

NIH Public Access

Author Manuscript

Biochemistry. Author manuscript; available in PMC 2008 August 29.

Published in final edited form as: *Biochemistry*. 2007 February 20; 46(7): 1791–1798. doi:10.1021/bi062094g.

Effect of Mutations in the Cytochrome b *ef* Loop on the Electron Transfer Reactions of the Rieske Iron-Sulfur Protein in the Cytochrome bc₁ Complex

Sany Rajagukguk^{1,a}, Shaoqing Yang^{2,a}, Chang-An Yu², Linda Yu², Bill Durham¹, and Francis Millett^{1,*}

1 Department of Chemistry and Biochemistry University of Arkansas Fayetteville, Arkansas 72701

2Department of Biochemistry and Molecular Biology Oklahoma State University Stillwater, Oklahoma 74078

Abstract

Long range movement of the iron-sulfur protein (ISP) between the cytochrome b (cyt b) and cyt c_1 redox centers plays a key role in electron transfer within the cyt bc_1 complex. A series of 21 mutants in the cyt b *ef* loop of *Rhodobacter sphaeroides* cyt bc_1 were prepared to examine the role of this loop in controlling the capture and release of the ISP from cyt b. Electron transfer in the cyt bc_1 complex was studied using a ruthenium dimer to rapidly photooxidize cyt c_1 within 1 µs and initiate the reaction. The rate constant for electron transfer from the iron-sulfur center [2Fe2S] center to cyt c_1 was $k_1 = 60,000 \text{ s}^{-1}$. Famoxadone binding to the Q_0 site decreases k_1 to 5,400 s⁻¹, indicating that a conformational change on the surface of cyt b decreases the rate of release of the ISP from cyt b. The mutation I292A on the surface of the ISP binding crater decreased k_1 to 4,400 s⁻¹, while addition of famoxadone further decreased it to 3,000 s⁻¹. The mutation L286A at the tip of the *ef* loop decreased k_1 to 33,000 s⁻¹, but famoxadone binding caused no further decrease, suggesting that this mutation blocked the conformational change induced by famoxadone. Studies of all the mutants provide further evidence that the *ef* loop plays an important role in regulating the domain movement of the ISP to facilitate productive electron transfer and prevent short-circuit reactions.

The cytochrome bc₁ complex (ubiquinol:cytochrome c reductase) is an integral membrane protein in the electron transport chains of mitochondria and many respiratory and photosynthetic prokaryotes (1,2). The complex contains the Rieske iron-sulfur protein (ISP), cyt c_1 , and two b-type hemes (b_L and b_H) in the cyt b subunit (1,2). The complex translocates four protons to the positive side of the membrane as two electrons are transferred from ubiquinol (QH₂) to cyt c using a widely-accepted Q-cycle mechanism (2). In a key bifurcated reaction, QH_2 binds to the Q_0 site located near the outside of the membrane, and transfers its first electron to the Rieske iron-sulfur center ([2Fe2S]), and then to cyt c_1 and cyt c(1,2). The second electron is transferred from semiquinone in the Q_0 site to cyt b_L and then to cyt b_H , leading to reduction of ubiquinone in the Qi site to the semiquinone. This cycle is repeated to reduce the semiquinone at the Qi site to QH2. A recent freeze-quench EPR study has shown that QH₂ reduced [2Fe2S] and cyt b_1 simultaneously with a half-time of 250 µs, providing direct evidence for the bifurcation mechanism, and indicating that either the semiguinone is very short-lived or the reaction is concerted (3). X-ray crystallographic studies have shown that the conformation of the ISP depends on the presence of inhibitors in the Qo site as well as the crystal form (4-7). An anomalous signal for [2Fe2S] is found close to cyt b_L in native

^{*}To whom correspondence should be addressed FAX: 479–575–4049, Phone: 479–575–4999, E-mail: millett@comp.uark.edu. ^aThese authors contributed equally to this study.

I4₁22 bovine crystals, but its intensity is small, indicating that the ISP is conformationally mobile (4,7). In beef, chicken and yeast cyt bc₁ crystals grown in the presence of stigmatellin, the ISP is in a conformation with [2Fe2S] proximal to the cyt b_L heme, called the *b* state (5-8). However, in native chicken or beef P6₅22 crystals in the absence of Q₀ site inhibitors, the ISP is in a conformation with [2Fe2S] close to cyt c₁, called the c₁ state (5,6). A novel shuttle mechanism for the ISP has been proposed based on these structural studies (4-7). With the ISP initially in the b state, QH₂ in the Q₀ site transfers an electron to the oxidized [2Fe2S] center. The ISP then rotates by 57° to the c₁ state where reduced [2Fe2S] transfers an electron to cyt c₁. The main features of this mobile shuttle mechanism have been supported by a variety of experimental studies using mutation and/or cross-linking to immobilize the ISP or alter the conformation of the neck region (9-20).

An important question regarding the Q-cycle mechanism is how QH_2 at the Q_0 site can deliver two electrons sequentially to the high and low potential chains, even though thermodynamics would favor delivery of both electrons to the high potential chain (1,2). A number of mechanisms have been proposed in which the conformations of the ISP and/or the quinone substrates are controlled to favor the reversible oxidation of QH2 and minimize short circuit reactions (21-29). Studies of the effects of Q_0 site inhibitors have indicated that there is a linkage between the occupant of the Qo site and the conformation and dynamics of the ISP. Stigmatellinforms a hydrogen bond with the His-161 ligand of the [2Fe2S] center, thus increasing its redox potential by 200-250 mV and immobilizing the ISP in the b conformation (5-8,30). Famoxadone binding to the Q_0 site leads to significant conformational changes on the surface of cyt b which trigger a long-range conformational change in the ISP from the mobile state to a state with [2Fe2S] proximal to cyt b (31). The ef loop plays an important role in relaying conformational changes in the Qo pocket to surface domains that control the binding of the ISP. Moreover, molecular dynamics simulations have shown that residues 263–268 of the ef loop are displaced by up to 2 Å as the ISP rotates from the b state to the c_1 state (32). In this paper, the effects of mutations of ef loop residues on electron transfer from QH₂ to the iron-sulfur center and then to $cyt c_1$ are studied using the binuclear ruthenium complex, Ru_2D , to rapidly photooxidize cyt c_1 and initiate the reaction (9,17). The ruthenium photooxidation method provides a unique way to measure the dynamics of the ISP domain movement from the b state to the c_1 state (9,17,33).

Experimental Procedures

Materials

A modification of the method of Downard et al. (34) was used to prepare Ru₂D. Succinate, *p*-benzoquinone and antimycin A were obtained from Sigma Chemical Co., stigmatellin was purchased from Fluka Chemical Co., and N-Dodecyl- β -D-maltoside was obtained from Anatrace. [Co(NH₃)₅Cl]²⁺ was synthesized as described in reference (35), and 2,3-dimethoxy-5-methyl-6-(10-bromodecyl-) 1,4-benzoquinol, Q₀C₁₀BrH₂, was prepared as previously reported (36). Succinate cytochrome c reductase (SCR) was purified as previously described (37).

Generation of R. sphaeroides strains expressing the his6-tagged bc1 complexes

The QuickchangeTM XL site-directed mutagenesis kit from Stratagene was employed for mutagenesis. Plasmid pGEM7Zf(+)-fbcB was used as a template and forward and reverse primers were used for PCR amplification. Template plasmid pGEM7Zf(+)-fbcB was constructed by ligating the fragment between NsiI and XbaI in the plasmid pRKDfbcFBC_{6H}Q into NsiI and XbaI sites of the pGEM7ZF(+) plasmid. The primers used are listed in the Table 1.

After mutagenesis, NsiI-XbaI fragment from the pGEM7Zf(+)-fbcBm was ligated into NsiI and XbaI sites of the pRKDfbcFB_{bpKm}C_{6H} plasmids which contained Kanamycin-resistant gene in the BstI and pinA sites (38). Strains containing recombinant plasmid will be sensitive to antibiotics kanamycin. The pRKDfbcFBmC_{6H}Q plasmid in *E. coli* S17–1 cells was mobilized into *R. sphaeroides* BC-17 through conjugation (38). The engineered mutations were confirmed by DNA sequencing before and after photosynthetic growth as previously reported (38), which was performed by the Recombinant DNA/Protein Core Facility at Oklahoma State University.

Mutant cytochrome bc_1 was purified as described by Xiao et al.(39). The steady-state activity of bc_1 complexes was determined as described by Liu et al.(40).

Flash Photolysis Experiments

Flash photolysis experiments were carried out on 300 μ L solutions contained in a 1-cm glass semimicrocuvette using the detection system described by Heacock et al. (41). A Phase R model DL1400 flash lamp-pumped dye laser using coumarin LD 490 produced a 480 nm light flash of < 0.5 μ s duration. Samples typically contained 5 μ M cyt bc₁, 20 μ M Ru₂D, 5 mM [Co (NH₃)₅Cl]²⁺, in 20 mM sodium borate, pH 9.0, 0.01% dodecylmaltoside. The [Co (NH₃)₅Cl]²⁺ was used as a sacrificial electron acceptor. The cyt bc₁ was treated with 10 μ M Q₀C₁₀BrH₂, 1 mM succinate, and 50 nM SCR to completely reduce [2Fe2S] and cyt c₁, and reduce cyt b_H by 30%. The photooxidation and reduction of cyt c₁ was monitored at 552 nm, while the reduction of cyt b_H was monitored at 561 – 569 nm. Under the conditions used the reoxidation of cyt b_H by Q in the Q_i site was much slower than reduction because of the low concentration of oxidized Q.

Results

The kinetics of electron transfer within R. sphaeroides cytochrome bc₁ were studied using the ruthenium dimer Ru₂D to photoinitiate the reaction (9). Laser flash photolysis of a solution containing Ru₂D and cyt bc₁ with cyt c₁ and [2Fe2S] initially reduced resulted in rapid photooxidation of cyt c_1 , followed by electron transfer from from [2Fe2S] to cyt c_1 with a rate constant of $k_1 = 60,000 \text{ s}^{-1}$, monitored at 552 nm (Figure 1) (9). The oxidant-induced reduction of cyt b_H monitored at 561 – 569 nm has a rate constant $k_2 = 2,300 \text{ s}^{-1}$ (Figure 1), which is rate-limited by electron transfer from QH2 to [2Fe2S] with rate constant k2 followed by rapid electron transfer from [2Fe2S] to cyt c_1 , and from the semiquinone to cyt b_L and cyt b_H (Scheme 1) (9). Binding famoxadone to the Q_0 site decreases the rate constant k_1 from 60,000 s⁻¹ to 5,400 s⁻¹, indicating that the dynamics of rotation of the ISP from the b state to the c_1 state was significantly decreased (Figure 1) (33). Since famoxadone binding affected the conformation of the *ef* loop in cyt b, it was suggested that the *ef* loop might play a role in controlling the conformation of the ISP protein (31,33). In order to examine this conformational link further, a series of mutants in which *ef* loop residues were substituted with Ala were prepared. These included the ef loop residues H276, P277, D278, N279, Y280, L286, S287, A290, H291, and I292 (Figures 2, 3). The steady-state activity and the values of the rate constants k1 and k2 were measured for each of these mutants, both in the presence and absence of famoxadone. A number of the mutants caused relatively small decreases in the rate constant k1, but the largest changes were seen for the mutants D278A, Y280A, L286A, and I292A (Table 2). Additional mutants at residues D278, L286 and I292 were prepared to further explore the roles of these residues.

The mutation I292A decreased the steady-state activity from 2.35 to 0.81, k_1 from 60,000 s^{-1} to 4,400 s^{-1} and k_2 from 2,300 s^{-1} to 350 s^{-1} (Figure 4A). Famoxadone binding had a relatively small additional effect on k_1 , decreasing it only to 3,000 s^{-1} . All of the mutations at I292 led to significant decreases in k_1 and k_2 (Table 2). The I292L mutation decreased k_1 to

10,000 s⁻¹, while the I292M mutation decreased k_1 to 6,200 s⁻¹ (Figures 4B, 4C). Famoxadone binding had a rather small effect on these two mutants, decreasing k_1 to 4,700 s⁻¹ and 2,800 s⁻¹, respectively. The largest effect was observed for the I292E mutation, which decreased the steady-state activity to 0.12, and eliminated all electron transfer transients in the ruthenium photooxidation experiment. Famoxadone binding eliminated the reduction of cyt b_H observed at 561 nm for all of the mutants, indicating that famoxadone binding was not affected.

The mutation L286A decreased the steady-state rate by 3-fold, k_1 to 33,000 s⁻¹, and k_2 to 740 s⁻¹. Most surprisingly, famoxadone binding did not significantly affect the rate constant k_1 , but it did completely inhibit reduction of cyt b_H. The L286E mutant decreased k_1 to 17,000, while addition of famoxadone only decreased k_1 to 12,000. The conservative mutation L286I decreased k_1 to 18,000, but famoxadone binding decreased k_1 by a larger factor, to 2,900.

The D278A mutation decreased the steady-state activity from 2.35 to 1.43, and the rate constant k_1 from 60,000 s⁻¹ to 26,000 s⁻¹, but did not affect the rate constant k_2 . Famoxadone binding decreased the rate constant k_1 to 2,300 s⁻¹. The mutants D278N, D278E, D278I, and D278H did not have as large an effect on k_1 or k_2 as the D278A mutation. The Y280A mutation decreased the steady-state activity from 2.35 to 1.34, and the rate constant k_1 from 60,000 s⁻¹ to 7,900 s⁻¹, without significantly affecting the rate constant k_2 . Famoxadone did bind well to this mutant, as indicated by the complete inhibition of reduction of cyt b_H , but it only decreased the rate constant k_1 from 7,900 s⁻¹ to 3,200 s⁻¹.

Discussion

Changes in the conformation of the ISP play an essential role in the mechanism of cyt bc_1 , and it is important to understand how the dynamics of these conformational changes control electron transfer within the complex. The ruthenium photooxidation technique provides a unique method to measure the rate constants for electron transfer from the [2Fe2S] center to cyt c_1 , as well as from QH₂ to the [2Fe2S] center. A number of experiments have indicated that the measured rate constant k_1 for electron transfer from [2Fe2S] to cyt c_1 is rate-limited by a conformational gating mechanism (33). If k_1 was rate-limited by true electron transfer from [2Fe2S] to cyt c_1 , then Marcus theory would predict a large dependence on the driving force of the reaction, which depends on the difference in redox potentials of [2Fe2S] and cyt c_1 . However, k_1 is independent of the protonation state of His-161, which significantly affects the redox potential of [2Fe2S] (33). Moreover, the rate constant is not affected by ISP mutations which decrease the redox potential of [2Fe2S] by up to 160 mV (33). These studies indicate that the rate constant k_1 provides a direct measure of the dynamics of the conformational change of the ISP from the b-state and/or the mobile state to the c_1 state (33,42).

A number of mechanisms have been proposed for the bifurcated electron transfer reaction at the Q_0 site in which the first electron is transferred from QH₂ to [2Fe2S], while the second electron is transferred from semiquinone to cyt b_L (21-29). An important requirement for these mechanisms is that they account for the reversibility of the reaction, as well as minimization of short circuit reactions, such as the delivery of both electrons from QH₂ to [2Fe2S]. Double gating mechanisms have been proposed in which QH₂ only reacts at the active Q_0 site when the ISP is in the b-state and both [2Fe2S] and cyt b_L are oxidized (23,25-29). In another proposal, the semiquinone anion moves from the distal site near [2Fe2S] to a position near oxidized cyt b_L to favor electron transfer to the latter (22,27). Concerted mechanisms have also been proposed in which QH₂ transfers both electrons to [2Fe2S] and cyt b_L simultaneously without formation of a semiquinone intermediate (23,26,28,29). A recent freeze-quench EPR experiment has shown that QH₂ reduces [2Fe2S] and cyt b_L simultaneously with a half-time of 250 µs for a fast phase which accounts for about 10% reduction of each redox center (3). No semiquinone was detected at the Q_0 site during oxidation of QH₂, consistent with earlier It has been proposed that a structural linkage between the quinol substrate in the Q_0 binding site and the conformation of the ISP might play an important role in the mechanism of bifurcated electron transfer (21). Unfortunately, it has not been possible to experimentally detect QH_2 , semiquinone, or Q in the Q_0 binding pocket. Nevertheless, Q_0 site inhibitors have many similarities to the natural ubiquinol substrate, and it has been suggested that the effects of these inhibitors on the conformational linkage between cyt b and the ISP might provide insight into the catalytic mechanism of the bifurcation reaction (21). X-ray crystallographic studies have shown that Q_0 site inhibitors including stigmatellin, UHDBT, famoxadone, and JG-144 displace both the cd1 helix and the PEWY sequence in the ef helix outward to expand the Q_0 pocket and form a binding crater which captures the ISP in the b-state conformation (21,43). Stigmatellin binding leads to the largest changes in the Q_0 pocket, and forms a hydrogen bond with the His-161 ligand of the reduced [2Fe2S] center, thus increasing its redox potential by 200 - 250 mV, and completely immobilizing the ISP in the b conformation (5-8, 30). It has been proposed that QH₂ might bind in a conformation similar to that of stigmatellin, with a hydrogen bond to His-161 to facilitate proton-coupled electron transfer to [2Fe2S] (22).

Famoxadone binds somewhat deeper in the Q_0 pocket than stigmatellin, and does not form a hydrogen bond with His-161 on the ISP (31). Even though famoxadone does not contact the ISP, its binding leads to extensive conformational changes on the surface of cyt b which are correlated with the capture of the ISP from the loose state to the b state (31). These changes include one domain between residues 160–175 (bovine numbering) that contacts the neck region of the ISP, another domain between residues 262 and 268 at the end of the *ef* loop which forms the docking crater for the ISP, and the middle of the *ef* loop (residues 252–256) which connects the Q_0 pocket with the other two surface domains (Figures 2,3) (31). Famoxadone binding to the Q_0 site decreases the rate constant k_1 for electron transfer from [2Fe2S] to cyt c_1 from 60,000 s⁻¹ to 5,400 s⁻¹ (33). Therefore, famoxadone does not completely lock the ISP in the b state, but instead significantly decreases the rate of release of the ISP from the b state to the c₁ state.

In order to further explore the role of the *ef* loop in regulating the dynamics of the ISP, a series of mutants at residues in the *ef* loop were constructed. *R. sphaeroides* cyt b residues 276 - 280 correspond to bovine residues 252 - 256 which are in the middle of the *ef* loop on the surface of cyt b (Figures 2, 3). These residues undergo large displacements upon famoxadone binding, suggesting that they might relay conformational changes in the Q₀ pocket to the ISP docking crater. Surprisingly, mutation of residues H276, P277, D278, and N279 led to relatively small changes in k₁ and k₂, suggesting that if these residues do help relay conformational changes, that function is not sensitive to substitution of individual amino acid side changes. The D278A mutation led to the largest decrease in k₁ for this group, from $60,000 \text{ s}^{-1}$ to $26,000 \text{ s}^{-1}$, but no significant change in rate constant k₂. Famoxadone binding to this mutant decreased k₁ to 2,300 s⁻¹, which is similar to the percent reduction observed in wild-type cyt bc₁, suggesting that this mutant does not modulate the effect of famoxadone. The mutation Y280A led to a substantial decrease in k₁ to 7,900 s⁻¹, while famoxadone binding only caused a further decrease to $3,200 \text{ s}^{-1}$. This mutation might cause a conformational change similar to that of famoxadone, limiting the additional effect of famoxadone binding.

R. sphaeroides cyt b residues 286 - 292 correspond to bovine residues 262 - 268 in the *ef* loop which forms part of the ISP docking crater. Mutation of residues S287, A290, and H291 had relatively little effect on k₁, which is surprising in the case of H291 since the histidine side chain moves 9.3 Å upon famoxadone binding (31). However, mutations at I292 located in the

ISP docking crater near the [2Fe2S] center had a large effect on electron transfer activity (Table 2). The I292A mutation decreased k_1 to 4,400 s⁻¹ while famoxadone binding only further decreased it to 3,000 s⁻¹. The mutations I292L and I292M also led to substantial decreases in k_1 , while famoxadone binding caused relatively small additional decreases in k_1 . It appears that these mutations significantly decrease the rate of release of the ISP from cyt b, but famoxadone binding leads to a relatively small additional decrease in the rate of release. The I292A mutation led to a decrease in the rate constant k_2 for QH₂ oxidation to 350 s⁻¹, indicating that this mutation had an effect on the conformation of the QH₂ reaction site. Substitution of I292 with a basic arginine residue was tolerated with a decrease in k_1 to 10,000 s⁻¹ and only a modest change in k_2 . In contrast, substitution of I292 with an acidic glutamate nearly completely eliminated both steady-state activity and electron transfer activity measured by the ruthenium photooxidation method. It is apparent that I292 plays an important role in controlling the conformation of the ISP.

The effects of mutation of L286 at the tip of the *ef* loop are particularly interesting. The mutation L286A decreases the rate constant k_1 to 33,000 s⁻¹ and k_2 to 740 s⁻¹. However, famoxadone binding does not lead to any further decrease in k_1 , (Table 2) suggesting that this mutation might block the famoxadone-induced conformational change in the wild-type protein which decreases the rate constant k1 by such a large factor. The L286E mutation also led to a significant decrease in the rate constant k_1 , to 17,000 s⁻¹, while famoxadone binding did not cause much further decrease. The importance of L286 is also illustrated in experiments by Darrouzet and Daldal (14,19). They found that insertion of one alanine at residue 46 in the neck region of the ISP decreased the rate of the domain movement from the b state to the c_1 state to a half time of 10 ms, which was slow enough to measure in *R. capsulatus* chromatophores. A second revertant mutation substituting Leu for Phe at residue 286 restored rapid domain movement, which was too fast to measure in chromatophores (19). This finding is particularly remarkable given that cyt b residue 286 is more than 25 Å from the neck region of the ISP. Revertant mutations were also found in the ISP neck region for a primary mutation at T288 in the ef loop (24). A possible mechanism for this linkage between the ef loop and ISP neck region is suggested by the effect of famoxadone binding, which causes correlated conformational changes in both the efloop region and the cyt b residues 179-187 which contact the ISP neck region. It appears likely that the conformational linkage between the ISP neck region and the cyt b *ef* loop is mediated by the cyt b protein using structural linkages similar to those caused by famoxadone binding.

It has been proposed that the conformation of the ISP plays an important role in several different stages of the mechanism of cyt bc_1 (21). First, it is proposed that binding QH_2 to the active Q_0 pocket displaces the cd1 helix and the *ef* helix outwards to capture the oxidized ISP in the b state conformation. The formation of a hydrogen bond between QH₂ and His-161 would stabilize the active site conformation, and allow proton-coupled electron transfer from QH₂ to oxidized [2Fe2S]. After the second electron is transferred from semiquinone to cyt b_{I} and cyt b_H, oxidized Q would leave the Q_o binding pocket and the cd1 helix and the ef helix would relax to their original positions, releasing the ISP and allowing it to rotate to the c1 position and transfer an electron to cyt c_1 (21). An important question about this mechanism is whether ISP is released from the b state after the first electron is transferred to [2Fe2S] and the hydrogen bond to His-161 is broken, or remains locked in the b state until cyt b_H is reduced. Famoxadone binding is informative in this regard, because it leads to many of the same conformational changes in the ISP binding crater as stigmatellin, but does not form a hydrogen bond to His-161. The rate of release of the ISP from the b-state is decreased from $60,000 \text{ s}^{-1}$ to $5,000 \text{ s}^{-1}$ by famoxadone binding, but the ISP is not completely locked in the b-state (33). Once the ISP is released from the b state and rotates to the cyt c_1 state, there may be conformational linkages that prevent its return to the b state under conditions that would lead to short-circuit reactions. When cyt b_H is reduced in the presence of antimycin, an electron is not transferred from cyt b

to the ISP on a long time scale, suggesting that oxidized ISP does not return to the b state in the absence of QH_2 . The *ef* loop presents a barrier to the rotation of the ISP between the b and c_1 states (19,32), and this barrier might regulate the rotation in both directions to facilitate productive electron transfer and prevent short-circuit reactions.

Acknowledgements

This work was supported by NIH grants GM20488 (FM and BD), NCRR COBRE 1 P20 RR15569 (FM and BD), and GM30721 (C.- A. Yu).

Abbreviations used

cyt, cytochrome; ISP, Rieske iron-sulfur protein; [2Fe2S], Rieske iron-sulfur center; Ru₂D, [Ru(bpy)₂]₂(qpy)(PF₆)₄; qpy, 2,2':4',4":2",2"'-quaterpyridine; Q₀C₁₀BrH₂, 2,3-dimethoxy-5-methyl-6-(10-bromodecyl-) 1,4-benzoquinol; SCR, succinate cytochrome c reductase.

References

- Trumpower BL, Gennis RB. Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu. Rev. Biochem 1994;63:675–716. [PubMed: 7979252]
- Trumpower BL. The Protonmotive Q Cycle. Energy Transduction by Coupling of Proton Translocation to Electron Transfer by the Cytochrome bc1 Complex. J. Biol. Chem 1990;265:11409–11412. [PubMed: 2164001]
- Zhu J, Egawa T, Yeh S-R, Yu L, Yu C-A. Simultaneous Reduction of Iron-sulfur Protein and Cytochorme b_L during ubiquinol oxidation in Cytochrome bc₁ Complex. Proc. Nat. Acad. Sci. USA. 2006(in press)
- Xia D, Yu C-A, Kim H, Xia J-Z, Kachurin AM, Zhang L, Yu L, Deisenhofer J. Crystal Structure of the Cytochrome bc1 Complex from Bovine Heart Mitochondria. Science 1997;277:60–66. [PubMed: 9204897]
- Zhang Z, Huang L, Shulmeister VM, Chi Y-I, Kim KK, Hung L-W, Crofts AR, Berry EA, Kim S-H. Electron Transfer by Domain Movement in Cytochrome bc₁. Nature 1998;392:677–684. [PubMed: 9565029]
- Iwata S, Lee JW, Okada K, Lee JK, Wata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK. Complete Structure of the 11-Subunit Bovine Mitochondrial Cytochrome bc1 Complex. Science 1998;281:64– 71. [PubMed: 9651245]
- Kim H, Xia D, Yu C-A, Xia J-Z, Kachurin AM, Zhang L, Yu L, Deisenhofer J. Inhibitor binding changes domain mobility in the iron-sulfur protein of the mitochondrial bc1 complex from bovine heart. Proc. Natl. Acad. Sci. U.S.A 1998;95:8026–8033. [PubMed: 9653134]
- Hunte C, Koepke J, Lange C, Rossmanith T, Michel H. Structure at 2.3 Å resolution of the cytochrome bc(1) complex from the yeast *Saccharomyces cerevisiae* co-crystallized with an antibody Fv fragment. Stucture Fold Des 2000;8:669–84.
- Sadoski RC, Engstrom G, Tian H, Zhang L, Yu C-A, Yu L, Durham B, Millett F. Use of a Photoactivated Ruthenium Dimer Complex To Measure Electron Transfer between the Rieske Iron-Sulfur Protein and Cytochrome c1 in the Cytochrome bc1 Complex. Biochemistry 2000;39:4231– 4236. [PubMed: 10757970]
- Tian H, Yu L, Mather M, Yu CA. Flexibility of the Neck Region of the Rieske Iron-Sulfur Protein is Functionally Important in the Cytochrome bc1 Complex. J. Biol. Chem 1998;273:27953–27959. [PubMed: 9774409]
- Xiao K, Yu L, Yu C-A. Confirmation of the involvement of protein domain movement during the catalytic cycle of the cytochrome bc1 complex by the formation of an intersubunit disulfide bond between cytochrome b and the iron-sulfur protein. J. Biol. Chem 2000;275:38597–38604. [PubMed: 10978350]

- Tian H, White S, Yu L, Yu C-A. Evidence for the head domain movement of the rieske iron-sulfur protein in electron transfer reaction of the cytochrome bc1 complex. J. Biol. Chem 1999;274:7146– 7152. [PubMed: 10066773]
- Darrouzet E, Valkova-Valchanova M, Daldal F. Probing the role of the Fe-S subunit hinge region during Q(o) site catalysis in *Rhodobacter* capsulatus bc(1) complex. Biochemistry 2000;39:15475– 15483. [PubMed: 11112533]
- Darrouzet E, Valkova-Valchanova M, Moser CC, Dutton PL, Daldal F. Uncovering the [2Fe2S] domain movement in cytochrome bc1 and its implications for energy conversion. Proc. Natl. Acad. Sci. U.S.A 2000;25:4567–72. [PubMed: 10781061]
- Nett JH, Hunte C, Trumpower BL. Changes to the length of the flexible linker region of the Rieske protein impair the interaction of QH₂ with the cytochrome bc1 complex. Eur. J. Biochem 2000;267:5777–5782. [PubMed: 10971589]
- Gosh M, Wang C, Ebert E, Vadlamuri S, Beattie DS. Substituting leucine for alanine-86 in the tether region of the iron-sulfur protein of the cytochrome bc1 complex affects the mobility of the [2Fe2S] domain. Biochemistry 2001;40:327–335. [PubMed: 11148026]
- Engstrom G, Xiao K, Yu C-A, Yu L, Durham B, Millett F. Photoinduced electron transfer between the Rieske iron-sulfur protein and cytochrome c(1) in the Rhodobacter sphaeroides cytochrome bc (1) complex. Effects of pH, temperature, and driving force. J. Biol. Chem 2002;277:31072–31078. [PubMed: 12045199]
- Darrouzet E, Valkova-Valchanova M, Daldal F. The [2Fe-2S] cluster E(m) as an indicator of the ironsulfur subunit position in the ubihydroquinone oxidation site of the cytochrome bc1 complex. J. Biol. Chem 2002;277:3464–3470. [PubMed: 11707448]
- Darrouzet E, Daldal F. Movement of the Iron-Sulfur Subunit beyond the *ef* Loop of Cytochrome b is required for Multiple Turnovers of the bc1 Complex but not for a Single Turnover Q_o Site Catalysis. J. Biol. Chem 2002;277:3471–3476. [PubMed: 11707449]
- Brugna M, Rodgers S, Schricker A, Montoya G, Kazmeier M, Nitschike W, Sinning I. A spectroscopic method for observing the domain movement of the Rieske iron-sulfur protein. Proc. Nat. Acad. Sc. US 2000;97:2069–2074.
- Esser L, Gong X, Yang S, Yu L, Yu C-A, Xia D. Surface-modulated motion switch: Capture and release of iron-sulfur protein in the cytochrome bc1 complex. Proc. Nat. Acad. Sci. U.S.A 2006;103:13045–13050.
- Hong S, Ugulava N, Guergova-Kuras M, Crofts AR. The Energy Landscape for Ubihydroquinone Oxidation at the Q_o Site of the bc₁ Complex in *R. sphaeroides*. J. Biol. Chem 1999;274:33931–33944. [PubMed: 10567355]
- Osyczka A, Moser CC, Daldal F, Dutton PL. Reversible redox energy coupling in electron transfer chains. Nature 2004;427:607–12. [PubMed: 14961113]
- Darrouzet E, Daldal F. Protein-protein interactions between cytochrome b and the Fe-S protein subunits during QH₂ oxidation and large-scale domain movement in the bc₁ complex. Biochemistry 2003;42:1499–507. [PubMed: 12578362]
- 25. Rich P. The quinine chemistry of bc complexes. Biochim. Biochphys. Acta 2004;1658:165-171.
- Osyczka A, Moser CC, Dutton PL. Fixing the Q cycle. Trends Biochem. Sci 2005;30:176–182. [PubMed: 15817393]
- 27. Crofts AR, Lhee S, Crofts SB, Cheng J, Rose S. Proton pumping in the bc(1) complex: A new gating mechanism that prevents short circuits. Biochim Biophys Acta. 2006[Epub ahead of print]
- 28. Mulkidjanian AY. QH₂ oxidation in the cytochrome bc₁ complex: Reaction mechanism and prevention of short-circuiting. Biochim. Biophys. Acta 2005;1709:5–34. [PubMed: 16005845]
- Osyczka A, Zhang H, Mathe C, Rich PR, Moser CC, Dutton PL. Role of the PEWY Glutamate in Hydroquinone-Quinone Oxidation-Reduction Catalysis in the Q(o) Site of Cytochrome bc(1). Biochemistry 2006;45:10492–503. [PubMed: 16939201]
- von Jagow G, Ohnishi T. The chromone inhibitor stigmatellin--binding to the QH₂ oxidation center at the C-side of the mitochondrial membrane. FEBS Lett 1985;185:311–315. [PubMed: 2987042]
- 31. Gao X, Wen X, Yu C-A, Esser L, Tsao S, Quinn B, Zhang L, Yu L, Xia D. The crystal structure of mitochondrial cytochrome bc₁ in complex with famoxadone: the role of aromatic-aromatic interaction in inhibition. Biochemistry 2002;41:11692–11702. [PubMed: 12269811]

- 33. Xiao K, Engstrom G, Rajagukguk S, Yu C-A, Yu L, Durham B, Millett F. Effect of Famoxadone on Photoinduced Electron Transfer between the Iron-Sulfur Center and Cytochrome c₁ in the Cytochrome bc₁ Complex. J. Biol. Chem 2003;278:11419–11426. [PubMed: 12525495]
- 34. Downard AJ, Honey GE, Phillips LF, Steel PJ. Inorg. Chem 1991;30:2259-2260.
- Moeller, T., editor. Inorganic Synthesis. V. McGraw Hill Book Company, Inc.; New York: 1957. p. 185
- Yu CA, Yu L. Syntheses of biologically active ubiquinone derivatives. Biochemistry 1982;21:4096– 4101. [PubMed: 6289870]
- Yu L, Yu CA. Quantitative resolution of succinate-cytochrome c reductase into succinate-ubiquinone and QH₂-cytochrome c reductases. J. Biol. Chem 1982;257:2016–2021. [PubMed: 6276404]
- Mather MW, Yu L, Yu C-A. The involvement of threonine 160 of cytochrome b of Rhodobacter sphaeroides cytochrome bc₁ complex in quinone binding and interaction with subunit IV. J. Biol. Chem 1995;270:28668–28675. [PubMed: 7499386]
- 39. Xiao K, Yu L, Yu C-A. Confirmation of the involvement of protein domain movement during the catalytic cycle of the cytochrome bc₁ complex by the formation of an intersubunit disulfide bond between cytochrome b and the iron-sulfur protein. J. Biol. Chem 2000;275:38597–38604. [PubMed: 10978350]
- 40. Liu X, Yu CA, Yu L. The role of extra fragment at the C-terminal of cytochrome b (Residues 421 -445) in the cytochrome bc1 complex from Rhodobacter sphaeroides. J. Biol. Chem 2004;279:47363–47371. [PubMed: 15339929]
- Heacock C, Liu R, Yu C-A, Yu L, Durham B, Millett F. Intracomplex electron transfer between ruthenium-cytochrome c derivatives and cytochrome c1. J. Biol. Chem 1993;268:27171–27175. [PubMed: 8262956]
- 42. Yu CA, Wen X, Xiao K, Xia D, Yu L. Inter- and intra-molecular electron transfer in the cytochrome bc(1) complex. Biochim. Biophys. Acta 2002;1555:65–70. [PubMed: 12206893]
- Esser L, Quinn B, Li YF, Zhang M, Elberry M, Yu L, Yu CA, Xia D. Crystallographic studies of quinol oxidation site inhibitors: a modified classification of inhibitors for the cytochrome bc(1) complex. J Mol Biol 2004;341:281–302. [PubMed: 15312779]

Figure 1.

Electron transfer within wild-type *R. sphaeroides* cyt bc₁ following photooxidation of cyt c₁ (9). The 300 μ L sample contained 5 μ M cyt bc₁, 20 μ M Ru₂D, 5 mM [Co(NH₃)₅Cl]²⁺, in 20 mM sodium borate, pH 9.0 with 0.01% dodecylmaltoside. The cyt bc₁ was treated with 10 μ M Q₀C₁₀BrH₂, 1 mM succinate, and 50 nM SCR to completely reduce [2Fe2S] and cyt c₁, and reduce cyt b_H by about 30%. The sample was then excited with a 480 nm laser flash to photooxidize cyt c₁ within 1 μ s. (Top two traces) The 552 nm transient indicates that cyt c₁ was photooxidized within 1 μ s, and then reduced in a biphasic reaction with rate constants of 60,000 s⁻¹ and 2,000 s⁻¹. The rate constant for the reduction of cyt b_H measured at 561 – 569 nm was 2,300 s⁻¹. (Bottom two traces) Addition of 30 μ M famoxadone decreased the rate of reduction of cyt c₁ to 5,400 s⁻¹ and eliminated reduction of cyt b_H.

Figure 2.

X-ray crystal structure of bovine cyt bc_1 with bound famoxadone (31). The cyt c_1 and cyt b_L hemes are colored red, the [2Fe2S] center is represented by a CPK model, the ISP is blue, and cyt b is grey. Residues 252–268 in the *ef* loop are colored orange while residues 269–283 in the PEWY sequence and the *ef* helix are red. Residues 136–152 in the cd1 helix are green and residues 163–171 in the neck-contacting domain are colored yellow. The residues in cyt b that were mutated are shown as sticks and labeled with *R. sphaeroides* sequence numbering.

	120	130	140	150	160	170	180
	: Heli	хС:	:Helix	cdl:	Helix cd2	:	:
BT	120-LLTVMA	TAFMGYVLP	WGQMSFWGATV	ITNL LSAIP	GTNLVEWIW	GGFSVDKATL	T RF FAF H -
RS	136-YLAMMA	TAFMGYVLP	WGQMSFWGATV	ITGL FGAI P G	GIGHSIQTWLL	GGPAVDNATL	N RF FSL H -
			• ••	••		••	
		:	•	:	:	:	
	140	15	0 160	170) 180	190	
	050	0.00	0.5.0	000			
	250	260	270	280			290 300
	:	ef loop	: He	elix ef			: Helix F :
BT	250-LGDPDN	YTPANPLNT:	P PHIK PEWY FL	FAYAILRSIE	?	NK	LG G VLALAFSILI
RS	274 - LGHPDN	YIEANPLST:	PAHIVPEWYFL	PFYAILRAFT	ADVWVVQIAN	FISFGIIDAK	FF G VLAMFGAILV
		• •	•			•	
		:	:	:	:	:	: :
	2	80	290 3	00 3	310 3	20 3	30 340

Figure 3.

Sequence alignment of residues near the Q_o pocket of the cyt b subunit in cyt bc₁ complexes from bovine (BT) and *R. sphaeroides* (RS). Residues with a high sequence similarity are in boldface. Helices determined crystallographically are indicated by gray rectangles. Residues in direct contact with the ISP are indicated with a black dot. Adopted from reference 21.

Rajagukguk et al.

Biochemistry. Author manuscript; available in PMC 2008 August 29.

Figure 4.

Electron transfer from [2Fe2S] to cyt c_1 in *R. sphaeroides* cyt bc_1 mutants following photooxidation of cyt c_1 . The conditions were the same as described in Figure 1. (A) I292A cyt bc_1 . The rate constant k_1 is 4,400 s⁻¹ in the absence of inhibitor, and 3000 s⁻¹ in the presence of 30 μ M famoxadone. (B) I292L cyt bc_1 . The rate constant k_1 is 10,000 s⁻¹ in the absence of inhibitor, and 4,700 s⁻¹ in the presence of famoxadone. (C) I292M cyt bc_1 . The rate constant k_1 is 6,200 s⁻¹ in the absence of inhibitor, and 2,800 s⁻¹ in the presence of famoxadone.

Scheme 1.

Table 1

Primers used during mutagenesis o Mutant (in the cytochrome b) otio

H276A (D252)

P277A (P253)

D278A (D254)

D278N

D278E

D278I

D278H

N279A (N255)

Y280A (Y256)

L286A (L262)

L286E

L286I

S287A (N263)

A290S (A266)

H291A (H267)

I292A (I268)

1292L

I292M

I292V

I292E

I292R

_				
	а	h	Α	1

operations	Primers
	5'-GCCGAACTACCTCGGC <u>GCC</u> CCCGACAACTACATCG-3' 3'-CGGCTTGATGGAGCCG <u>CGG</u> GGGCTGTTGATGTAGC-5'
	5'-CGAACTACCTCGGCCAC <u>GCC</u> GACAACTACATCGAGG-3' 3'-GCTTGATGGAGCCGGTGCGGCTGTTGATGTAGCTCC-5'
	5'-CTACCTCGGCCACCCC <u>GCC</u> AACTACATCGAGGCGAAC-3' 3'-GATGGAGCCGGTGGGGGGGGGTTGATGTAGCTCCGCTTG-5'
	5'-CTACCTCGGCCACCCC <u>AAC</u> AACTACATCGAGGCGAAC-3' 3'-GATGGAGCCGGTGGG <u>GTT</u> GTTGATGTAGCTCCGCTTG-5'
	5'-CTACCTCGGCCACCCC <u>GAA</u> AACTACATCGAGGCGAAC-3' 3'-GATGGAGCCGGTGGGGG <u>CTT</u> TTGATGTAGCTCCGCTTG-5'
	5'-CTACCTCGGCCACCCC <u>ATC</u> AACTACATCGAGGCGAAC-3' 3'-GATGGAGCCGGTGGGG <u>TAG</u> TTGATGTAGCTCCGCTTG-5'
	5'-CTACCTCGGCCACCCC <u>CAC</u> AACTACATCGAGGCGAAC-3' 3'-GATGGAGCCGGTGGGGG <u>GTG</u> TTGATGTAGCTCCGCTTG-5'
	5'-CTCGGCCACCCCGAC <u>GCC</u> TACATCGAGGCGAACCC-3' 3'-GAGCCGGTGGGGCTG <u>CGG</u> ATGTAGCTCCGCTTGGG-5'
	5'-GGCCACCCCGACAAC <u>GCC</u> ATCGAGGCGAACCCGC-3' 3'-CCGGTGGGGCTGTTG <u>CGG</u> TAGCTCCGCTTGGGCG-5'
	5'-CATCGAGGCGAACCCG <u>GCC</u> TCGACGCCCGCGCAC-3' 3'-GTAGCTCCGCTTGGGC <u>CGG</u> AGCTGCGGGCGCGTG-5'
	5'-CATCGAGGCGAACCCG <u>GAG</u> TCGACGCCCGCGCAC-3' 3'-GTAGCTCCGCTTGGGC <u>CTC</u> AGCTGCGGGCGCGTG-5'
	5'-CATCGAGGCGAACCCG <u>ATC</u> TCGACGCCCGCGCAC-3' 3'-GTAGCTCCGCTTGGGCTAGAGCTGCGGGCGCGCG-5'
	5'-CGAGGCGAACCCGCTC <u>GCC</u> ACGCCGCGCACATCG-3' 3'-GCTCCGCTTGGGCGAGCGGTGCGGGCGCGCGTGTAGC-5'
	5'-CCGCTCTCGACGCCC <u>TCG</u> CACATCGTGCCGG-3' 3'-GGCGAGAGCTGCGGGAGCGTGTAGCACGGCC-5'
	5'-GCTCTCGACGCCCGCG <u>GCC</u> ATCGTGCCGGAATGG-3' 3'-CGAGAGCTGCGGGCGCCGGTAGCACGGCCTTACC-5'
	5'-CTCGACGCCCGCGCAC <u>GCC</u> GTGCCGGAATGGTACTTC-3' 3'-GAGCTGCGGGCGCGTGCGGCACGGCCTTACCATGAAG-5'
	5'-CTCGACGCCCGCGCAC <u>CTG</u> GTGCCGGAATGGTACTTC-3' 3'-GAGCTGCGGGCGCGTGGACCACGGCCTTACCATGAAG-5'
	5'-CTCGACGCCCGCGCACATGGTGCCGGAATGGTACTTC-3' 3' GAGCTGCGGGGCGCGTGTACCACGGCCTTACCATGAAG.5'
	5'-CTCGACGCCCGCGCAC <u>GTC</u> GTGCCGGAATGGTACTTC-3' 2' GAGCTGCGGCGCGCGCGCACGCACGGCCTTACCATGAAG-5'
	5'-CTCGACGCCCGCGCAC <u>GAG</u> GTGCCGGAATGGTACTTC-3'
	5'-CTCGACGCCCGCGCACCCCGCGCACCGCGCACCGCGCACCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC

Table 2

•.
-5
ā,
Ľ
5.
S
le
<u>ج</u> .
5
ē
g
10
S
نہ
R
Ξ.
Ē
÷.
≥
÷
Ъ
S
an
Ĕ
1
O
Ĕ
5
e
Ū.
Ĕ
0
S
Ξ
ē
Ξ.
4
e)
Ę.
Ē
ō
٩
Ţ
5
0
of
õ
đ
õ
fl
9
e
ťh
1
Ξ
S
R
.Н
at
H,
n
T
ЗG
ţ
f
0
c
ē
Ð
щ

Cyt be ₁ Mutant ^a	Specific Activity ^b	$k_1^c (s^{-1})$	Famoxadone k ₁ (s ⁻¹)	$\mathbf{k_2}^{\boldsymbol{d}(\mathbf{s}^{-1})}$	$\Delta \operatorname{CA}^{\boldsymbol{\theta}}(\mathrm{\AA})$
WT	2.35	60,000	5,400	2,300	
H276A (D252)	1.56	42,000	2,800	2,200	3.3
P277A (P253)	1.10	35,000	4,500	1,700	3.0
D278A (D254)	1.43	26,000	2,300	2,300	2.9
D278N	1.88	35,000	2,500	2,400	
D278E	1.60	51,000	6,700	2,900	
D278I	2.41	38,000	4,300	2,000	
D278H	1.49	36,000	4,100	1,500	
N279A (N255)	2.43	37,000	4,300	1,900	1.5
Y280A (Y256)	1.34	7,900	3,200	2,800	0.5
L286A (L262)	0.78	33,000	35,000	740	
L286E	0.88	17,000	12,000	1,900	
L286I	2.40	18,000	2,900	2,300	
S287A (N263)	2.16	55,000	5,700	1,000	0.7
A290S (P266)	2.65	49,000	5,600	1,900	0.9
H291A (H267)	2.54	51,000	4,100	2,000	1.4
I292A (I268)	0.81	4,400	3,000	350	1.4
1292L	1.30	10,000	4,700	1,500	
I292M	0.92	6,200	2,800	1,700	
I292V	0.92	33,000	3,500	1,300	
I292E	0.12	-	-	1	
1292R	0.56	10,000	2.500	1,700	
<i>u</i>	C.		0		
The second se	Land of Louis at L	and the second second	a sector sector		

"The corresponding residues of bovine cyt b are given in parenthesis.

 $b_{\rm Specific}$ activity is expressed as micromole of cyt c reduced/min/nmol cyt b at 25 °C using chromatophores. The error limits are \pm 15%.

9.0, 0.01% dodecylmaltoside. The cyt be1 was treated with 10 µM QoC10BrH2, 1 mM succinate, and 50 nM SCR to completely reduce [2Fe2S] and cyt e1, and reduce cyt bH by about 30%. Famoxadone ^cThe rate constant k1 for electron transfer from [2Fe2S] to cyt c1 was measured at 552 nm in a solution containing 5 µM cyt bc1, 20 µM Ru2D, 5 mM [Co(NH3)5Cl]²⁺, in 20 mM sodium borate, pH (30 μ M) was added where indicated. The error limits are \pm 20%.

dThe rate constant k2 for electron transfer from QH2 to [2Fe2S] was measured from the rate of cyt bH reduction at 561–569 nm under the conditions described for k1 above. The error limits are $\pm 20\%$. Addition of famoxadone eliminated that 561-569 nm transients for all of the mutants, indicating that famoxadone bound to all the mutants in the Q₀ pocket.

 e^{α} CCA is the displacement of the α carbon of the indicated residue in bovine cyt bc1 induced by famoxadone binding (31).