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Abstract
Chemical fingerprint are used to represent chemical molecules by recording the presence or absence,
or by counting the number of occurrences, of particular features or substructures, such as labeled
paths in the 2D graph of bonds, of the corresponding molecule. These fingerprint vectors are used
to search large databases of small molecules, currently containing millions of entries, using various
similarity measures, such as the Tanimoto or Tversky's measures and their variants. Here we derive
simple bounds on these similarity measures, and show how these bounds can be used to considerably
reduce the subset of molecules that need to be searched. We consider both the case of single-molecule
and multiple-molecule queries, as well as queries based on fixed similarity thresholds or aimed at
retrieving the top K hits. We study the speedup as a function of query size and distribution, fingerprint
length, similarity threshold, and database size |D| and derive analytical formula that are in excellent
agreement with empirical values. The theoretical considerations and experiments show that this
approach can provide linear speedups of one or more orders of magnitude in the case of searches
with fixed threshold, and achieve sublinear speedups in the range of O(|D|0.6) for the top K hits in
current large databases. This pruning approach yields subsecond search times across the 5M
compounds in the ChemDB database, without any loss of accuracy.

1 Introduction
One of the most fundamental tasks of chemoinformatics is the rapid search of large repositories
of molecules. In a typical search, given a query consisting of a molecule or a family of
molecules, one is interested in retrieving all the molecules contained in a large repository such
as PubChem, ZINC,1 or ChemDB,2 that are similar to the query and satisfy the given
constraints. To facilitate this process, in many chemoinformatics systems, molecules are
represented by binary fingerprint vectors3-7 (and references therein). It is these fingerprints
and their similarity measures that are used to search these large repositories. While fingerprint
representations yield efficient search algorithms, it is still important to keep search times to a
minimum to allow interactive searches and to allow the search space to grow considerably
beyond its current typical value of a few million molecules towards the estimated 1060 size of
the virtual space of small organic molecules.8 To further reduce search times, here we first
derive bounds on all the standard similarity measures and then show how these bounds can be
used to prune the search space and considerably speed up current searches, without any loss
of accuracy.
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2 Molecular Fingerprint Notation and Similarity Measures
2.1 Molecular Fingerprint Notation

Let  denote a molecule, and  = (Ai) the corresponding fingerprint vector, with 1 ≤ i ≤ N .
The precise interpretation of the fingerprint components is irrelevant for our purpose. As in
most chemoinformatics systems, one may consider that each component Ai is a bit associated
with the presence or absence of a particular substructure (e.g. functional group, labeled path,
labeled cycle, labeled tree) of atoms and bonds in the molecule. While many systems use binary
fingerprints, it is also possible to use richer, integer-valued, fingerprints where the components
Ai count the number of occurrences of the corresponding substructure. Here the length N of
the fingerprints is not important–our considerations apply to full-length fingerprints (large
values of N), compressed fingerprints (typically N = 512 or N = 1024), or variable-length
fingerprints. For each fingerprint , we let A = Σi Ai. In the binary case, A is the total number
of bits set to one. In the general case, A is the sum of all substructure counts. In the binary case,
we also use  (resp. ) to denote the total number of bits set to one in  OR  (resp.

 AND ).

While in current systems queries are often based on a single molecule, sometimes it is useful
to use several related molecules in a query of the form  = { }, as in the example of
Figure 1. In this notation,  represents the i-th molecule in the family, and M =  represents
the number molecules in the query. In this case,  = (Aij) denotes the fingerprint vector
associated with molecule , and Ai = Σj Aij.

2.2 Molecular Similarity Measures
The measure used to assess similarity between molecules, hence fingerprints, plays a
fundamental role in chemical searches. Several similarity measures have been introduced for
molecular fingerprints, two of the most common ones being the Tanimoto measure and its
generalization, the Tversky measure, for binary fingerprints.9,10 Both measures can be
generalized to fingerprints based on counts using a MinMax operator,11 as described below.
Our derivations here are illustrated primarily with the Tanimoto and Tversky measures in the
binary case, since these are the most widely used, but we treat also their extensions to the non-
binary case. Moreover, the same ideas can be applied immediately to many other fingerprint
similarity measures, as described in the Appendix.

The Tanimoto similarity measure between two binary fingerprints is defined by the ratio of the
number of common bits set to one to the total number of bits set to one in the two fingerprints

(1)

The Tanimoto coefficient is essentially a variation on the F measure of information retrieval.
12

The Tversky measure with parameters α and β between two binary fingerprints is defined by

(2)

with 0 ≤ α and 0 ≤ β. When α = β = 1 it reduces to the Tanimoto measure. In the non-symmetric
case (α ≠ β), α and β are used for biasing the search towards superstructures or substructure of
the query molecule . A large relative value of α will bias the search toward superstructures
of , whereas a large relative value of β will bias the search towards substructures of .
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For non-binary fingerprints associated with actual counts, the MinMax measure11,13 is given
by

(3)

The MinMax measure reduces to the Tanimoto measure in the case of binary fingerprints.

Finally, for non-binary fingerprints, we can also generalize the Tversky measure to get the
MinMax Tversky measure

(4)

which reduces to the Tversky measure in the case of binary fingerprints, and to the MinMax
measure in the symmetric case with α = β = 1.

3 Bounds on Similarity for Single-Molecule Query
Let  be the query fingerprint. We can calculate efficient upper bounds for all the similarity
measures described in the literature (see also Appendix). The upper bound for the Tanimoto

similarity can be computed by writing the similarity as  and
noticing that the derivative of f(x) = x/(A + B − x) with respect to x is positive. Thus the
derivative of the Tanimoto similarity is positive with respect to ( ) and an upper bound
can be derived by setting the number of bits in common ( ) to its maximum possible value:
min (A, B). In other words, for fixed  and ,

(5)

Here and everywhere else, S is used to denote the similarity measure and T the bound.

Using similar reasoning, we can derive a more general bound on the Tversky similarity in the
form

(6)

In the case of the MinMax similarity for non-binary vectors, we have

(7)

This bound uses the fact that Σi min(Ai, Bi). ≤ min (A, B) and Σi max(Ai, Bi) = A+B−Σi min
(Ai, Bi).

It is also a special case of the bound on the MinMax Tverky similarity with α = β = 1, as given
below.

In the case of the MinMax Tversky similarity for non-binary vectors, by combining the
arguments above, we get the bound

(8)
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It is worth noting that all the general bounds we have derived are optimal in the sense that one
can construct examples where these bounds are actually achieved.

4 Bounds on Similarity for Multiple-Molecule Query

When the query is a family of molecules . there are basic ways of defining a

similarity measure  between the query family
and each molecule B in the database: (1) by aggregating the individual pairwise similarity

measures ; and (2) by aggregating the fingerprints  into a profile

fingerprint , and then using a similarity measure of the form . With obvious
adjustments, the ideas presented here can easily be extended to “family-family” (or “profile-

profile”) comparisons of the form  between two families

 and  of molecules, where .

4.1 Bounds on Aggregated Similarity for Multiple-Molecule Query

In the first class of approaches, the similarity  is defined in terms of the individual
similarities S(Ai, B), for instance by taking their weighted average, maximum, or minimum. In
each one of these cases, bounds can easily be derived using the bounds obtained in Section 3.
In the case of a weighted average with non-negative weights w1 ...wM ,we have

(9)

where S can be any of the similarities defined above and T the corresponding bound. Likewise,
in the case where the family similarity is defined by the minimum pairwise similarity, we have

(10)

and for the maximum

(11)

Within the first class of approaches, it is also possible to consider measures that are obtained
by combining the results of elementary pairwise comparisons between the molecules (e.g.
intersections, unions) rather than the similarity measures themselves. In particular, one can
derive a series of measures by simply aggregating the numerators and the denominators of the
previous four similarity measures of Section 2. For instance, in the case of the binary Tversky
measure, we can define an aggregate similarity measure

(12)

Note that each molecule  comes with two sets of parameters: a weight wi which measures
its importance among the family, and Tversky's parameters αi and βi which can be used to bias
the search towards substructures or superstructures of . A special case of this particular
measure is used in Xue et al. 2004.7
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We can derive bounds on this measure by noticing again that the similarity has a positive
derivative with respect to each term  and using the inequality . This
yields

(13)

Likewise, a weighted MinMax measure can be written as

(14)

Here Aij denotes the j-th component of the fingerprint .

With even greater generality, we can consider a weighted MinMax Tversky similarity of the
form

(15)

with the generalized bounds

(16)

which can again be shown using somer algebra and noticing that the derivative of Equation 15
is positive with respect to Σi min(Aij Bj) and that Σi min(Aij Bj) ≤ min(Ai, B).

4.2 Bounds on Profile Similarity for Multiple-Molecule Query
A second possible class of approaches to multiple-molecule queries is to build a fingerprint

profile  to represent the family  and then measure similarity between the
profile vector and the fingerprint vectors of the molecules to be searched. A fingerprint profile
summarizes the information in a set of fingerprints, very much like a sequence profile or a
position specific scoring matrix (PSSM) summarizes the information in a set of aligned
sequences in bioinformatics. Fingerprint profiles can in turn be subdivided into linear and non-
linear profiles.

A linear fingerprint profile stores for each component the frequency that the corresponding bit
is set to one in the family of fingerprints. If a given bit position is set to one in half of the
fingerprints in the family, then the corresponding component in the profile is set to 0.5. If the
fingerprint consists of integer counts rather than bits, then the profile consists of average counts.
In addition, different weights can also be assigned to each molecule or fingerprint in the family.
In this more general case of linear profiles, Σi wiAij. For proper scaling, it is desirable to use a
convex combination with wi ≤ 0 and Σi wi = 1. Throughout this section, i =1,...M runs over the
molecules in the family, and j =1,...N runs over the fingerprint components.

The similarity between the profile  and a fingerprint  can be measured using the
MinMax measure
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(17)

or the generalized MinMax Tversky measure

(18)

Letting A+ = Pw = Σj Pw
j = Σj Σi wiAij, we can use the bounds on these measures to derive the

bound

(19)

and its more general version

(20)

In the case of a convex combination (Σi wi = 1), we can derive an even better bound in the form

(21)

In other words, .

If the Ai's are binary and the combination is convex, then we have the identity

. Therefore, in the binary case with convex linear combination,
we have the identities

(22)

and

(23)

Thus, in the binary case, the MinMax and Tversky measures applied to the profile vectors
 and  are equivalent to summing the numerators and denominators of the individual

Tanimoto and Tversky measures between the Ai's and B (Equation 12), and thus the
corresponding bound (Equation 13) can be applied. Note that, in the binary case, since the
second family of approaches (profile) is a special case of the first family of approaches
(aggregation), for bound purposes it is not necessary to compute the actual profile vector

. This is not true in the non-binary case, or in the case of non-linear profiles described below.
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To build non-linear profiles, a non-linear transformation is applied to the frequency counts in
each column in order to derive a profile vector. In the case of consensus fingerprints,6,15-17
for instance, the profile vector contains a one at a given position if and only if all the fingerprint
vectors of the molecules in the query family also contain a one in that position. This can be
generalized to modal fingerprints with threshold t,16,17 by setting a bit to one in the profile
vector if and only if the proportion of molecules in the query family that have a one at the
corresponding position is greater or equal to t. Consensus profiles correspond to modal profiles
with t = 1. Even more generally, a non-linear function such as a logistic function can be used
to map frequencies to profile components. In the case of non-linear profiles, all the similarity
bounds can still be used with the profile vector. The only difference with the linear case is that
the bound in the non-linear case may not be easily expressed in terms of the bounds derived
from the individual molecules in the query family.

5 Data
Before we show how the bounds can be used to speedup searches in large databases of
compounds, we describe the data used in the experiments. All the data is extracted from the
ChemDB database,2 which currently contains on the order of 5M unique compounds. In the
experiments, we use fingerprints associated with labeled paths of length up to 8 (i.e. 9 atoms
and 8 bonds). In this case, the total number of observed labeled paths is N* = 152,087.
Compression is done using a simple modulo operator. Most results are reported for fingerprints
of length N = 512. However we have tested all values N = 2n, with 5 ≤ n ≤ 10 and report the
corresponding results when the dependence on fingerprint length is relevant. Robust results
are obtained by increasing the path length or varying N*, or N . All fingerprints are computed
using an in-house program written in Python.

For experiments that require computing pairwise similarities between all molecules, we use a
random data set of 50,000 molecules extracted from the ChemDB, corresponding
approximately to 1.25 × 109 pairwise similarity measurements. Varying the random sample
does not affect these results in any significant way.

Figure 2 reports the distribution of A across the entire ChemDB database, together with the
distribution of A over the queries received by ChemDB over the Web during a four-month
period (02/06 to 06/06) The distribution of A across the entire database is well approximated
by a Gaussian distribution with mean 119.53 and standard deviation 40.07. In contrast, the
mean and standard deviation of the actual queries are 64.09 and 45.88 respectively.

For some experiments we use the Stahl and Rarey14 datasets which consist of six groups of
diverse molecules with similar activity. The molecules of each group are known to interact
with the same protein. These datasets consists of 128 chemicals which interact with Cox-2, 55
which interact with Estrogen Receptor, 43 which interact with Gelatinase-A, 17 which interact
with Neuraminidase, 25 which interact with p38-MAP Kinase, and 67 which interact with
Thrombin. All datasets are available upon request.

6 Results: Fast Search Algorithms
6.1 Fast Search for Single-Molecule Query

We can now show how the bounds derived in the previous sections can be used to accelerate
searches. For a given query and similarity threshold, we only need to sift through a small subset
of molecules: those that satisfy the corresponding bound. More precisely, for any similarity
measure, if we are interested in retrieving only molecules that have similarity to the query 
above a given threshold t (0 ≤ t ≤ 1), then we can discard all the molecules  which satisfy T
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(A, B) ≤ t. This can drastically reduce the number of moleculeswhich must be examined, thereby
improving speed without affecting accuracy at all.

For illustration purposes, consider first the simple case of binary fingerprints with Tanimoto
similarity measure. For a query fingerprint of size A, Equation 5 shows that if B ≤ A then T
(A, B) = B/A is linear in B. If B ≥ A, then T(A, B) = A/B and decays like 1/B (Figure 3). Thus
all molecules with (B/A) < t can be discarded. Likewise, all molecules with (A/B) < t can be
discarded. Thus the search can be restricted to molecules with B satisfying

(24)

Likewise, for the Tversky similarity measure applied to binary fingerprints, we can discard all
molecules with fingerprint vector  satisfying Tαβ(A, B) < t. Rearranging Equation 6, this
shows that only molecules with fingerprint vector  satisfying

(25)

need to be included in the search. Needless to say, the B values need to be computed only once
for each molecule and then stored in the database. Therefore these bounds and the
corresponding search restrictions can be implemented very efficiently. Similar considerations
hold for all the other similarity measures (see also Appendix).

6.2 Fast Search for Multiple-Molecule Query
The same approach can be used for multiple-molecule queries. Figure 4, for instance, shows
two curves corresponding to the bounds T on the Tanimoto measure, with a single-molecule
query satisfying A = 100, as well as a two-molecule query with the two molecules satisfying
A1 = 100 and A2 = 150. Figure 5 displays the bounds on different aggregate measures for the
same two query molecules. By the same argument used in the case of single-molecule queries,
at any given threshold we can draw a corresponding horizontal line and restrict the search to
only those values of B for which the upper bound exceeds the line. For instance, in Figure 4
with a query consisting of two molecules satisfying A1 = 100 and A2 = 150 and a similarity
threshold t = 0.85, we see that no molecule in the database can satisfy such conditions and
therefore the result ought to be set to “empty” immediately.

A more comprehensive and specific example is given in Figure 6 where the query molecules
consist of a set of 55 Estrogen Receptor binding compounds,14 five of which are depicted in
Figure 1.

6.3 Top K Hits
Most often, however, one does not pre-specify a similarity threshold. Rather, as in most search
engines and information retrieval systems, one is interested in finding the list of the most
relevant hits. The methods described above can easily be adapted to the more realistic case
where one is interested in retrieving the top K hits, without setting any arbitrary threshold. For
this, we note that for single molecule queries the upper bound is unimodal. Thus we can search
for the top K hits by starting from the maximum (where A=B), and exploring discrete possible
values of B right and left of the maximum. More precisely, for binary fingerprints, we first
index the molecules in the database by their fingerprint bit count to enable efficient referencing
of a particular bit count bin. Next, with respect to a particular query, we calculate the bound
on the similarity for every bit count in the database. Then we sort these bit counts by their
associated bound and iterate over the molecules in the database, in order of decreasing bound.
As we iterate, we calculate the similarity between the query and the database molecule and use
a heap to efficiently track the top hits. The algorithm terminates when the lowest similarity
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value in the heap is greater than the bound associated with the current database bin. The
algorithm is given below in simple pseudo-code form (Algorithm 1).

Algorithm 1 Top K Search

Require: database of fingerprints  binned by bit count Bs
Ensure: hits contains top K hits which satisfy SIMILARITY( ) > T

1: hits ← MINHEAP()
2: bounds ← LIST()
3: for all B in database do //iterate over bins
4:     tuple ← TUPLE(BOUND(A,B),B)
5:     LISTAPPEND(bounds, tuple)
6: end for
7: QUICKSORT(bounds) //NOTE: the length of bounds is constant
8: for all bound, B in bounds do //iterate in order of decreasing bound
9:     if bound < T then

10:         break //threshold stopping condition
11:     end if
12:     if K ≤ HEAPSIZE(hits) and bound <MINSIMILARITY(hits) then
13:         break //top-K stopping condition
14:     end if
15:     for all  in database[B] do
16:         S=SIMILARITY( )
17:         tuple ← TUPLE(S, )
18:         if S ≤ T then
19:             continue //ignore this  and continue to next
20:         else if LENGTH(hits)< K then
21:             HEAPPUSH(hits, tuple)
22:         else if S > MINSIMILARITY(hits) then
23:             HEAPPOPMIN(hits)
24:             HEAPPUSH(hits,tuple)
25:         end if
26:     end for
27: end for
28: return hits

This algorithm is equally valid in the case of multiple-molecule queries. Even though the
bounds for multiple-molecule queries can have multiple maxima (e.g. Figures 5 and 6), the
bins are sorted in decreasing order of their bounds. Thus bounds with either single or multiple
maxima are handled uniformly.

7 Results: Speedup
If f is the fraction of the database discarded by using the bounds, 1 — f is the fraction of the
database to be searched and 1/(1 — f) is the speedup factor. The exact fraction of the database
to be discarded from a given search and hence the speedup factor depends on many variables,
primarily the query molecule(s), the similarity measure, and the similarity threshold t. In this
section, we study f as a function of these variables, both empirically and analytically. When
necessary, examples and details are given using the Tanimoto similarity measure, but
extensions to other similarity measures should be obvious.

Theoretically, and in the experiments to be described, f alone provides a good assessment of
the speedup because the overhead associated with the bounds is neglible. Evaluating the bounds
takes at most O(N ) steps, where N is the fingerprint length. Sorting the bins by their associated
bounds takes at most O(N log N ) steps. In practice, these overhead values are entirely negligible
because N is quite small, in comparison with the size |D| of the database.

Using continuous notation, we let gD(A) be the continuous density approximation to the values
of A across the database D. When necessary, we use gQ to denote the density over the queries,
which can be different from gD (Figure 2). The density gD is well approximated using a
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Gaussian distribution with mean μ and standard deviation σ. These parameters in turn can
depend on fingerprint length.

7.1 Speedup for Single-Molecule Query as a Function of Threshold and A
For a single-molecule query  and a threshold t, the bounds we have derived show that we
need to search at most all the molecules satisfying x0 ≤ B ≤ x1, where the values of x0 and x1
depend on the value of A for the query molecule and on the similarity measure. Thus the fraction
1 — f of database to be searched satisfies

(26)

where GD is the corresponding distribution function. With Tanimoto similarity, for instance,
combining Equations 24 and 26 with a Gaussian approximation yields

(27)

where F is the distribution function of the normalized standard Gaussian distribution. This
expression can of course be computed numerically. When t is very close to 1, we can use the
approximation

(28)

so the speedup factor scales at least like C/(1 — t)when t is close to 1.

Figure 7 provides contour plots showing the fraction of the database f(A) to be excluded from
a given search for the Tanimoto measure applied to compressed binary fingerprints of size 512,
as a function of the query fingerprint size A, and for different threshold values: t = 0.7, t = 0.8,
and t = 0.9. The fundamental result is that this fraction is very significant, and varies roughly
from 30% to 100%, yielding searches that are faster by one or more orders of magnitude. In
the worst case scenario, corresponding to A ≈ 120 for N = 512 or A* ≈ 139 in the uncompressed
fingerprint, the fraction varies from about 30% at t = 0.7 to about 75% at t = 0.9. In more
favorable scenarios where A tends to be small or large, then the fraction is even larger. Note
that for a fixed threshold the speedup factor is constant as a function of database size. As can
be seen, the empirical curves agree very well with the theoretical approximation derived in
Equation 28. Figure 8 provides a more complete picture of f as a function of A and t.

7.2 Average Speedup for Single-Molecule Query as a Function of Threshold, A, and
Fingerprint Length

Perhaps more important than the previous worst case analysis, is the analysis of the average
speedup. We can compute the average fraction of the database to be discarded by integrating
over the query molecules

(29)

This average can be computed with D equal to the entire database and the corresponding density
gD(B), or usingadensity gQ(B) over queries. The latter in general gives an even more favorable
speedup factor because queries tend to have a skewed distribution with respect to the database
distribution, often with a smaller average value of A (Figure 9). For the average computed with
gD over the entire database, with Tanimoto similarity measure, we can again use the Gaussian
approximation to gD to obtain

(30)
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which can be estimated numerically. When t is close to 1, we can use the approximation in
Equation 28 and integrate to get

(31)

thus in this case the speedup factor grows again like C/(1 — t). Figure 9 shows how the average
discarded fraction f is even larger when the average is computed over a distribution of typical
queries (gQ), rather than the database distribution (gD).

The same techniques can be applied to study other effects, such as the impact of fingerprint
length on the speedup factor. Figure 10 shows how the speedup increases with the length of
the fingerprints. The fingerprint bit count distribution is more concentrated for shorter
fingerprints and therefore the fraction of the database discarded at a given threshold is smaller.
To obtain an analytical expression, we have derived in the Appendix the following average
relationship between A* and A

(32)

where A* denotes the number of bits set to one in the unfolded (uncompressed) fingerprint,
and N* denotes the length of the uncompressed fingerprints. Combined with the Gaussian
approximation to the distribution of A*, this yields the distribution gD(A) as a function of the
length N of the fingerprints

(33)

where gN* is the Gaussian approximation to the distribution over the uncompressed fingerprints
of length N*, with mean μ* and standard deviation σ*. Thus in this case we have

(34)

With the Tanimoto measure, when t is close to 1 we get the approximation

(35)

By averaging over the database distribution (Equation 30), the average fraction of database to
be searched with Tanimoto similarity measure and similarity threshold t is given by

(36)

This can be computed by using the empirical or approximate distribution GD for fingerprints
of length N. It can also be approximated using again the approximate monotonic relation
between A and A* (Equation 32) to yield

(37)

When t is close to one, an analytic approximation can be derived as above. Table 1 shows that
this formula is in very good agreement with empirical values, with less than 2% error at t =0.9,
for values of N ranging from 64 to 1024.
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7.3 Speedup for the Top K Hits
For fixed threshold searches, the speedup does not depend on the size |D| of the database. The
situation is different, however, if we search for the top K hits. Using continuous notation, here
we let fA(x) and FA(x) denote the density and distribution functions of the similarity scores (for
instance Tanimoto scores) across the entire database averaged over all single-query molecules

 satisfying the constraint Σi Ai = A. Likewise, we can consider the average fD of fA, computed
over the entire database, and the corresponding distribution FD. The densities fA and fD are
typically bell-shaped over the finite [0,1] interval and therefore, to a first order of
approximation, can be modeled using a Beta distribution of the form

(38)

where a, b ≥ 0 are parameters that depend on A in the case of fA, and γ is the normalizing
constant. With a database of size |D| and a query of bit size A, the top K hits correspond to a
threshold value u such that

(39)

By bounding and integrating, this gives immediately

(40)

from which we can derive

(41)

Thus, as a function of database size, the threshold u scales like [1 − C|D|−/b]. In turn this
threshold can be entered in the equations derived above, especially when the threshold
approaches 1, to obtain the scaling of the speedup factor as a function of database size. For
instance, by substituting this threshold in Equation 31, we get

(42)

and similarly with Equation 36, when the threshold approaches 1. The fraction of database to
be searched scales like C|D|1−(1/b). Thus the fraction of the database to be searched becomes
smaller and smaller as the size |D| of the database increases and the speedup factor grows like
|D|1/b.

It is worth noting that more subtle analyses are possible by modeling fD as a mixture of two
(or more) Beta distributions where, for example, one component has a large mixing coefficient
and corresponds to the overwhelming majority of molecules that do not match the query, while
the other component has a small mixing coefficient and corresponds to the molecules that have
high similarity to the query. Since in the calculation above we are interested exclusively in the
right tail of fD near 1, the same analysis can be applied to these more complex models by
focusing on the corresponding Beta component and including the mixing coefficient in the
proportionality constant.

Figure 11, drawn for fingerprints of length N = 512, shows the excellent agreement between
the theoretical expression (Equation 42) and the empirical values. With Tanimoto similarity,
this yields values of b on the order of 2.5, thus the fraction of the database to be searched scales
like O(|D|1−(1/b) = O(|D|0.6), with sublinear speedup.
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While the simulation results show that these scaling formula hold for current database sizes
with millions of chemicals, it is clear that the scaling breaks downs as |D| → ∞ simply because
of the discrete nature of the bins associated with the values of B. For extremely large values
of |D|, the top K molecules  that are most similar to a query molecule  must be in the same
bin as  and must satisfy B = A. Therefore, once the database is large enough to reach this
regime, by the current methods one must search all the molecules contained in the same bin as

 and the speedup becomes linear again, i.e. one needs to search PN (A)|D| records. It is possible
to estimate the size D*(N) of the database at which this regime takes over. Clearly, D* depends
on the fingerprint length N and increases with N. To estimate D* based on average case analysis,
we notice that when the linear regime is in effect, for a query  we need to search a fraction
PN (A) of molecules, thus on average we need to search a fraction of the database equal to

(43)

and discard the fraction 1 − φ. We can then apply this value on the y axis of the curves in Figure
10 or 11 to find the correponding value of |D|. Using the curves and equations of Figure 11,
this gives φ(N) = C(K/D*(N))1/b or φ(N) = C1 + C2(K/D*(N))1/b resulting in

(44)

For N = 512 and the values in Figure 11, we get φ = 0.0032 and |D|/K = 6.7268e + 07, using
the more accurate model with offset. Thus the equations predict that the speedup will transition
from sublinear to linear when D*(N) is about 67 million compounds with K = 1, and 670 million
compounds when K = 10. These estimates are sensitive to the values of the Cs and b and
therefore should only be considered as indicative. However, they clearly indicate that for the
foreseeable future the speedup will remain sublinear, and this is even more true with longer
fingerprints, of length N = 1024 and beyond, which are widely used.

8 Conclusion
Current fingerprint search systems often require sequentially scanning the entire fingerprint
database. While this search strategy works for small to moderately sized databases which can
be stored in memory, it does not scale up well. In most practical applications, the user is not
interested in computing all similarity values but only the top hits, and perhaps estimating the
histogram of the entire distribution of similarity scores. Here we have shown how using pre-
stored information about the number of bits set to one in each binary fingerprint, or the total
number of counts in a non-binary fingerprint, we can greatly restrict the number of compounds
for which a similarity score must be computed.

The method uses simple mathematical bounds on fingerprint similarity measures to search only
a fraction of the database using the prestored information. With searches involving a fixed
linear threshold, the method yields linear speedup where one needs to search only a fraction
(1 − f) of the database. We have shown how the factor 1 − f depends on threshold and fingerprint
length, and can lead to speedups of one order of magnitude or more. With searches aimed at
retrieving the top K hits, the method yields even better sublinear speedups where, in a typical
case, the fraction of database to be searched scales like |D|0.6. The method requires no tuning
and remains exact in the sense that it returns the same results as if the entire database was
searched. As shown in the benchmark experiments reported in Table 2, when applied to the
5M compounds in the ChemDB the method delivers subsecond searchtimes on a single desktop
machine.
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Appendix A: Extensions to Other Similarity Measures
Fingerprint similarity can be calculated using many different measures. Holliday et al. (2002)
18 compare a comprehensive list of fingerprint similarities and distances. Using their
nomenclature, we show here how to calculate bounds on these measures, essentially by
expressing each measure in terms of unions and intersections, studying the corresponding
derivatives, and applying corresponding bounds.

As previously derived, the Jaccard/Tanimoto measure is defined as, and bounded by,

(45)

The Baroni-Urbani/Buser measure is similar to the Jaccard/Tanimoto measure, and is defined
as

(46)

and using the identity min(A, B) max (A, B) = AB we can derive the bound

(47)

Closely related to the Jaccard/Tanimoto measure, the Ochiai/Cosine measure is defined as, and
bounded by,

(48)

Also closely rrelated to the Jaccard/Tanimoto measure, the Pearson measure is defined as

(49)

and bounded by

(50)

The rather complex Stiles measure produces nearly identical rankings as the Pearson measure.
It is defined as

(51)

and bounded by

(52)

The McConnaughey and Dennis measures also are both closely correlated with the Jaccard/
Tanimoto measure. The McConnaughey measure is defined as
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(53)

and bounded by

(54)

While the Dennis measure is defined as, and bounded by,

(55)

Perhaps the simplest measure, Russel/Rao, performs surprisingly well: in some tests better than
the more commonly used Jaccard/Tanimoto measure. It is defined as, and bounded by,

(56)

The Dice and Sokal/Sneath(1) measures are equivalent to the Tversky similarity measure with
α = β = 0.5 and α = β = 2 respectively. Noting this relationship, we can use the bounds on the
Tversky similarity to derive bounds on these measures. For example, for the Dice measure we
have

(57)

The Sokal/Sneath(2) measure is defined as

(58)

Using the identity A + B − 2 min(A, B) = |A − B| we can derive its bound

(59)

We can use the same identity to define and bound the Sokal/Sneath(3) measure

(60)

Similarly, the Simple Matching measure, which can also be viewed as the complement of the
Mean Manhattan Distance, is defined as, and bounded by,

(61)

Similarly, the Kulczynski(1) measure is defined as, and bounded by,

(62)

Using again the identity , the Kulczynski(2) measure is defined as, and
bounded by,

(63)

Similarly, the Hamann measure is defined as, and bounded by,
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(64)

The Rogers/Tanimoto measure is similar to the Sokal/Sneath(3) measure. It is defined as, and
bounded by,

(65)

The Forbes measure is defined as, and bounded by,

(66)

Closely correlated with the Forbes measure, the Yule measure is defined as

(67)

and bounded by

(68)

The Fossum measure is defined and bounded by

(69)

The Simpson measure is defined as

(70)

In this case, the obvious upperbound is 1 and it is achieved when A ≤ 0 and B ≤ 0.

(71)

This upperbound does not lead to any search space reduction.

In some applications, such as selecting a diverse dataset, one is interested in minimizing
similarity (or maximizing distance) instead. This approach is meaningful only with certain
metrics. To maximize distance between fingerprints we must minimize the overlap between

 and , and so we can lower bound ( ) with max(A + B − N, 0), the minimum possible
overlap. For example, this can be applied to the Mean Manhattan distance, which is also the
L1 norm or the city-block distance. It is the the complement of the Simple Matching measure
and, in the binary case, it is rank-equivalent to Euclidian distance. It is defined as, and bounded
by,

(72)

Similarly, the Normalized Euclidian distance is the familiar L2 norm, defined as

(73)

It can be bounded in the same way by
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(74)

In short, we have shown how the same principles can be applied essentially to all the other
fingerprint similarity/distance measures that are found in the literature.

Appendix B: Estimation A Given A*
To estimate A from A*, we assume that the order of the bits in the long uncompressed
fingerprints has been randomized, so that we can use a simple binomial approximation where
we assume that the bits in the uncompressed fingerprints are set to one according to a binomial
coin flip process B(N*,α) with probability α = A*/N*. Then with modulo compression the
probability of setting a given bit to zero in the compressed  is (1 − α)k, where k = N*/N.
Therefore the corresponding distribution for A is binomial B(N, p)with:

(75)

Therefore, given α (or A*)

(76)

Thus, given A*, we can estimate A by

(77)

Asymptotically, for large N*, we can use

(78)

Equations 77 and 78 provide very good approximations to the true value, as shown in Figure
12.
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Figure 1.
Examples of five Estrogen Receptor binding compounds that could be entered in a multiple-
molecule query aimed at retrieving additional compounds in the same family.
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Figure 2.
Empirical distributions of A = Σi Ai over the entire ChemDB, and over the set of ChemDB
queries received over the Web during a period of four consecutive months, using fingerprints
of length N = 512. The distribution of A across the entire database is well modeled using a
Gaussian distribution with mean 119.53 and standard deviation 40.07. In contrast, the mean
and standard deviation of the received queries are 64.09 and 45.88 respectively.
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Figure 3.
Pruning the search space. The binary fingerprint of the query molecule satisfies A = 100. As a

function of B, the Tanimoto similarity measure  is upper bounded by the curve T(A,
B). If the similarity threshold is set at 0.9, only molecules with B in a very small interval around
100 need to be searched. All other molecules have similarity scores that are below the threshold.

Swamidass and Baldi Page 21

J Chem Inf Model. Author manuscript; available in PMC 2008 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Bounds T on the Tanimoto measure as a function of the size B of the binary fingerprint of a
molecule in the database. Solid curve corresponds to a single-molecule query with A = 100.
Dashed curve corresponds to a two-molecule query with the two molecules satisfying A = 100
and A = 150, using the similarity measure in Equation 12, with αi = βi = 1 and wi = 0.5 (also
equivalent in this binary case to Equation 17).

Swamidass and Baldi Page 22

J Chem Inf Model. Author manuscript; available in PMC 2008 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Bounds T on similarity measures as a function of the size B of the binary fingerprint of a
molecule in the database. Two-molecule query with A1 = 100 and A2 = 150. Each curve
corresponds to a different similarity measure. Average (green) is the average Tanimoto
similarity across the two molecules in the query. Min (red dashed) [resp. Max (red)] is the
minimum (resp. maximum) of the Tanimoto similarities. Aggregate (blue) is the aggregation
of the individual Tanimoto similarity measures (Equation 12 with αi = βi = 1 and wi = 0.5 for
all i).
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Figure 6.
Bounds on similarity measure. Query consists of 55 Estrogen Receptor binding molecules
against the same random sample of 50,000 molecules extracted from the ChemDB database.
Molecules are represented by binary compressed fingerprints of length 512. Each curve
corresponds to the bound for a different similarity measure. Average (green) is for the average
Tanimoto similarity across the 55 molecules in the query. Min (red dashed) [resp. Max (red)]
is for the minimum (resp. maximum) of the Tanimoto similarities. Profile (blue) is for the
aggregation of the 55 individual Tanimoto similarity measures (Equation 12 with αi = βi = 1
and wi = 1/55 for all i).
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Figure 7.
Curves representing the fraction f of molecules discarded from a given search as a function of
the size A of the binary query fingerprint, and the threshold t on the Tanimoto similarity. Blue
corresponds to t = 0.9, red to t = 0.8, and green to t = 0.7. Results computed using a random
sample of 50,000 molecules from the ChemDB database, using binary compressed fingerprint
of length 512. The rough lines are the empirical curves. The smooth lines in this plot are the
predictions provided by Equation 28.

Swamidass and Baldi Page 25

J Chem Inf Model. Author manuscript; available in PMC 2008 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Discarded fraction f as a function of the query bit count A and the threshold t. The three lines
associated with thresholds 0.7, 0.8, and 0.9 correspond to the curves in Figure 7.
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Figure 9.
Average speedup as a function of threshold for single-molecule query using the Tanimoto
similarity measure on binary compressed fingerprints of length 512. Average is computed over
the ChemDB distribution using a random sample of 50,000 molecules (solid line), or over the
distribution of Web queries received by the ChemDB over a period of four consecutive months
(dashed line). A similarity threshold of 0.9 yields approximately a 12-fold speedup for the
average query.
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Figure 10.
Average discarded fraction as a function of threshold for single-molecule query using the
Tanimoto similarity measure on binary compressed fingerprints of various length. The fraction
increases monotonically with the length of the fingerprints.

Swamidass and Baldi Page 28

J Chem Inf Model. Author manuscript; available in PMC 2008 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 11.
The two upper plots correspond to an experiment where K is varied and |D| is held constant at
4,099,792. Results are averaged over 5,000 separate queries randomly chosen from the
ChemDB. The two lower plots correspond to an experiment where |D| is varied and K is held
constant at 1, the data is averaged over 1,000 separate queries randomly chosen from ChemDB.
The lines are the best fit curves using the functional form given by y = 1 − C(K/|D|)1/b, where
b and C are the fit parameters and y corresponds either to u or the fraction pruned from the
database. This equation fits the data very closely with similar values for b. One can notice a
small, but systematic, misfit between the empirical points and the theoretical curve y = 1 − C
(K/|D|)1/b. This can be entirely eliminated by introducing one additional offset parameter and
fitting y = 1 − [C1 + C2(K/|D|)1/b] to the data.
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Figure 12.
Each point represents a molecule in the random subset of 50,000 molecules from the ChemDB,
using binary fingerprints of length N = 512. Random jitter uniform over [−0.5,0.5] is injected
in each coordinate to improve readability. The red curve corresponds to the predicted
relationship between A and A* using the asymptotic approximation to the binomial model
(Equation 78). The predicted values correspond closely to the expected empirical values
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Table 1
Comparison between predicted and empirical values of the curves in Figure 10 as a function of fingerprint length when
the threshold approaches 1 (here t = 0.9). Predicted values are derived from Equation 37. The distribution gN* is
approximated with a Gaussian with mean=138.68, and standard deviation 53.24, estimated from the ChemDB.

N Empirical f Predicted Value (Equation 37) Percent Error
1024 0.8345 0.835 0.06%
512 0.8226 0.8223 0.04%
256 0.7949 0.793 0.24%
128 0.7236 0.7148 1.22%
64 0.5057 0.4979 1.54%
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