ipsilateral to the connective that holds its axon. Stimuli

were presented by analog multiplication of a generated 16 kHz sine

wave (Voltacraft, FG-506, Hirschau, Germany) with an amplitude

modulation envelope that was generated by the personal computer

at 10 kHz sampling rate (National Instruments, PCI-6014, Austin,

TX). Following this, the signal was attenuated using a programma-

ble attenuator (Tucker-Davis, PA5, Gainesville, FL) and amplified

by an audio amplifier (Blaupunkt, GTA 2100B, Hildesheim,

Germany). Attenuation of the signal was calibrated using a Bruel

& Kjaer microphone (type 2231, Bremen, Germany).

Stimulus Protocols
Figure 3 shows the protocol used for characterizing the

adaptation process in the ascending AN2 neuron. The different

ensembles of auditory stimuli consist of an adapting stimulus, a

silent interval, and a test stimulus. The intensity of the adapting

stimulus was adjusted in the beginning of the recording depending

on the response strength of the neuron. Normally, the base line

intensity of the adapting stimulus had a sound pressure level of

84 dB or 87 dB. With the term relative intensity we refer to the

stimulus intensity relative to this base line intensity. Adapting

stimuli are 16 kHz signals that were amplitude-modulated by

bandpass-filtered Gaussian white noise with 100 Hz cut-off

frequency. The Gaussian noise had a variance s2 = 1.38 dB2

and a mean relative intensity m= 0 dB. Test stimuli were pure

sinusoidal tones with a frequency of 16 kHz. To characterize

adaptation, we used adapting stimuli with durations 75 ms,

150 ms, 300 ms, 600 ms, 1200 ms, 2400 ms, and 4800 ms

(Figure 3A). For testing recovery from adaptation, the stimuli

had a 5 s adaptation phase followed by pauses of varying durations

from 75 ms to 4800 ms (Figure 3B).

Motivated by the competing coding hypotheses, we wanted to

examine the consequences of adaptation to different ensembles of

auditory stimuli demanding different changes in the stimulus-

response curve. We designed multimodal noise-like stimuli whose

amplitude distribution had two or three modes, mimicking

auditory scenes with multiple signals. The amplitude distribution

of the bimodal stimulus is composed of two Gaussian distributions,

with mean relative intensity m1 = 23 dB, m2 = 0 dB and variance

s2 = 0.2 dB2. The trimodal stimulus has an additional peak

modeled by a third Gaussian distribution with mean m3 = +3 dB

and s2 = 0.2 dB2. An example of these stimuli is shown in

Figure 3C, together with the respective amplitude distributions.

The adaptation time was 5 s in these experiments and the silent

interval before the test stimulus was 100 ms.

Figure 2. Typical recording trace from a cricket AN2 neuron (T.
oceanicus). The figure shows the voltage trace during constant
stimulation (duration 1 s) with a sinusoidal tone of 16 kHz frequency.
The shaded area depicts the spike detection window, bounded by the
lower and upper threshold.
doi:10.1371/journal.pcbi.1000182.g002

Adaptation in the Cricket Auditory Neuron AN2
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In all experiments, the intensity response curves were

determined by sinusoidal test stimuli with a frequency of 16 kHz

and duration of 1 s, following the respective adaptation stimulus.

The relative intensities of the test stimuli were 29 dB to +6 dB.

Each stimulus was presented at least five times.

Bayesian Data Analysis
We constructed intensity-response curves to quantify the neural

response, as shown in Figure 4 and Figure 5. Therefore, we used the

spike count in a 200 ms time window beginning 100 ms after test

stimulus onset. The window was chosen such that the influence of

the fast adaptation process (time constant of about 40 ms, similar to

the one described for the AN1 neuron by Benda and Hennig [21]) is

minimized. In the context of this separation of time scales, we are

interested only in the coding of slower stimulus dynamics. Hence we

consider responses to unmodulated test stimuli and measured spike

counts within a 200 ms—rather than a short—time window.

A common methodology to construct neuronal response curves is

repeating a single experimental condition several times and then

computing the mean of the observed spike counts and their

variance. In a second step, a parametric model is fit to these data,

typically using least-square approximation. Often it is interesting,

however, how the parameters of the response curve change with

different experimental conditions, but the confidence intervals for

the model parameters and tests for the significance of parameter

changes are difficult to establish with traditional statistical methods.

Here, we use a Bayesian analysis [39,40], to account for the

statistics of each trial to estimate the parameters accurately and to

quantify the confidence limits of the parameter estimation. The

method allows estimating the full probability distribution of the

response curve parameters rather than only the mean value as

with traditional methods. Similar techniques have been applied

successfully to the analysis of intracellular membrane potential

recordings [41].

Modeling the sound-pressure-level to spike-count

relation. The analysis is based on the assumption that spikes

are Poisson-distributed and that individual trials are independent

of each other (i.e., their joint probability is equal to the product of

their individual probabilities).

Let xi denote the ith out of m stimulus intensities and ni the

number of times a stimulus with this intensity is presented. The

corresponding number of spikes from an AN2 neuron is denoted

by yi,j, where j is the jth out of the ni repetitions. If spikes are

Poisson distributed, we obtain

P yi,j rij
� �

~
r

yi,j

i e{ri

yi,j !
, ð1Þ

where ri is the average spike count underlying the neuron’s

response at the ith stimulus intensity. For a set yi = (yi,1, …, yi,ni) of

spike counts of ni independent and identically distributed

observations, the likelihood P(yi|ri) of ri being the underlying

average spike count becomes

P yi rijð Þ~ P
ni

j~1

1

yi,j !
r

yi,j

i e{ri ð2Þ

!r
t yið Þ
i e{niri , ð3Þ

where the likelihood function is determined, up to a constant

factor, by the sufficient statistic

t yið Þ~
Xni

j~1

yi,j : ð4Þ

We assume a sigmoid response curve, relating stimulus intensity

to spike counts as

ri~f xið Þ~
A

1zexp { xi{B50

C

� � , ð5Þ

where ri is the underlying average spike count of the neuron, xi is

the stimulus intensity, A is maximum response of the cell, B50 is the

stimulus intensity at 50% of maximum response, and C is a slope

factor. Inserting this relationship into Equation 3, we obtain the

likelihood P(yi|ri) in terms of the response curve parameters A, B50,

and C:

P yi A,B50,C,xijð Þ! A

1zexp { xi{B50ð Þ=Cð Þ

� �t yið Þ

exp {ni
A

1zexp { xi{B50ð Þ=Cð Þ

� �� �
,

ð6Þ

Figure 3. Summary of the experimental protocols. (A) Adaptation
protocol. Amplitude-modulated noise signals (adapting stimuli with
0 dB average relative intensity) of variable duration (from 75 ms to
4800 ms) are followed by a test stimulus (16 kHz sinusoidal tone) with a
duration of 1000 ms and a relative intensity ranging from 29 dB to
+6 dB (several test stimuli are plotted on top of each other). (B)
Recovery protocol. Amplitude-modulated noise signals (adapting
stimuli) of 5 second duration are followed by a pause of variable
length (from 75 ms to 4800 ms) and a test stimulus as in (A). (C)
Adaptation protocol for amplitude-modulated noise stimuli drawn from
a bimodal and a trimodal distribution (the corresponding amplitude
distributions are shown in the right panel). Relative intensities of the
test stimuli range from 26 dB to +6 dB.
doi:10.1371/journal.pcbi.1000182.g003

Adaptation in the Cricket Auditory Neuron AN2
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Figure 4. Representative examples of the neural response (AN2 neuron from a T. leo) after adaptation to noise stimuli of duration
75 ms (dotted line), 600 ms (dashed line), and 4800 ms (solid line). (A–D) Responses (spike rates) during a test stimulus of 1 s duration (cf.
protocol of Figure 3A). Relative intensities of the test stimuli range from 23 dB (A) to +6 dB (D); the average relative intensity of the adapting
stimulus was 0 dB. Each stimulus was presented 5 times and the recorded spike trains (1 ms resolution) were convolved with a Gaussian kernel
(s= 50 ms). The instantaneous spike rates were estimated by averaging over the 5 repetitions. The increase of the estimated rate during the first
50 ms is an artifact introduced by filtering the neural response with the Gaussian kernel. Note that the onset latency of the AN2 neuron is in the range
of 15 to 18 ms. The spike counts during the sample period (shaded) from 100 ms to 300 ms are used to construct neural response curves.
doi:10.1371/journal.pcbi.1000182.g004

Figure 5. Representative example of response curves for different adaptation (A) and recovery times (B) (cf. protocols of Figure 3A
and 3B). The average relative intensity of the adapting stimulus was 0 dB. Symbols denote the average spike counts during the sample period (cf.
Figure 4) for different test intensities. Solid lines indicate the expected response curve, i.e., the response curve with the set of parameters with the
mean value of the posterior distribution (see Methods, Bayesian data analysis). Each stimulus protocol was repeated 5 times (the error bars indicate
the standard deviation). The data shown was obtained from a T. leo (the same preparation as used in Figure 4).
doi:10.1371/journal.pcbi.1000182.g005

Adaptation in the Cricket Auditory Neuron AN2
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Let y = (y1, …, ym) be the set of responses to stimuli with different

intensities xi, where I = 1…m. Applying Bayes’ rule we obtain the

joint posterior distribution

P A,B50,C y,xjð Þ!P A,B50,Cð ÞP y A,B50,C,xjð Þ ð7Þ

!P A,B50,Cð Þ P
k

i~1
P yi A,B50,C,xijð Þ ð8Þ

of the parameters A, B50, and C, given the observations, where P(A,

B50, C) is the prior distribution of the response curve parameters A,

B50, C. In the following, we will use a noninformative, uniform

prior distribution P(A, B50, C) = constant.

Calculating the joint posterior distribution. Following

[39], the posterior was calculated for a range of A, B50, and C

values using a grid of 20062006200 points and normalized across

this grid. Initially a large parameter space was sampled (e.g., values

for the parameter A in the range from 0 to three times the

maximum observed spike count of the neuron) that was narrowed

to allow finer sampling in the region of non-zero posterior values.

To simplify further analysis we then draw 10000 independent and

identically distributed random samples (Ai, B50,i, Ci), where I = 1 …

10000 from the joint posterior probability distribution. From these

samples, we can estimate the posterior distribution of any quantity

of interest, e.g., the posterior distribution of the response curve

parameters ‘location’ B50 or of the ‘slope’ at half of the maximum

response:

S50~
1

4C
: ð9Þ

The slope S50 does not depend on the maximum response A, in

order to be able to compare the response curve slopes from

different neurons (i.e., for calculating the slope the neural

responses are normalized to the interval between 0 and 1).

To summarize the results for all the recorded AN 2 cells, we

combined the samples from the posterior distributions of

individual cells to obtain a ‘combined posterior distribution’

(assuming independence of individual experiments).

When reporting experimental results, we will in most cases

characterize the corresponding posterior distributions by their

mean values (i.e., the expected values of the parameters, given the

data). We also use these expected parameter values to illustrate the

estimated sigmoid response curve. In most cases, the expected

parameters and the parameters with the maximum posterior

probability (i.e., the maximum a posteriori estimate) had very

similar values.

Significance testing. Consider one of the parameters of

interest, e.g., B50, and its posterior distributions P1 B1
50 y1
��� �

and

P2 B2
50 y2
��� �

, for two stimulus conditions 1 and 2. Bayesian analysis

provides us with samples from these distributions P1 and P2. To

determine if B1
50 is significantly different from B2

50, we calculate the

posterior distribution Pd of the difference B2
50{B1

50. This is done

by repeatedly taking one sample b1 from the distribution

P1 B1
50 y1
��� �

and one sample b2 from P2 B2
50 y2
��� �

and calculating

the difference b2–b1, giving one sample from the distribution Pd.

To determine a significant difference, we calculate the 95%

posterior interval [i1,i2] of Pd, defined as the range of values above

and below which lie 2.5% of the samples. The values i1 and i2 can

be directly estimated from the samples: i1 corresponds to the 2.5th

and i2 to the 97.5th percentile. If the 95% posterior interval of Pd

includes zero, the difference between B2
50 and B1

50 is not

statistically significant. On the other hand, if the 95% posterior

interval excludes zero we regard the difference as significant. To

test if an estimated parameter is significantly larger (smaller) than a

certain value x, we calculate the right-tailed (left-tailed) posterior

interval. If the right-tailed (left-tailed) posterior interval excludes

the value x, i.e., less than 5% of the corresponding samples are

smaller (larger) than x, we regard the parameter significantly larger

(smaller) than x.

Time course of adaptation. We used a single exponential

decay model to characterize the time course of adaptation

y tð Þ~yminz ymax{yminð Þexp
{t

ta

� �
, ð10Þ

where y(t) is the neural response at time t, ymin, and ymax are

minimum and maximum response, and ta is the decay time

constant. A similar single exponential model

y tð Þ~yminz ymax{yminð Þ 1{exp
{t

tr

� �� �
ð11Þ

is used for describing the recovery from adaptation, where tr is the

recovery time constant. Using the Bayesian approach, we calculate

the posterior densities of the parameters of Equations 10 and 11 in

a similar manner as for the sigmoid response curve (Equation 5).

Numerical Estimation of Mutual Information
The mutual information I[Y;X] between the sensory signal X

and the neural response Y specifies how much information is

conveyed on average about all possible signals. In order to

compute the mutual information numerically, taking into account

the influence of discrete, Poisson distributed spike counts, we first

construct the joint probability distribution

P y,xð Þ~P y xjð ÞP xð Þ: ð12Þ

For each stimulus intensity xi, we calculated the corresponding

average spike count ri using Equation 5. The distribution

P(y|x = xi) is then given by a Poisson distribution with mean ri
(Equation 1). For all simulations, the stimulus X was discretized

into bins of size 0.01 dB. At this resolution, the results did not

depend on the bin size.

To measure the information that is associated with specific

sensory signals, we define the stimulus-specific information

[42,43]:

iSSI xð Þ~
X

y

P y xjð Þ H X½ �{H X Y~yj½ �ð Þ, ð13Þ

where H[X] = 2Sx P(x) log2 P(x) is the entropy of the sensory signal

X, and the conditional entropy of a particular response y is given

by H[X|Y = y] = 2Sx P(x|y) log2 P(x|y). Stimulus-specific informa-

tion can be interpreted as the average reduction of uncertainty

about the sensory signal gained from one measurement given the

stimulus x. Taking the weighted average over the stimulus-specific

information for all possible signals we obtain the mutual

information between stimulus and response:

I Y ; X½ �~
X

x

P xð ÞiSSI xð Þ: ð14Þ

To determine the information associated with a certain stimulus

range [x1,x2], we evaluate the sum in Equation 14 from x1 to x2.
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Results

Time Course of Adaptation
We first studied the effects of prolonged auditory stimulation in

recordings of 6 AN2 neurons of T. oceanicus and 7 AN2 neurons of

T. leo. Previously, an adaptation process operating on a time scale

of 40 ms had been characterized for the AN1 neuron [21]. Here,

we investigate whether adaptation also occurs on a slower time-

scale, better matched to changes in the acoustic environments.

Adaptation and recovery. We recorded the responses of

AN2 neurons to test stimuli of different intensities, after adaptation

to noise stimuli of varying duration (see Methods, Stimulus

protocols). A typical example for the neural responses of an AN2

cell of T. leo is shown in Figure 4. The spike rates after an

adaptation period of 4800 ms are always lower than the

corresponding responses after 600 ms and 75 ms adaptation

time. Responses declined with prolonged stimulation during the

test interval for the applied intensities that were higher than the

intensities of the adapting stimuli (Figure 4C and 4D), a

phenomenon which we observed in all the recorded cells. The

rapid initial change, which is most pronounced for high intensities

of the test stimulus (Figure 4C and 4D) is caused by the fast firing-

rate adaptation (similar to the adaptation in the AN1 neuron [21]).

To minimize an influence of the fast and the slow adaptation

occurring during test, only spikes occurring between 100 ms and

300 ms after test stimulus onset were used for further analysis (see

Methods, Bayesian data analysis). Figure 5A shows the stimulus

response curves constructed from the spike counts within the

abovementioned interval. Prolonged stimulation shifted the

stimulus-response curves towards higher stimulus intensities. In

the example shown, adapting for 4800 ms virtually eliminated the

response to low relative intensities from 29 dB to 23 dB.

Adaptation changes the range of relative intensities over which

the cell responds, but has little effect on the maximal firing rate.

Figure 5B shows data from the same cell when using stimuli for

testing the recovery from adaptation (see Methods, Stimulus

protocols). Adapting stimuli were always 5 s long, followed by a

silent interval of varying duration and a test stimulus. After a

recovery period of 4800 ms the neuron has almost recovered its

state prior to adaptation. Hence, adaptation and recovery from

adaptation operate on a similar time scale.

Time constants of adaptation. To quantify the time course

of adaptation and recovery we analyzed the neural responses to

test stimuli that had the same relative intensity as the adapting

stimuli (0 dB). Additional cells were recorded with a reduced

version of the stimulus protocol that only included these 0 dB test

stimuli (the total number of cells available for each species and

each stimulus protocol is stated in Table 1). In order to determine

the adaptation and recovery time constants ta and tr, we fitted an

exponential decay model to the neural responses (see Methods,

Bayesian data analysis). Figure 6A and 6B show examples of

recorded data and exponential fits for a T. oceanicus and a T. leo

cell. Both time constants lie in the range of 1 second for both of

these cells. This is considerably longer than the short-term firing

rate adaptation, which operates on a time scale of 40 ms.

The values of the adaptation and recovery time constants are

summarized in Table 1 for both species; additionally, Figure 7

shows the combined posterior distributions (cf. Methods, Bayesian

data analysis). Comparing the time constants between T. oceanicus

and a T. leo cells, we did not find significant differences, as reflected

by the overlapping 95% posterior intervals in Figure 7. Further-

more, adaptation and recovery time constants have similar values.

We conclude that the neuronal responsivity of AN2 neurons is

affected significantly by adaptation and that the adaptation process

operates on a time scale of seconds. The primary effect is a change

in the range of stimulus intensities over which the cell responds. To

put to test our hypothesis that this adaptation serves for adjusting

the stimulus–response curve to the current acoustic environment,

we first formalize the infomax and selective coding principle and

then assess the experimentally observed response curve changes.

Quantitative Predictions of the Coding Hypotheses
The infomax principle and the selective coding hypothesis both

predict how the neural response curve should optimally change in

response to a change in the statistics of the environment. In order

to assess the response curve changes quantitatively, we first

compute the parameters of the optimal response curve under

either hypothesis as well as the mutual information between

stimulus and neural response.

Infomax principle. If infomax [10,25,30] is the underlying

principle, adaptation pursues the objective to maximize the

information that the neuron’s output conveys about its sensory

input. Formally, the goal is maximizing the mutual information I [R;

X] between the sensory sound signal X and the neuronal output

firing rate R as a function of the response curve parameters. This is

achieved by maximizing the output entropy H [R] while minimizing

the uncertainty H [R|X] of the output once the input is fixed

I R; X½ �~H R½ �{H R Xj½ �: ð15Þ

We first computed the optimal response curve parameters for a

given signal distribution and a sigmoid response function

analytically, assuming additive noise. Next, we estimated the

mutual information numerically in order to account for

multiplicative (Poisson) noise. If we assume only additive noise,

with a probability distribution P(n), the mutual information can be

written as [44,45]

I R; X½ �~H R½ �{H N½ �: ð16Þ

Maximization of the mutual information is then equivalent to the

maximization of the entropy of the output distribution, because the

noise entropy H[N] does not depend on the input–output mapping,

i.e., the neural response curve r(x). Thus, we have to maximize

H R½ �~{
X

r

P rð Þlog2 P rð Þ, ð17Þ

where the sum goes over all possible discrete response levels r (here,

the spike counts in a 200 ms window; cf. Bayesian data analysis).

Formally, we can treat the response as a continuous variable [25],

i.e., as firing rate, and using the relationship between differential and

discrete entropy we approximate the sum by an integral [46]:

Table 1. Summary of the adaptation (ta) and recovery (tr)
time constants for the T. oceanicus and T. leo AN2 cells.

Species Adaptation Recovery from adaptation

ta (ms) SD (ms) n tr (ms) SD (ms) n

T. oceanicus 1202 558 6 1947 1155 6

T. leo 1828 939 9 1674 582 11

See Figure 3 for the adaptation protocols. SD is the standard deviation across
the n cells.
doi:10.1371/journal.pcbi.1000182.t001
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H R½ �~{
X

r

P rð Þlog2 P rð Þ?

{

ð
P rð Þlog2 P rð Þdr{log2 Dr, as Dr?0

ð18Þ

Here, Dr is the limit on the resolution with which the firing rate

can be measured (the length of the bins of the discrete response

levels). Note that in the limit DrR0 the entropy H[R] diverges

(i.e., the information capacity of a continuous variable is

unlimited). In the case DrR0 and in the absence of noise the

sensory signal X could be recovered perfectly from the firing rate

R and thus any set of response curve parameters would be

‘optimal’. However, if we assume a finite maximum of the

response curve the additive noise provides a resolution scale on

the output and we can ask for an optimal response curve f(x). In

the low-noise limit we obtain [45]

H R½ �~{

ð
P xð Þlog2

P xð Þ
df xð Þ

dx

��� ���dx{log2 Dr ð19Þ

~

ð
P xð Þlog2

df xð Þ
dx

����
����dx{

ð
P xð Þlog2 P xð Þdx{log2 Dr ð20Þ

Since the second term of Equation 20 only depends on the signal

distribution and the third term only depends on the resolution Dr,

they are constant, and we have to maximize:

ð?

{?

P xð Þlog2

df xð Þ
dx

����
����dx?max: ð21Þ

To compare how well a given sensory signal X with distribution

P(x) is encoded by response functions with different

parameterizations (rI and rII), we compute the difference in

mutual information DI. Under the assumption of small additive

noise and for a fixed resolution Dr, this difference in mutual

information is given by

DI~

ð?

{?

P xð Þlog2

drII xð Þ
dx

����
����dx{

ð?

{?

P xð Þlog2

drI xð Þ
dx

����
����dx: ð22Þ

Figure 6. Time course of adaptation and recovery of a T. leo cell (A1,A2) and of a T. oceanicus cell (B1,B2). The response to the test
stimulus is plotted against the duration of the adapting stimulus (A1,B1) and the delay between the adapting and the test stimulus (A2,B2). Displayed
are the average spike counts in the 200 ms time window of the test stimulus (cf. Figure 4). The intensity of the test stimulus was equal to the average
intensity of the adapting stimulus (0 dB relative intensity). The error bars denote the standard deviation. Solid lines indicate the exponential function
with the set of parameters with the highest value of the posterior distribution (see Methods, Bayesian data analysis).
doi:10.1371/journal.pcbi.1000182.g006
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Assuming the sigmoid transfer function of Equation 5 and the

bimodal or trimodal stimulus distribution (see Methods, Stimulus

protocols), we obtain the optimal values for the response curve

parameters A, B50, and C using Equation 21; the optimal value for

the slope S50 is then computed using Equation 9. Figure 8A shows

the predicted response curves for both stimulus distributions, under

the assumption that the response curve parameters B50 and S50 can

be optimally adjusted. The optimal value for B50 is 21.50 dB for the

bimodally distributed stimulus and 0.00 dB for the trimodally

distributed stimulus, corresponding to a response curve shift of

+1.50 dB. To cover the whole stimulus range, the slope should

decrease for the trimodally distributed stimulus compared to the

bimodally distributed stimulus by 235.3%, from 0.25 dB21 to

0.16 dB21. If we assume that the neural system can only adjust B50

and the slope S50 is constant, the infomax principle would still

predict a shift of the response curve of 1.50 dB. Evaluating

Equation 22, the infomax principle then predicts that information

transmitted about the trimodal stimulus will improve by 0.61 bit for

the trimodally adapted response curve compared to the bimodally

adapted response curve. Note that this calculation involves the

assumption of low additive noise and a fine resolution Dr. Therefore,

we also calculated the predicted increase in information transmis-

sion numerically (see Methods, Numerical estimation of mutual

information), assuming discrete, Poisson distributed spike counts. In

this case, the improvement in information transmission depends on

the maximum spike count, defined by the response curve parameter

A. For the experimentally observed maximum spike counts in the

range of 20 spikes to 55 spikes we obtain an increase from 0.12 bit

(20 spikes) to 0.25 bit (55 spikes).

Selective coding. Selective coding is a concept which is less

well defined than the infomax principle, because it involves an

assumption about the ‘signal’ vs. the ‘background’ part of a

complex stimulus. In the following we assume, that the loudest

signals of artificial environments, i.e., the ‘loudest’ Gaussian

distributions of the multimodal stimulus distributions (see

Figure 8B) are encoded in an optimal way while the other

(‘background’) signals are suppressed. To compute the optimal

response curve for the bimodal (trimodal) stimulus distribution the

objective is to maximize Equation 21 taking the Gaussian with

m= 0 dB (m= 3 dB) as the ‘signal’ part. Figure 8B shows the

predicted response curves when we assume that the loudest signal

should be encoded reliably and other signals should be suppressed.

The predicted difference between the response curve optimized for

the bimodal and trimodal stimulus is a shift by 3.00 dB (from

B50 = 0.00 dB to B50 = 3.00 dB). The slope S50 does not change

and remains at 0.98 dB21.

Surely, the response curves shown in Figure 8B are idealized but

they illustrate the consequences of the selective coding vs. the

infomax principles: according to the infomax principle, informa-

tion transmission is optimized for the whole stimulus range, while

selective coding implies a selective enhancement or a selective

suppression of the transmitted information for certain kinds of

stimuli. To quantify this selective stimulus encoding, we calculated

the information associated with parts of the stimulus range

numerically (see Methods, Numerical estimation of mutual

information), for the trimodal stimulus and the predicted response

curves (Figure 8B). The maximum responses A were determined

by the experimental data (from 20 spikes to 55 spikes), and noise

was Poisson distributed. Next, the mutual information is evaluated

for the stimulus range of 24.5 dB to 1.5 dB (background signals)

and for the range of 1.5 dB to 4.5 dB (loudest signal) using

Equation 14. We find, that the information transmitted about the

loudest peak of the trimodal stimulus distribution is enhanced by

0.51 bit (0.70 bit) for A = 20 (55) spikes when using the optimal

response curve for the trimodal stimulus, while at the same time

less information (20.811 bit for A = 20 spikes; 21.07 bit for A = 55

spikes) is conveyed about the first and second peak.

Optimality vs. improvement. The infomax and selective

coding hypotheses (as specified above) both make quantitative

predictions of the optimal response curve parameters and how

these parameters should change to optimally adjust the response

curve to a changed stimulus statistics. If selective coding is the

underlying principle, the response curve should be steeper than for

the infomax principle. When the environment changes from a

bimodal to a trimodal input distribution, selective coding predicts

a large shift of the response curve towards higher stimulus

amplitudes, whereas the slope should remain constant. The

infomax principle, on the other hand, predicts a less pronounced

shift and a decrease in slope.

However, architectural constraints might prevent the AN2

neuron from achieving the theoretically optimal response curve. It

is conceivable that, for example, the neural gain cannot increase

Figure 7. Combined posterior distribution (cf. Methods, Bayesian data analysis) of the adaptation time constants ta (A) and the
recovery time constants tr (B) for the T. oceanicus (solid line) and T. leo (dotted line) AN2 cells. Solid (dotted) lines on top of the figures
depict the 95% posterior intervals.
doi:10.1371/journal.pcbi.1000182.g007
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such that the slope of the stimulus-response curve would be

optimal for encoding only the loudest peak of the stimulus

distribution as required by ‘optimal’ selective coding. How can we

quantify the improvement in neural coding according to the one

or the other hypothesis without requiring optimality?

Both the infomax principle and selective coding also predict

characteristic changes in mutual information between the stimulus

and the response for a change from the bimodal to the trimodal

environment. Following the infomax principle, the associated

response curve change leads to an increase in mutual information.

Selective coding, on the other hand, leads to a selective decrease

(increase) of the mutual information for the stimuli with low (high)

intensities. Thus, even if architectural constraints might prevent

the AN2 neuron from achieving the theoretically optimal response

curve, the selective increase (decrease) in mutual information

provides a test for the infomax (selective coding) hypothesis.

Adaptation to the Statistics of the Acoustic Environment
Figure 9 shows example traces and the amplitude distribution of

the bimodal and trimodal sound stimuli together with the

corresponding neural responses of a typical AN2 cell (instanta-

neous firing rate). Adaptation leads to a decrease of the neural

responses to 0 dB peak signals (drawn from the high amplitude

and intermediate amplitude peak for the bimodal and trimodal

distribution) with time.

We recorded responses from 25 AN2 cells for the two stimulus

paradigms, 12 cells from T. oceanicus and 13 cells from T. leo. Since

we found no significant differences in the adaptation and recovery

time constants between the two species, we pooled the data from

both species together for further analysis.

All response curves were quantified using sigmoid input-

response functions (cf. Equation 5), and a Bayesian approach

was used to determine the distribution of the corresponding

parameters A, B50, and C (see Methods, Bayesian data analysis).

Some cells did not show response saturation in the trimodal

stimulus condition within the range of stimulus intensities we

tested. In these cases, the uncertainty of the estimate of parameter

A is high, and is reflected by a broad posterior distribution for this

parameter. For most of the cells the test stimuli were strong

enough to drive the cell to its maximum rate in both conditions.

Although the response maximum occurs at higher stimulus

intensities in the trimodal condition, we did not observe a

systematic change of the saturation response. To fit the response

curves, we assumed that the response maximum A has the same

value for both stimulus conditions. Five cells were excluded from

further analysis because the response curve corresponding to the

expected parameter values (posterior means) did not provide a

good fit to the data (the model accounted for less than 95% of the

variability in the data; R2,0.95). The further analysis is based on

the remaining 20 cells.

A representative example of adapted response curves of an AN2

neuron is shown in Figure 10A1, where the input-response

function is plotted for the parameters A, B50, and C, which

correspond to the expected parameter values (posterior means).

After adaptation to the bimodally distributed stimulus (filled

symbols), the cell fired with 50% of its maximal rate (parameter

B50) at about 1.75 dB. Adaptation to the trimodally distributed

stimulus (open symbols) shifted the response curve to higher

stimulus intensities while the slope of the response curve changed

only slightly. In fact, the results of the Bayesian parameter

estimation, depicted in Figure 10A2, revealed that the response

curve parameter B50 significantly increased for the trimodal

stimulus distribution. The mean of the posterior density changed

from 1.74 dB to 3.23 dB (see Methods, Bayesian data analysis for

the definition of statistical significance using Bayesian posterior

intervals), while there was no significant change for the slope S50

(14% decrease from 0.160 dB21). Figure 10B shows data from a

second cell. The mean value of the parameter B50 is 3.47 dB for

the bimodally adapted response curve, and increased by 1.86 dB

through adaptation to the trimodally distributed stimulus. The

increase of B50 was again significant. The slope increased by 15%

(from 0.161 dB21 for adaptation to the bimodal stimulus) but

Bayesian analysis revealed that the increase in slope was not

significant. Figure 10C shows data from a third cell. This cell

showed a significant albeit less pronounced change in parameter

B50 of +1.06 dB accompanied by a significant decrease in the slope

S50 (decrease of the posterior mean by 23.5%).

Adaptation induced changes in the response curve

parameters B50 and S50. Figure 11 summarizes the mean

values of the posterior densities of the B50 parameters for all 20 AN2

cells. Figure 11A1 shows the values of parameter B50 after

adaptation to the bimodal stimulus. The median value in the

population is 2.34 dB (mean: 2.43 dB) and 2.02 dB (mean: 2.07 dB)

for cells in which adaptation to the trimodal stimulus led to

Figure 8. Optimal response curves for the bimodal (circles) and
trimodal (squares) stimulus distribution predicted by the
infomax principle (A) and the selective coding hypothesis (B).
The figures show the predicted relationship between the response
variable (spike rate) and the stimulus intensity. The Gaussian curves
depict the probability distributions of stimulus intensity, where the dark
shaded areas under the curve denote the bimodal stimulus distribution
and the light shaded area under the curve the additional peak of the
trimodal stimulus distribution (cf. Figure 1).
doi:10.1371/journal.pcbi.1000182.g008
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individual statistically significant changes in parameter B50

compared to adaptation to the bimodal stimulus (black

distribution). The optimal B50 value predicted by the infomax

principle is 21.5 dB (star), while selective coding predicts a B50

value of 0 dB (circle). The combined posterior distribution of B50 (cf.

Methods, Bayesian data analysis) is shown in Figure 11A2 (mean:

2.43 dB). The measured B50 values are significantly larger than the

values predicted by either hypotheses (infomax: 21.5 dB, selective

coding: 0 dB). Figure 11B1 shows the histogram of B50 values after

adaptation to the trimodal stimulus (median: 3.92 dB, mean:

4.04 dB; individually significant cells: median: 3.57 dB, mean:

3.69 dB). These values are significantly larger than the infomax

prediction, but similar to the selective coding prediction

(Figure 11B2). Figure 11C1 quantifies the difference of the

parameter B50 between the two adaptation conditions. The

median of the distribution of differences is 1.53 dB (mean:

1.61 dB). The right-tailed posterior interval in Figure 11C2

excludes the value 0 dB, indicating that adaptation to the

trimodal stimulus significantly shifts the distribution of response

curves towards higher signal intensities. Individual differences are

statistically significant in 8 of 20 cells (see Methods, Bayesian data

analysis); the median of the changes in these cells is 1.46 dB (mean:

1.62 dB). The observed shifts are smaller than expected for optimal

selective coding (predicted shift: 3 dB), but compatible with the

infomax principle (predicted shift: 1.5 dB). Due to the high absolute

values of the thresholds, however, the response curves do not allow

for reliable encoding of the whole stimulus range.

Figure 12 summarizes the mean estimates of the slope S50, for

all 20 AN2 cells. The slopes in the bimodal adaptation

paradigm (shown in Figure 12A1) have a median value of

0.16 dB21 (mean: 0.17 dB21), and are significantly smaller than

the value of 0.98 dB21 predicted by the selective coding

hypothesis (Figure 12A2). The observed slopes S50 after

adaptation to the trimodal stimulus are shown in Figure 12B,

and the relative change of the slope compared to the bimodal

paradigm is quantified in Figure 12C. The slope decreased for

most cells (median: 215.1%, mean: 215.6%). Significant

changes in S50 were found individually in 5 of 20 cells, and

Figure 9. Representative responses of an AN2 cell (T. leo) to the amplitude-modulated noise stimuli of Figure 3C. (A1,A2) Bimodal
stimulus distribution. The envelope of an amplitude-modulated stimulus and the distribution of the stimulus amplitude are shown in (A2), the
corresponding instantaneous spike rate is shown in (A1). (B1,B2) Trimodal stimulus distribution. The envelope of an amplitude-modulated stimulus
and the distribution of the stimulus amplitude are shown in (B2), the corresponding spike rate is shown in (B1). The stimuli were presented 45 times
and the recorded spike trains (1 ms resolution) were convolved with a Gaussian kernel (s= 5 ms). The instantaneous spike rates were estimated by
averaging over the 45 repetitions.
doi:10.1371/journal.pcbi.1000182.g009
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all of those cells showed decreases in slope. However, the

changes are less pronounced than predicted by the infomax

principle.

We conclude that the main difference between the response

curves adapted to the bimodal vs. the trimodal stimulus

distribution is the shift towards higher stimulus intensities and a

reduction in slope. This shift, however, is less pronounced than

predicted by optimal selective coding, and the observed decrease

in slopes is smaller than predicted by the infomax principle and

larger than expected by selective coding. Together with the fact,

that the absolute thresholds are too high, these results seem not to

favor either of the two coding hypotheses, if optimality is required.

Figure 10. Typical examples of stimulus response curves after adaptation to the bimodal and to the trimodal stimulus distributions
(A1,B1,C1) and posterior densities of the corresponding response curve parameters (A2,B2,C2). (A1,A2,C1,C2) Results for AN2 cells of T.
leo. (B1,B2) Results for an AN2 cell of a T. oceanicus. (A1,B1,C1) Circles and squares denote the mean spike counts in a 200 ms time window of the test
stimulus after adaptation to the bimodal and trimodal distributions, measured for 9 different relative intensities of the test stimulus (cf. protocol of
Figure 3C). Error bars denote the standard deviation. Solid lines indicate the expected response curve, i.e., the response curve with the set of
parameters with the mean value of the posterior distribution (see Methods, Bayesian data analysis). The shaded areas depict the intensity distribution
of the stimuli (dark: bimodal stimulus distribution, light: additional peak of the trimodal stimulus distribution). (A2,B2,C2) Marginal posterior densities
(cf. Methods, Bayesian data analysis) of the response curve parameters B50 (location) and S50 (slope). The posterior densities after adaptation to the
bimodal (solid lines) and trimodal (dotted lines) stimulus distributions are shown in the top panels and the corresponding posterior densities of the
changes (DB50, DS50) between stimulus conditions in the bottom panels. Solid (dotted) lines on top of the figures depict the 95% posterior intervals.
Significant changes between stimulus conditions are indicated by a star.
doi:10.1371/journal.pcbi.1000182.g010
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Reliability of stimulus encoding. Adaptation in a

biological system, which is constrained in multiple ways, may fall

short of achieving the theoretical optimum, but may still lead to an

improved representation according to the one or the other

principle. In order to test for this, we calculate the mutual

information between the stimulus and the neural response for the

whole and for the high intensity part of the stimulus range.

Therefore, 10000 samples were drawn from the joint posterior for

the parameters A, B50, C, for each cell and for each stimulus

condition, and the corresponding response curves were calculated

using Equation 5. For each response curve, the joint distribution of

stimulus and spike count was calculated assuming that spike counts

are Poisson distributed with the underlying average spike count

given by the response curve (cf. Methods, Numerical estimation of

mutual information). Each of these joint distributions determines

the mutual information (see Equations 13 and 14) that corresponds

to a particular response curve.

We first consider the whole stimulus range from 24.5 dB to

4.5 dB and calculate the mutual information between the

stimulus (trimodal distribution) and the neural response, for the

response curves obtained after adaptation to the bimodal and

trimodal stimulus distributions. According to the infomax

principle the purpose of adaptation is to reliably encode the

whole stimulus range and thus, the mutual information between

the trimodal stimulus and the neural response should increase

for the trimodally compared to the bimodally adapted response

Figure 11. Summary of adaptation induced changes of the response curve parameter B50 for all 20 AN2 cells. Distribution of the mean
values of the parameters B50 for individual cells (A1) and combined posterior density (see Methods, Bayesian data analysis) over all cells (A2) after
adaptation to the bimodal stimulus distribution. (B1,B2) Distribution and combined posterior density of the parameter B50 after adaptation to the
trimodal stimulus distribution. (C1,C2) Distribution and combined posterior density of the change of the parameter B50 between the two stimulus
distributions. Symbols depict the values predicted by infomax (stars) and the selective coding hypothesis (circles). Triangles denote the median value.
The distribution of cells that showed changes in B50 that were significant (Bayesian posterior intervals, see Methods, Bayesian data analysis) is marked
black in (A1,B1,C1). Shaded areas depict the two-tailed 95% posterior intervals in (A2,B2) and the right-tailed 95% posterior interval in (C2).
doi:10.1371/journal.pcbi.1000182.g011
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curve (predicted increase between 0.12 bit and 0.25 bit,

depending on the maximum spike count; see Quantitative

predictions).

For the example neurons in Figure 10, however, we observed a

significant decrease in mutual information, varying from a mean

value of 20.183 bit (Figure 10A) to 20.372 bit (Figure 10B) and

20.187 bit (Figure 10C). This trend is confirmed by a full analysis

of all 20 recorded AN2 cells (Figure 13A), which shows that

mutual information decreased for all cells. The median is

20.21 bit (mean: 20.21 bit), and this decrease is significant (the

left-tailed 95% posterior interval in Figure 13A2 excludes the

value 0 dB). 15 of 20 cells showed an individually statistically

significant decrease in mutual information (median 20.24 bit,

mean 20.24 bit; black distribution in Figure 13A1). These

findings provide strong evidence against the infomax principle.

In order to test the selective coding hypothesis, we calculated

the mutual information separately for the stimulus range from

1.5 dB to 4.5 dB (high-intensity peak, ‘foreground’) and from

24.5 dB to 1.5 dB (low-intensity peaks, ‘background’; see

Quantitative predictions) using Equation 14. For the cells shown

in Figure 10, the mutual information decreased significantly by

20.184 bit (Figure 10A), 20.335 bit (Figure 10B) and 20.182 bit

(Figure 10C) for the stimulus range from 24.5 dB to 1.5 dB.

While the mutual information for the peak of the distribution with

Figure 12. Summary of adaptation induced changes of the slope S50 of the response curves. Distribution of the mean values of the
parameters S50 for individual cells (A1) and combined posterior density (cf. Methods, Bayesian data analysis) over all cells (A2) after adapting to the
bimodal stimulus distribution. (B1,B2) Distribution and combined posterior density of the parameter S50 after adapting to the trimodal stimulus
distribution. (C1,C2) Distribution and combined posterior density of the relative change of S50 between the two stimulus distributions. Symbols
depict the values predicted by infomax (stars) and the selective coding hypothesis (circles). Triangles denote the median value. The distribution of
cells that showed changes in S50 that were significant (Bayesian posterior intervals, Methods, Bayesian data analysis) is marked black in (A1,B1,C1).
Shaded areas in (A2,B2,C2) depict the 95% posterior intervals.
doi:10.1371/journal.pcbi.1000182.g012
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the highest intensity increased slightly by +0.018 bit for the cell

shown in Figure 10A, in other cells, such as the ones shown in

Figure 10B and 10C, the mutual information decreased not only

for the ‘background’ but also for the loudest signal (20.038 bit vs.

20.005 bit). However, these changes in encoding of the loudest

signal were not statistically significant. Figure 13B summarizes the

change in mutual information for the range from 24.5 dB to

1.5 dB for all 20 AN2 cells. Mutual information decreased

significantly (the left-tailed 95% posterior interval in Figure 13B2

excludes the value 0 dB; median 20.19 bit, mean 20.20 bit), and

the decrease was individually significant for 16 of the 20 cells. The

information transmitted about the ‘loudest peak’ (Figure 13C), in

the interval from 1.5 dB to 4.5 dB, remained constant (median

0.00 bit, mean 20.01 bit) and is not significantly different from

Figure 13. Adaptation induced changes in the mutual information between the stimulus and the neural response. (A1,A2) Distribution
and combined posterior density of changes in the transmitted mutual information when considering the whole stimulus range (relative intensity
from 24.5 dB to 4.5 dB) and the trimodal amplitude distribution. For each cell the change of the mutual information is calculated as the difference of
the mutual information for the ‘trimodal’ (neural response adapted to the trimodal stimulus) and the ‘bimodal’ (neural response adapted to the
bimodal stimulus) response curve. The distribution in (A1) is based on the mean values of changes in mutual information for individual cells. (B1,B2)
Distribution and combined posterior density of changes in the transmitted mutual information when considering the stimulus range from 24.5 dB to
1.5 dB (including only the two low-intensity peaks of the trimodal stimulus distribution). (C1,C2) Distribution and combined posterior density of
changes in the transmitted mutual information when considering the stimulus range from 1.5 dB to 4.5 dB (including only the high-intensity peak of
the trimodal stimulus distribution). Triangles denote the median value. The distribution of cells that showed changes that were significant (Bayesian
posterior intervals, Methods, Bayesian data analysis) is marked black in (A1,B1,C1). Shaded areas depict the left-tailed 95% posterior intervals in
(A2,B2) and the two-tailed 95% posterior interval in (C2).
doi:10.1371/journal.pcbi.1000182.g013
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zero (the 95% posterior interval in Figure 13C2 includes the value

0 dB). Although these results are consistent with the selective

decrease of information for low-intensity stimuli, they contradict

the selective coding hypothesis because information does not

increase for high-intensity stimuli, as would be required for an

improvement of the neural representation.

Discussion

Neurons in the Auditory Pathway of Crickets Adapt on
Several Time Scales

In the cricket auditory system, time scales of adaptation

observed at first level interneurons range from short (below

100 ms, AN1: [21]) over intermediate (ca. 300 ms; AN2: [22],

receptors: [19]) to long time constants (ca. 10 s; AN2: [22],

receptors: [19]). In the present study, we report firing rate

adaptation with a time constant of about one second not reported

before in the auditory ascending neuron AN2 of T. oceanicus and T.

leo (Figure 6 and Table 1). At present the origin of adaptation in

this small network is not known. There is likely a contribution to

adaptation from the receptor neurons [19]. At the level of

interneurons, both local cells (ON1, [11,20]) as well as the

ascending interneuron AN2 [22] exhibit long-lasting hyperpolar-

izations with intermediate time constants (approximately 5 s) that

may reflect adaptation processes at the level of the spike-generator

in these cells. The primary task of the first stage of auditory

processing in crickets is to maintain and possibly to condense

relevant information for object localization and recognition for

higher computational centers in the brain. In this context, it is

remarkable to note that already at the first synapse several time

scales of adaptation can be observed, similar to those reported

from vertebrate systems [36] as well as other sensory modalities

[6]. The adaptation time scale we report here seems ideal for an

adjustment of the coding scheme to the current sensory

environment. However, we find no enhancement of information

transfer in the neuron under study. We thus report the unusual

case that adaptation seems to rather selectively suppress sensory

coding instead of improving it.

Bayesian Parameter Estimation
We characterized the neural response using a sigmoid response

curve and estimated the model parameters from the measured

spike counts using a Bayesian approach. An important feature of

the analysis is that it yields the joint posterior distribution of the

model parameters which allows us to calculate the posterior

distribution and precise confidence limits of derived quantities

such as mutual information (see [47] for the pitfalls of entropy

estimation from undersampled discrete data such as ‘spike words’).

The Bayesian framework can also be applied to other

experimental paradigms. One limitation of the approach present-

ed here is that the calculation of the joint posterior density at a grid

of points is only feasible for models with few parameters. However,

for more complex models, approximations of the posterior

densities can be obtained using Markov chain simulation [39].

Adaptation and the Infomax Principle
We measured how adaptation changes the response curves of

AN2 cells depending on different stimulus conditions (Figure 10)

and found that the changes are not compatible with infomax

(optimal coding of the entire stimulus range). In general, our

results indicate a response threshold that is too high to allow for

reliable encoding of the whole stimulus range (Figures 10 and 11).

Most remarkably, adaptation reduced the amount of encoded

information about the stimulus when considering the whole range

of input signals (Figure 13A). This is in contrast to other studies (fly

visual system [6,23]; midbrain of guinea pigs [5]; inferior colliculus

of cats [48]; songbird auditory forebrain [8]; rat barrel cortex [7])

that reported that stimulus encoding is compatible with infomax.

However, the infomax principle, which considers sensory systems

as communication channels that are optimized for preserving all

information from the sensory input, may fail to explain neural

coding when considering stages where actual processing of

information takes place (instead of mere transmission). Indeed, a

recent study by Ringach and Malone [49] has shown that neurons

in the primary visual cortex of macaque maintain an operating

point that does not maximize information transmission but is

tuned to the detection of signals in background noise.

Adaptation and the Selective Coding Hypothesis
We also tested if the response curve changes induced by

adaptation are compatible with selective coding (reliable coding of

the most intense signal while suppressing the ‘background’).

Selective coding can be seen as the simplest form of separation of

neural representations of discrete objects in multiple channels or

‘streams’ that has been found in higher auditory processing levels

in vertebrates [35]. Neurons in the inferior colliculus of cats

display the same firing pattern when a stimulus composed of a

signal with or without background noise is presented, indicating a

representation of the signal only [50], and in auditory cortex,

neurons show locking to the amplitude modulations of a low level

sound but not to the noise it is embedded in [34]. In insects, the

principle has been found in bushcrickets, separating single males

from background choruses [33] and has been suggested to be at

work in crickets as well [20]. However, the selective coding

principle is not clearly defined in an information theoretical

framework. Here, we formalize the hypothesis and accordingly

make two predictions about the change of information transfer

with adaptation: (1) information conveyed about the ‘background’

should decrease, while (2) transmission for the high-intensity

signals should increase. Indeed, we find that the neural output of

the AN2 conveys less information about the first two peaks

(‘background’) of the stimulus distribution (Figure 13B), supporting

the selective coding hypothesis. However, if we take only the

mutual information between the loudest part of the signal and the

neural response into account, information rate remains nearly

constant (Figure 13C). This contradicts the selective coding

hypothesis.

The Computational Role of Adaptation
Surprisingly, our results suggest that instead of improving

sensory coding, adaptation in the AN2 decreases information

transmission and leaves higher processing centers in the cricket

brain with less (or at most equal) information, regardless of what

part of the stimulus is considered. What could be the reason for

this?

Adaptation leads to a selective decrease in mutual information

for the low-intensity sounds, mainly by shifting the stimulus-

response curves towards higher stimulus intensities. As a

consequence, spike counts are reduced for low-intensity signals

(cf. Figure 10). Through adaptation to the trimodal stimulus,

average spike counts in response to the 0 dB test stimulus

decreased for 18 of 20 cells (mean decrease: 42%, standard

deviation: 31%) compared to the spike counts after adaptation to

the bimodal stimulus. Thus, in an ecological setting, where

background signals are present and foreground signals are

changing their presence dynamically, background signals trans-

mitted to downstream neurons by the AN2 will be reduced. We

speculate that this might reduce the potential interference of
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‘background’ and ‘foreground’ spikes in downstream processing.

However, the observed response curves do not represent an

optimal solution for the task of filtering out the most intense part of

the stimulus.

Additionally, the algorithm behind adaptation could serve the

goal of enhancing the representation of even louder signals,

occurring with less probability. Examples, in which optimal coding

is not used to maximize the average information gained about high

probability stimuli include auditory receptors of locusts which

seem to maximize the information gained about specific, but less

often occurring aspects of the stimuli [51] and stimulus specific

adaptation in single neurons of auditory cortex that leads to an

enhanced representation of low-probability sounds deviating from

the distribution of the surrounding signal [36]. This can be seen as

a form of novelty detection, where part of the dynamic range is

preserved for even louder sounds in a way that the sensory

pathway is always able to detect brief, transient high-intensity

signals [49]. In order to test if the representation of loud signals is

enhanced, we calculated information transmission for a signal

distribution that has an additional peak (modeled by a fourth

Gaussian distribution with mean m4 = +6 dB). Indeed, we find that

adaptation increases mutual information in the stimulus range

from 4.5 dB to 7.5 dB for all cells. This increase is significant in 6

of 20 cells, but it is not statistically significant on the population

level (the 95% interval of the combined posterior density ranges

from 20.015 bit to 0.243 bit).

In this context, it should also be noted that the AN2 neuron in

crickets may serve several functions. Under most stimulus

conditions, relatively low firing rates will likely monitor slowly

changing signals as observed in the present study (up to about

5 Hz). The AN2, however, can also operate in a burst mode with

high intra-burst firing rates for the detection of bat calls [16] for

which our analysis is not appropriate. Nevertheless, low firing rates

are likely to transmit relevant information since input-response

curves built from spike counts similar to those in the present study

are maintained at somewhat higher thresholds in wingless cricket

morphs that are not at risk from bat predation [18]. In addition to

its relevance for slow signal features, the adaptation time course

reported here is likely to adjust the operating point of the faster

response dynamics (i.e., bursts). Apart from possible physiological

limitation, the findings we report here could be the result of a

trade-off between setting the operating regime for the bursting

mode on the one hand and suppression of background noise on

slower time scales on the other hand.

Generally, a neural system may achieve improved performance

by means of different mechanisms as has been shown in a recent

modeling study [52]. Depending on the specific physiological

constraints, the resulting neural representation can be optimal or a

trade-off between optimality and the flexibility of the neural

circuit. Indeed, we found that, for example, the slope of the

stimulus-response curve is not steep enough for optimal encoding

of only the loudest peak of the bimodal or trimodal stimulus

distribution. Possibly the neural gain can only increase to a limited

value, leading to a decrease—rather than an increase—in

information transmission for the chosen experimental paradigm.

Although we cannot give a conclusive answer on what the

adaptation-induced selective suppression in the AN2 serves for yet,

the paradigm we propose here is rather general and should be

applicable to other sensory systems as well. Importantly, our

paradigm allows quantifying the improvement in neural coding

without requiring that neural response curves achieve optimality.

Measuring the information between the proposed relevant

stimulus and the neural output allows testing for different

hypotheses on what a sensory pathway actually adapts to.

Ultimately, testing various hypotheses on different stimulus

ensembles will yield important insights on what is or what is not

the relevant part of a sensory environment for a given sensory unit.
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