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ABSTRACT Impaired transport of mitochondria, in dendrites and axons of neurons, and bioenergetic deficit are increasingly
recognized to be of pathological importance in neurodegenerative diseases. To study the relationship between transport and
bioenergetics, we have developed what to our knowledge is a novel technique to quantify organelle velocity in cultured cells. The
aim was to combine measurement of motion and bioenergetic parameters while minimizing photodynamic oxidative artifacts
evoked by fluorescence excitation. Velocity determination from sequential fluorescence images is not trivial, and here we describe
an application of ‘‘optical flow’’, the flow of gray values in grayscale images, to this problem. Based on the principles of photon shot
noise occurring in low light level fluorescence microscopy, we describe and validate here an optical flow-based, robust method to
measure velocity vectors for organelles expressing fluorescent proteins. This method features instantaneous velocity determina-
tion from a pair of images by detecting motion of edges, with no assumptions about the separation or shapes of the objects in the
image. Optical flow was used in combination with single mitochondrion assay of mitochondrial thiol redox status by mitochondrially
targeted redox-sensitive green fluorescent protein and measurement of mitochondrial membrane potential by tetramethylrhod-
amine methyl ester. Mitochondrial populations of resting cultured hippocampal neurons were analyzed. It was found that
mitochondria with more oxidized thiol redox status have lower membrane potentials and are smaller in size. These mitochondria are
more motile than the average; however, mitochondrial motility is only slightly dependent on the observed bioenergetic parameters
and is correlated the best to the size of the mitochondria.

INTRODUCTION

The mechanism by which neurons distribute their mito-

chondria to axonal and dendritic sites of ATP demand is

incompletely understood (see (1), or (2,3,4)). Mitochondrial

location and therefore motion is also critical for Ca21 buff-

ering (5,6), the distribution of newly synthesized mitochon-

drial DNA and proteins by fusion and fission (7,8), and in the

elimination of old or damaged mitochondria by autophagy

(3,9,10). The pathological relevance of disturbed mitochon-

drial transport is illustrated by axonal clogging in Alz-

heimer’s disease and Huntington’s disease (11–13) and by

the general failure of mitochondrial transport during patho-

logical glutamate exposure of cortical neurons (14,15).

There is an increasing body of evidence that individual

mitochondria within the hundreds or thousands populating

a single cell show heterogeneous responses to pathologic

stimuli (16–19). The aim of this study is to provide a tech-

nique for the instantaneous determination of velocities of

single mitochondria in combination with single mitochon-

drial measurements of key physiological/bioenergetical pa-

rameters such as membrane potential and redox status.

We introduce here a technique for the unsupervised and

robust determination of the velocities and directions of or-

ganelle transport, providing a snapshot of motion at the time

point of the measurement. The technique is designed to cal-

culate velocity vectors from as little as two image acquisi-

tions, minimizing phototoxicity. Since these acquisitions are

closely spaced in time, they can be correlated with functional

assays, such as determination of mitochondrial membrane

potential (DCm) and thiol redox potential. By utilizing stage

motors and multiple imaging positions, the technique allows

velocities to be determined for multiple view fields in par-

allel.

The approach involves the implementation and tuning

of an image processing technique called optical flow (20),

which to our knowledge has not previously been used in

fluorescence microscopic data analysis. Optical flow (Opt-

Flow) is defined as the ‘‘flow’’ of gray values in the image

plane, has the dimension of velocity (see page 406 in Jahne

(20)) and reflects the real physical motion of the imaged

objects parallel with the image plane when these objects do

not change their brightness and have spatial intensity gradi-

ents, edges, or corners. These criteria are fulfilled when

imaging cells expressing mitochondrially targeted fluores-

cent proteins, which do not change their fluorescent proper-

ties within the time frame of the image acquisition and where

cells or their processes are relatively thin. Importantly, we

have refined the technique to handle low light level, noisy

fluorescence images, establishing robustness over a wide

range of signal/noise ratios. The algorithm calculates a

velocity vector field from a grayscale image sequence. In

practice, the simplest output of the OptFlow calculation is an

image representing the absolute velocities of the objects by
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grayscale values, enabling simple region of interest averag-

ing to determine the mean mitochondrial velocity in a given

cell or subcellular region.

We show here that the OptFlow technique accurately

measures velocities with subpixel resolution. It can resolve

anterograde from retrograde motion and distinguish between

directional transport and mitochondrial ‘‘wiggling’’. The

velocity measurements are combined with single mitochon-

drial determination of DCm, thiol redox potential, and mi-

tochondrial size. We analyze populations of mitochondria in

resting cultured hippocampal neurons, showing that mito-

chondria with more oxidized thiol redox status have lower

membrane potentials and are smaller in size, and remarkably,

these mitochondria are more motile than the average. How-

ever, mitochondrial motility is only slightly dependent on the

observed bioenergetic parameters, and correlates the best

to the size of mitochondria. Directionality of mitochondrial

motion does not correlate with the assayed parameters in

dendrites of hippocampal neurons.

METHODS AND MODELING

Optical flow to measure motion of fluorescence
microscopic objects

Velocities and directions of movements of mitochondria were determined by

computation of optical flow from image sequences. Optical flow is defined as

the ‘‘flow’’ of gray values in the image plane and has the dimension of ve-

locity (see page 406 in Jahne (20)). The OptFlow reflects the real physical

motion of the imaged objects between frames of an image sequence when the

following criteria are met: the imaged objects move in the plane of the image,

do not change their intensity, and have spatial gray value gradients, i.e.,

edges or corners.

The OptFlow is defined by the brightness change constraint equation (Eq.

1 and Fig. 1), which assumes that the total intensity of the image does not

change during the image sequence, i.e., gray values (g) in the image are

conserved. Equation 1 relates the slope of intensity versus distance for a

given edge (@g/@x) moving with a velocity f ([OptFlow) to the rate at which

the intensity changes with time (�@g/@t) as the edge passes over a fixed point

in the image (Fig. 1). Equation 1 is shown in its one-dimensional form for

simplicity:

�@g

@t
¼ f

@g

@x
: (1)

The discrete least-squares method of OptFlow
determination for two-dimensional motion

For the general case where the object is moving simultaneously in x and y

dimensions, f cannot be unambiguously determined from a single equation.

To solve this in two dimensions, the assumption is made that the OptFlow is

constant in a small square window around the pixel of interest. This

‘‘neighborhood’’ consisting of N pixels is called the aperture. Equation 1 is

written for each pixel of the aperture, yielding a linear equation system. The

solution of this equation system using the method of least squares provides

f (Eqs. 2 and 3; for details see pages 414–415 in Jahne (20)):

f ¼ fx

fy

� �
¼ �

GxtGyy � GytGxy

GxxGyy � G
2

xy

GytGxx � GxtGxy

GxxGyy � G
2

xy

2
664

3
775 (2)

Gpq ¼ +
N

n¼1

@gn

@p

@gn

@q
[

�
@g

@p

@g

@q

�
: (3)

In Eq. 3, gn is the n th pixel of the aperture and p,q are x, y, or t. The operator Ææ
denotes the sum within the aperture neighborhood.

Two important constraints are required for the validity of Eq. 2 (see page

415 in Jahne (20)); First, (@g/@x) and (@g/@y) cannot be both zero in all points

of the aperture neighborhood, i.e., there has to be an object with edges in the

aperture (constraint No. 1). Second, the gradients must not point into the

same direction (constraint No. 2). These constraints will be considered in

the section dealing with the handling of images with noise.

Image processing steps to calculate OptFlow are detailed in Appendix A.

Briefly, separate copies of the image sequence were differentiated in x, y, and

t directions (@g/@x, @g/@y, and @g/@t, respectively) using kernel convolution

filtering. Gpq images (Eq. 3) were then calculated as the product of the dif-

ferentiated images pixel by pixel, followed by the application of the operator

Ææ, which was also implemented as a kernel convolution (‘‘the aperture

kernel’’). Finally, f was calculated by Eq. 2 performing the calculation with

the Gpq images, pixel by pixel. Separate fx and fy images were generated,

where the gray values reflected the motion in the respective dimensions. This

is the ‘‘raw OptFlow’’ in the scheme shown in Fig. 7. Absolute OptFlow

velocity images could then be calculated as
ffiffiffiffiffi
f 2

p
for each pixel.

Validation of the discrete least-squares method
of OptFlow determination using
model ‘‘mitochondria’’

Computer-generated image sequences of moving model ‘‘mitochondria’’

were drawn as projections of fluorescent spheres and capsules (see Appendix

B). Fig. 2 A shows spheres with radii (r) of 1.5, 3, and 6 pixels. These values

correspond to observed mitochondrial radii visualized below in Fig. 8 A.

Image sequences were generated in which the spheres were moving with a

constant speed varying between 0 and 8 pixels/frame. One image sequence

was generated for each velocity at 1:8 pixel/frame increments. Subpixel

positioning of the models in the image was enabled by using bilinear inter-

polation when drawing shapes (see also Fig. 6 E). The OptFlow calculation

was performed on each of these image sequences, using symmetric differ-

entiating kernels with a width of 3 (see Appendix A).

FIGURE 1 Illustration of the brightness change constraint equation

(Eq. 1). The light gray contour is the fluorescence intensity profile (g(x, t))

of the edge of an object moving in the x direction. The dark gray contour is

the same object at a time Dt later, when the object has moved to the right by a

distance Dx. The motion is observed at a given pixel (dashed line) where the

intensity changes (decreases) by Dg as the object moves (to the right). The

brightness change constraint equation can be derived from the definitions of

the slope and the velocity (f).
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To measure the velocity of the moving objects without the diluting effect of

the stationary background, images were masked and only the OptFlow over the

bright objects was averaged. This was necessary, because the constraints of Eq.

2 were not handled at this point. Absolute values of velocity vectors were

calculated and spatially averaged in the OptFlow images. The blue traces in Fig.

2 B plot the mean absolute OptFlow rates against the simulated velocity.

Because the OptFlow technique measures the translocation of spatial

grayscale gradients in time, and these gradients are determined from images

captured at discrete time points (frames), this implies that the gradients must

retain significant overlap over a given point of the image during the

full image sequence (as illustrated in Fig. 1, observed pixel). Therefore

the OptFlow images were masked by the binarized minimum intensity

t-projection image (analogous to z-projection of image stacks) of the image

sequences ensuring that the OptFlow function is only determined at those

pixels where the model ‘‘mitochondria’’ are present throughout the entire

image sequence (see Appendix C).

The red traces in Fig. 2 B show that the OptFlow determination provides

an accurate measure of velocity for subpixel per frame velocities, when

minimum intensity projected mask is used. This way of masking prevents

the underestimation of higher velocities for the model particles of r¼ 1.5 and

r ¼ 3 pixels, and partially at r ¼ 6. Consequently, the OptFlow signal is lost

at higher velocities due to the lack of overlap of the objects between adjacent

frames.

The effect of noise on the OptFlow

When images contain negligible noise, OptFlow is not dependent on the

fluorescence intensity. However, typical low light level fluorescence signals

are affected by photon shot noise, and the signal/noise ratio decreases when

the fluorescence intensity decreases. Since it is essential to minimize pho-

totoxicity in live-cell imaging, it is important to establish the extent to which

shot noise affects the OptFlow calculation. Photon shot noise follows a

Poisson distribution with the hallmark that the variance of the noise (s2) is

proportional to the intensity gray values (g) with a proportionality constant

equal to 1/AD, where the AD (analog to digital conversion factor) is the

number of photo electrons per gray value unit of the camera (Eq. 4). Because

AD varies by camera type, gain, and binning settings, the intensities (int) in

the simulations below are given in photo electrons. This equals gray value

units if AD ¼ 1:

s
2 ¼ g=AD: (4)

Photon shot noise was modeled by simulating the Poisson distribution of

photo electrons in the charge-coupled device camera. Sets of noisy model

image sequences for each ‘‘mitochondrial’’ radius and velocity were gen-

erated at photon counts (int) of 100, 200, and 1000 photo electron/pixel over

a background of 1000 photo electrons (Fig. 2 C; see also Appendix B.) In our

CoolSNAP HQ camera (Photometrics, Tucson, AZ; at 2 3 2 binning and 23

FIGURE 2 Effect of photon shot noise on the OptFlow. To test the OptFlow algorithm, image sequences of moving model mitochondria were computer

generated and the measured velocities were compared to the simulated ones. To simulate low light level imaging, noisy models were used. (A) Model

mitochondria were images of solid fluorescent spheres with radii (r) from 1.5 to 6 pixels over a zero background. Scale bar, 10 pixels. (B) OptFlow as a function

of simulated velocity: effects of object radius and masking. Blue traces: the middle frame of the image sequence was used as a mask; red traces: the minimum

intensity projection of the image sequence was used as a mask. OptFlow was determined by using simple (width¼ 3) kernels. Note that the minimum intensity

projection masking (red trace) avoids underestimation of higher velocities. (C) Mitochondria of r ¼ 3 are modeled with simulated photon shot noise at

intensities (int) of 100, 200, and 1000 over a background of 1000 photo electron/pixel. Scale bar, 10 pixels. (D–F) OptFlow as a function of modeled velocity

for different sized mitochondria (r ¼ 1.5–6) as a function of noise (int ¼ 100–1000). OptFlow was determined by using simple kernels (width ¼ 3; see

Appendix A) in model images containing photon shot noise. Note that the nonoptimized raw OptFlow algorithm is not robust, overestimates low velocities, and

underestimates high velocities in noisy images.
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gain), the AD was measured to be 2.7 (Fig. 3 in the Supplementary Material,

Data S1) so these values translate to 37, 74, and 370 gray value units. For

comparison, typical intensities in our experimental conditions are given in

Fig. 10, D and E.

Fig. 2, D–F, indicates that noise can introduce two errors: a nonzero es-

timate of OptFlow for stationary objects and an underestimation of velocities

of moving objects. To minimize these errors, we used a variety of temporal

and spatial differentiation, smoothing (see below), and aperture kernels of

increasing width (wt, wxy, wsm, and wap, respectively). The effects of these

kernels on the estimated OptFlow of the ‘‘noisy’’ model mitochondrion

image sequences were explored. The aim was to achieve a minimal absolute

OptFlow for stationary objects and a more accurate estimate of high veloc-

ities (Fig. 3). A severe test was imposed in that the low intensity (int ¼ 200)

noisy models and a very high background of 1000 photo electrons were used.

Since differentiation is noise sensitive, wider spatial differentiation ker-

nels (Savitzky-Golay kernels for each wxy width are given in Appendix A)

support better noise tolerance due to their additional smoothing effect.

However, although this improved the OptFlow estimation at higher veloci-

ties (Fig. 3 A), it led to an increased overestimation at lower velocities and

also resulted in a general OptFlow overestimation for small objects (Fig. 3 B).

Spatial smoothing kernel filtering (see Appendix A) perpendicular to the

spatial differentiation kernel (e.g., differentiating in the x direction with a row

kernel while smoothing in the y direction with a column kernel) decreased the

underestimation of the velocity of the large (r¼ 6) objects as effectively as a

wider spatial differentiation kernel (Fig. 3 A), but avoided the overestimation

of the velocities of small (r ¼ 1.5) objects (Fig. 3 B). A width of 7 pixels for

both spatial (wxy ¼ 7) and smoothing (wsm ¼ 7) kernels was used in the

following tests and measurements. These tests gave similar results for dif-

ferent radii, therefore only r ¼ 6 is shown (Fig. 3, C–G).

A temporal differentiation kernel wider than wt ¼ 3, which was used

above, (Fig. 3 C, black trace) can be used when the number of acquired

frames is increased. At the same frame rate, this requires a longer image

FIGURE 3 Optimization of the OptFlow technique for

robustness. Traces of OptFlow were plotted as functions of

simulated velocity of noisy model mitochondria. The aim of

the optimization was to decrease the low velocity overesti-

mation and high velocity underestimation, i.e., to get the

OptFlow traces close to the gray (ideal) line corresponding to

the accurate velocity determination. (A and B) Effects of

increased width of spatial differentiation (wxy) or smoothing

(wsm) kernels for large (r ¼ 6 pixels) or small (r ¼ 1.5)

objects. OptFlow was determined by using the indicated

kernels and simple symmetric (wt ¼ 3) temporal differenti-

ation kernel in model mitochondria containing photon shot

noise at intensity of 200 above a background of 1000 photo

electrons. (C–F) OptFlow was determined by using the

indicated kernels in r ¼ 6 model mitochondria containing

photon shot noise at int ¼ 200. (C) Effects of increased

temporal differentiation kernel width (wt) or frame rate (in

frames per seconds; fps). The default frame rate was 1 fps.

For the 7/3 fps trace, a separate set of image sequences was

generated to model the higher frame rate. (D) Temporal

differentiation with wt ¼ 2 kernel (i.e., two using frames

rather than three) and width of 2 with averaging (wt¼ 2avg;

see text). (E) Effect of increased aperture kernel size (wap).

For this and the following plots, wt ¼ 2avg was used. (F)

Effect of cutting off temporal derivatives that are smaller

than the effect of the noise (@t cut off; Eq. 5). (G) Effect of

correction for the systematic underestimation bias caused by

the noise (Eq. 6). The corrected noisy (int¼ 200) trace (red)

overlaps with the uncorrected high intensity, therefore less

noisy (int ¼ 20,000; blue) trace.
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sequence, or an increased frame rate at the same acquisition length. The

former resulted in a more accurate OptFlow at small velocities, but an earlier

saturation or loss of signal due to the zero area of the minimum intensity

projected mask (Fig. 3 C, red trace). Increasing the frame rate had little effect

on the low velocity overestimation (Fig. 3 C, green trace).

When imaging live cells, it is essential to minimize phototoxicity. Re-

ducing the number of frames required for the temporal differentiation from

3 to 2 will decrease exposure significantly. However, when wt¼ 2 is applied

to the model under the conditions of Fig. 3 C, an overestimation of OptFlow

is found for all velocities (Fig. 3 D). When the motion of the model mito-

chondria is visualized by a pseudo color scale (Fig. 4 F), it is seen that the

OptFlow gives different values close to the leading and trailing edges of the

models. This is because the spatial derivatives obtained from either the first or

second frame are different, thus results are inherently asymmetric. In con-

trast, at wt ¼ 3, the middle image is used to calculate spatial derivatives

(Appendix A). To avoid asymmetry, OptFlow was calculated as the average

of the OptFlow obtained using the first and the second frame for spatial

differentiation (wt ¼ 2avg; Fig. 4 E). This reestablishes the symmetry of

leading and trailing edges and reduces the overestimate at higher velocities

while not affecting the zero velocity artifact in the OptFlow (Fig. 3 D).

Since minimizing phototoxicity was considered to be of paramount im-

portance, it was decided to utilize the wt ¼ 2avg averaged differentiation

kernel for subsequent refinements. First the effect of increasing the size of

the aperture kernel (wap) from 3 3 3 to a 5 3 5 or 7 3 7 matrix of ones

was considered (Fig. 3 E). This significantly reduced the overestimation

of low velocities, although stationary objects still maintained a nonzero

OptFlow. An aperture kernel of 5 3 5 was chosen to be used in the following

iterations.

Estimation of photon shot noise and its effects
on temporal differentiation

As shown in (Fig. 3, D–F), photon shot noise at the camera generates an

artifactual OptFlow over stationary objects. This is because noise-related

fluctuation of intensity over the edge of a stationary object results in OptFlow

and mimics motion. To eliminate OptFlow over stationary objects, first

s2
estimated was calculated for each aperture neighborhood based on the pro-

portionality given by Eq. 4 (see Eq. 9 in Appendix D). Then, given that the

mean-square of differentiated noise equals the (s2) of the noise (at unit Dt),
we set up the following constraint (@t cutoff). A zero @g/@t was assigned to

those pixels where Eq. 5 was satisfied; thus the mean-square of temporal

derivatives (Gtt) could not be distinguished from values expected to occur

due to noise (a k ¼ 1.5 was used in Eq. 9 to obtain s2
estimated). This procedure

is indicated as ‘‘Mask @t cut off’’ in Fig. 7. The effect of ‘‘@t cut off’’ in

abolishing the zero velocity artifact is shown in Fig. 3 F:

Gtt , s
2

estimated=Dt
2 ðwhere Dt is the frame intervalÞ: (5)

Correction for the systematic underestimation of
the OptFlow by noise

The use of a simple spatial differentiation kernel resulted in more underes-

timation of velocity for large objects (Fig. 3 A versus 3 B) than for small

objects of the same intensity, because the gray value gradients are smaller for

the larger objects. This is because noise also introduces a systematic error

into f calculated by Eq. 2. such that f is biased toward lower values by noise.

Correction for this bias was done by multiplying f by the following factor (see

page 443 in Jahne (20)):

Gxx 1 s
2

estimated

Gxx

Gyy 1 s
2

estimated

Gyy

2
664

3
775: (6)

Fig. 3 G shows that this noise bias correction (with k¼ 1.5 in Eq. 9) makes

the simple spatial differentiation kernel suitable for OptFlow determination

of larger faint or noisy objects. Below (see Fig. 6) we will show that this does not

affect the OptFlow determination on small objects. Fig. 4, A–E, shows raw and

absolute OptFlow images for model mitochondria corresponding to the op-

timized parameters used in Fig. 3 G (see also bias corrected OptFlow in Fig. 7).

Violation of constraints of Eq. 2 by noise

The two constraints to the validity of the two-dimensional solution of the

brightness change constraint equation (Eq. 2) could be violated by excessive

photon shot noise. First, the neighborhood aperture has to have gray value

gradients that are distinguishable from ones expected to rise from noise. This

follows from constraint No. 1 that @g/@x and @g/@y must be nonzero in the

neighborhood. Secondly, violation of constraint No. 2 is considered at the

problem of elongated shapes below.

The most noise-sensitive terms in Eq. 2 are the squares of derivatives Gxx

and Gyy. Products of different derivatives Gxy, Gxt, and Gyt are close to zero,

because these values can be considered as cross correlations of independent

noise, which is zero. Therefore, aperture neighborhoods where Gxx and Gyy

values are less than s2
estimated (with k ¼ 4 in Eq. 9 see Appendix D) were

discarded by masking (Eq. 7). Of note, masking with the minimum intensity

t-projected image removes most of the pixels satisfying Eq. 7 in the case of

the model mitochondrion images; therefore, it has no effect in the above

modeling paradigms (not shown, but see below in Fig. 5, D and E). However,

application of this constraint is necessary in the case of the less clean real

microscopic images (e.g., due to out-of-focus blur):

Gpp , s
2

estimated ðwhere p ¼ x or yÞ (7)

FIGURE 4 Absolute velocity images of noisy model mitochondria. The OptFlow algorithm optimized in Fig. 3 G was used to visualize motion by coloring each

pixel according to the velocity of the underlying object. (A) Spherical model mitochondria of r¼ 6 and int¼ 1000 with simulated photon shot noise are shown in the

64 3 64 pixel image. (B–E) Pseudo color-coded absolute OptFlow images calculated from image sequences showing model mitochondria (A) moving with the

indicated velocities to the right. Parameters of OptFlow calculation correspond to Fig. 3 G: wt¼ 2avg, wxy¼ 3, wsm¼ 7, wap¼ 5, corrections for @t cutoff (Eq. 5), and

the bias caused by noise (Eq. 6) were applied. (F) is same as E but wt ¼ 2 was used instead of wt ¼ 2avg. Note that as a result of the simulated photon shot noise,

velocities are not uniform over the pixels. However, when mean velocities are measured (e.g., Fig. 3 G) this causes little error. Scale bar, 10 pixels.
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The problem of elongated mitochondria

Mitochondria are typically elongated rather than spherical structures, and

move parallel to their longest axis on trajectories provided by the microtubule

cytoskeletal system. It is therefore necessary to consider the accuracy of the

OptFlow calculation for such elongated objects. Constraint No. 2 of Eq. 2 is

that the gradients must not point into the same direction within a neighbor-

hood. This means in the mitochondrial context that the OptFlow cannot be

determined at the middle of a rod-like mitochondrion, where the intensity

will not change at a given pixel between adjacent frames as the mitochon-

drion moves along, but is valid at the tips. Therefore these parts of the

OptFlow image have to be masked to maintain accuracy.

This second constraint requires the evaluation of gradient vectors =g (see

definition in Eq. 10) in each neighborhood. To this end, we consider that if all

gradient vectors of the neighborhood are parallel, then their vector products

are zero in the absence of noise. This can be simplified as a calculation of the

vector products between a mean (or sum) vector and each of the vectors of the

aperture neighborhood (Eq. 8, left side numerator; see details in Appendix

E). For a valid OptFlow determination in the presence of noise, this vector

product sum has to be smaller than a threshold, defined above as s2
estimated. To

be independent of gray value intensities and of the number of pixels in the

aperture kernel (N), the summed vector product was normalized by

N2Æð=gÞ2æ. The left side of Eq. 8 was raised to a 0.75th power that was

determined empirically to further lessen intensity dependence (data not

shown). Finally, constraint No. 2 was enforced by masking OptFlow images

where Eq. 8 was satisfied:

ÆðÆj=gjæ 3 j=gjÞ2æ
N

2Æð=gÞ2æ

� �0:75

, s
2

estimated (8)

Rod-like model mitochondria were generated (Fig. 5 A), and the effect of

implementing Eq. 8 (Appendix E) was tested. Fig. 5, B and E, show that with

no constraints, velocities are underestimated because of the contribution of

inaccurately low OptFlow in the middle of the rod shape. Application of

constraint No. 2 (with k ¼ 0.045 in Eq. 9) allows the underestimated middle

section of the model mitochondrion to be masked (Fig. 5 C), resulting in a

more accurate mean OptFlow at velocities up to 2 pixel/frame (Fig. 5 E, red
trace). Equation 8 proved to be a valid correction, since OptFlow was in-

dependent of kernel selections (not shown), and to have little dependence on

intensity and noise (see below). Fig. 5 D illustrates the effect of applying

constraint No. 1 of Eq. 7 in addition to constraint No. 2, but using no masking

with the binarized minimum intensity projected image. However, this had

little effect on the OptFlow (Fig. 5 E, blue trace).

The dynamic range of velocity determination

The above data indicate that short spatial differentiation kernels can be used

on large objects with minimal error when the bias correction is applied (Eq. 6

and Fig. 3 G). Fig. 6, A–C, demonstrates that the OptFlow algorithm tuned in

the above sections is accurate for the three sizes of model mitochondria at

various ‘‘fluorescence’’ intensities or noise levels using a single set of pa-

rameters. Fig. 6, A–C, also indicate that in the case of the modeled spheres it

was possible to accurately measure velocities (in pixel/frame) up to the ap-

proximate square root of the radius.

The smallest velocities that can be distinguished from zero vary with the

noise level (Figs. 6, A–C). The least noisy models (intensities 1000 and

20000) seem to yield linear simulated versus measured velocity relationship

at the bottom of the simulated velocity range. To establish the smallest ve-

locity that can be distinguished from zero, OptFlow was calculated for

simulated velocities increasing at 1/64 pixel/frame increments for the r ¼ 3,

int ¼ 1000 model mitochondria. The smallest velocity that was significantly

different from zero was 5/64 pixel/frame for wt ¼ 2avg (Fig. 6 D) and 3/64

pixel/frame for the wt ¼ 3 (not shown). Fig. 6 E illustrates this by showing

that a 1/8 pixel shift of a group of model mitochondria yields a sufficient

@g/@t (green arrows) to result in a significant OptFlow. Thus the OptFlow

technique is exquisitely sensitive for the detection of slight displacements.

The OptFlow algorithm with all corrections and constrains introduced above

is summarized in Fig. 7.

FIGURE 5 Elongated mitochondria and the constraints of the least squares

approach. To accurately measure velocities of elongated objects, pixels cor-

responding to areas that do not fulfill the mathematical criteria of valid

OptFlow calculation (constraints of Eq. 2), like the middle of rod shapes, were

rejected by masking. (A) Model mitochondria of r¼ 3 and length¼ 15 pixels

moving at 1.4 pixel/frame according to the arrow were generated with

simulating photon shot noise at int ¼ 1000 over background of 1000 photo

electron/pixel. (B) Absolute OptFlow image masked with the binarized

minimum intensity projection of the raw image sequence. Note that velocities

measured over the middle of rod shapes (blue color) are inaccurately low. (C)

absolute OptFlow image after enforcement of constraint No. 2 by masking

pixels satisfying Eq. 8 and also using the minimum intensity projection mask

as in C. Note that the invalid (blue) pixels of B were masked. (D) absolute

OptFlow image after enforcement of both constraints (Eqs. 7 and 8), but not

the minimum intensity projection mask. Scale bar, 10 pixels. (E) OptFlow as

a function of modeled velocity: effects of the masking according to the

constraints of the least squares approach. Red trace: identical results were

obtained with or without application of constraint No. 1. Note that constraint

No. 2 reduces underestimation.
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Targeted fluorescent proteins

The plasmid vector encoding mito-roGFP1 was a gift of James Remington

(21) and the mito-mPlum was from Ella Bossy-Wetzel (Burnham Institute,

La Jolla, CA). These constructs selectively mark mitochondria by using the

N-terminal targeting sequence of the cytochrome oxidase subunit VIII. These

fluorophores localize to the mitochondrial matrix. The myristoyl palmitoyl

mCFP was a gift of Roger Tsien (22). This latter construct, due to its acyl-

ation, enriches in membranes, as in the plasma membrane.

Cell culture and transfection

Primary hippocampal neurons were prepared from E18 rat hippocampi (Brain-

Bits LLC, Springfield, IL). Hippocampi were dissociated with 2 mg/ml papain

(Worthington, Lakewood, NJ) in Hibernate (BrainBits) for 30 min at 37�C, and

were dispersed manually by 5–10 strokes with a 1 ml pipette. Cells were plated

onto poly-D-lysine-coated Lab-Tek I 8-well chambered coverglasses (Nunc,

Rochester, NY) at a density of 105 cells/well in neurobasal medium (Invitrogen,

Carlsbad, CA) containing 2% B27 supplement, 0.5 mM GlutaMAX, 25 mM

glutamate, 1% dialyzed fetal bovine serum, and 1% penicillin/streptomycin; 3 h

later, plating medium was replaced by a serum-free medium. Neurons were

maintained at 37�C in 92% N2/5% CO2/3% O2 atmosphere. Cultures were fed

after 4 days by replacing half of the medium with fresh medium lacking serum

and glutamate. Cultures were transfected at days 11 and 12 using Lipofectamine

2000 (Invitrogen) in Neurobasal medium at a 3:2 ratio of Lipofectamine (ml) to

plasmid DNA (mg); 0.2 mg of DNA was transfected per well in 20 ml Neurobasal

medium over the top of 100 ml culture medium. Saved culture medium diluted in

1:1 with fresh medium was replaced over the cells after 3–4 h. Experiments were

performed 2–4 days posttransfection at 37�C in a medium containing (in mM)

120 NaCl, 3.5 KCl, 1.3 CaCl2, 1 MgCl2, 0.4 KH2PO4, 5 NaHCO3, 1.2 Na2SO4,

20 TES, 15 glucose and 0.4% fatty acid free bovine serum albumin at pH 7.4.

Image acquisition

Time-lapse fluorescence microscopy was performed on an Olympus IX-81

inverted microscope equipped with an UAPO 403 oil 1.3 NA lens, a Lambda

LS Xe-arc light source (175 W, using an ND1.5 filter to attenuate intensity),

Lambda 10-2 excitation and emission filter wheels (Sutter Instruments, Novato,

CA), CoolSNAP HQ cooled digital camera (�30�C, 10 Mhz readout, 23 gain,

12 bit depth) and a Proscan linear encoded xy-stage (Prior, Rockland, MA). At

2 3 2 binning of the camera, 512 3 512 pixel images were recorded at ;0.32

mm/pixel resolution. To image mito-roGFP1, a 438/24 nm (Semrock,

Rochester, NY) or a 480/20 nm (Chroma, Rockingham, VT) excitation filter, a

505LP dichroic mirror (Chroma 74100) and a 528/38 nm (Chroma) emitter

were used. Although mito-roGFP1 exhibits redox potential-dependent fluo-

rescence (21), intensity changes at the 438 nm excitation are small, because this

wavelength is close to the redox-insensitive isosbestic point. Therefore, only

the 438 nm excitation wavelength of the mito-roGFP1 was used for OptFlow

calculation. In addition, physiological redox-sensitive changes in roGFP1

FIGURE 6 Test of the optimized OptFlow algorithm. Traces of OptFlow

were plotted as functions of simulated velocity of noisy model mitochondria,

at various radii and noise levels. The following parameters were used for the

OptFlow algorithm: wt ¼ 2avg, wxy ¼ 3, wsm ¼7, wap ¼ 5, @t cutoff

correction (Eq. 5) with k¼ 1.5 (k stands for the constant in Eq. 9), noise bias

correction (Eq. 6) at k¼ 1.5, constraint No.1 (Eq. 7) at k¼ 1.5 and constraint

No. 2 (Eq. 8) at k ¼ 0.045 and using minimal intensity projection masking.

(A–C) Effects of varying sphere radii (r) or intensity (int) on the corrected

OptFlow values. The int ¼ 100 trace (red) is missing due to excessive

masking by constraints 1 and 2 in A and B. Note that the accuracy of velocity

measurement is practically independent of the noise level. (D) Statistical

analysis of the smallest detectable velocity in r ¼ 3 int ¼ 1000 model

mitochondria. Five image sequence sets were generated for velocities below

1/8 pixels/frames. The asterisk indicates the first data point, which was p ,

0.05 significant with ANOVA and Tukey post hoc testing. (E) Illustration of

1/8 pixels shift to the right of a group of model mitochondria of r¼ 3. Green

arrows indicate temporal changes (@g/@t) of the gray values, which results in

measurable OptFlow at subpixel dislocations.
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fluorescence are too slow to affect the OptFlow calculation (data not shown).

For mito-mPlum, a 582/15 nm exciter (Semrock), a 500/580 nm dichroic mirror

(Chroma 51019), and a 610LP emitter (Omega) were used. For myrpalm-CFP,

the 438/24 nm exciter, a 458LP dichroic mirror, and a 483/32 nm emitter

(Semrock) were used. For tetramethylrhodamine methyl ester (TMRM), a 555

nm (Chroma) excitation filter, a 475/560 nm dichroic mirror (Chroma 73000),

and a 588/21 nm (Semrock) emission filter were used.

The whole microscope enclosure was maintained at 37�C in air. Image

acquisition was controlled by the Multi Dimensional Acquisition application

and journal programming in Metamorph 6.3 (Molecular Devices, Downing-

town, PA). In each acquisition cycle, the sample was autofocused on green

fluorescent beads placed in an empty well of the eight-well chamber. Then 4–16

cells at different stored locations were visited and imaged at 1–3 wavelengths.

Image acquisition for OptFlow calculation was performed by recording short

sequences of images (two frames at one frame/s; except for Figs. 8 and 9) at each

location. Image sequences were repeated at intervals of ;2 min. Because there

was no change in stage position or optics of the microscope for the duration of

the short image sequence, mechanical motion artifacts related to the multidi-

mensional image acquisition were avoided (i.e., imprecision of xy stage and

focus motors during revisiting stage positions and emission filter/dichroic

mirror changers when acquiring multiple wavelengths). Mechanical motion

artifacts originating from stage or focus drift, vibrations, and heat dilation/

contraction of the microscope frame could lead to the appearance of uniform

motion vectors over all stationary objects of the view field, but this was not

found. Image data were stored on the hard drive and analyzed off-line.

Measurements of mean OptFlow over the mitochondrial population (Fig. 10)

weredone in the same wayas detailed above for model mitochondria, processing

raw fluorescence image sequences of mito-roGFP1 438 nm excitation. Mea-

surements of single mitochondrion fluorescence intensities and OptFlow (Figs.

8, 9, 11–13) were based on binarization and segmentation of both mito-roGFP1

images (see Appendix C). Although the OptFlow was calculated in raw image

sequences, mean fluorescence intensities were determined for each mitochon-

drion in local background subtracted, aligned images. Dehazing and local

background removal were done by high-pass filtering (23). The high-pass filter

had a characteristic of a gradual cut on between v ¼ 0.05–0.5 cycles/mm (24).

Calculation of relative thiol redox potential
and DWm

The relative redox potential of the mito-roGFP1 (DEroGFP) as compared to

the cellular mean was calculated from the 438:480 nm fluorescence excita-

tion ratio (R) as 60 log ((R-Rmin)/(Rmax-R)). These potentials were normalized

by the subtraction of the mean redox potential calculated separately for each

neuron. Rmin (0.6) and Rmax (1.4) minimal and maximal fluorescence ratios

corresponding to fully reduced and fully oxidized states, respectively, were

determined in separate experiments.

To measure DCm, TMRM (7.5 nM) was preincubated for 1 h and was con-

tinuously present in the experimental medium together with tetraphenylboron

(1 mM) facilitating its equilibration through cellular membranes (25). This

concentration of TMRM was below the threshold for fluorescence quenching of

the dye in the mitochondria (25,26); thus differences of DCm (Dj DCmj) can be

directly calculated in millivolts from the relative fluorescence intensities.

The difference of DCm in millivolts from the mean of the total mitochondrial

population of each neuron was calculated for individual mitochondria as

follows. Because of the high-pass filtering, the measured signal reflected the

mitochondrially originated TMRM fluorescence (23). Individual mitochon-

dria can be smaller or thinner than the resolution of the microscope, so their

fluorescence is diluted by the background (27). To normalize TMRM fluo-

rescence intensity for each mitochondrion, the intensity measured in the high-

pass filtered image was divided by the calculated fluorescence intensity

corresponding to the isosbestic wavelength of roGFP1 (see Appendix F). The

log of this ratio was then multiplied by 60 to give a value corresponding to

Dcm 1 K for that mitochondrion in millivolts, where K is a constant for a

given cell reflecting the level of roGFP1 expression. Finally, the extent to

which each individual mitochondrion deviated from the mean was calculated

FIGURE 7 Scheme of the OptFlow calculation. Each box corresponds to an

image where pixels can take values of real numbers. The input is an image

sequence g(x,y,t) (top middle). s2
estimated; @g/@x, and @g/@y images are calculated

from the image in the middle of the image sequence (shown for wt¼ 3).@g/@t and

the minimum intensity projected (MinIP) mask are calculated from the whole

image sequence. Brackets indicate inputs and outputs of each computation step

(arrows) given above by equations or explained in text. Images denoted by boxes

here are processed pixel by pixel in algebraic formulas (Eqs. 2, 3, and 6). In

inequalities (Eqs. 5 and 7–9), masks are generated that are 0 (rejecting) where the

inequality is true and 1 (transmitting) where the inequality is false. The output of

the calculation is a pair of images fx and fy corresponding to the velocities over

each pixel in x and in y directions, respectively. Absolute and radial velocities

(scalar values) are calculated from the fx and fy image pair. When wt ¼ 2avg is

used, the whole scheme is computed twice by taking the first or the second image

as middle image and finally averaging the results.
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by subtraction of the mean value of Dcm 1 K calculated for each neuron

(Dj DCmj). Therefore, the Dj DCmj is independent both of the dimensions of

mitochondria and the level of roGFP1 expression.

Radial projection of velocity vectors

To assess and distinguish between anterograde and retrograde motion of

mitochondria, the radial projection of the velocity vectors from the soma of

the neuron was calculated. For this, the scalar product of the velocity vector

and a unit vector pointing from a manually selected point in the soma to the

given pixel was calculated for each pixel of the OptFlow vector field. An-

terograde motion is therefore defined as a positive radial velocity.

Cluster analysis

To find subpopulations of mitochondria differing in any of the above

quantified parameters, multidimensional cluster analysis was performed by

the FindClusters function of Mathematica 5.2, using it with its default op-

tions. For clustering, all data were normalized to span a unit length between

the 10th and 90th percentile for each parameter, and individual mitochondria

were optimized into the given number of clusters based on the two- or four-

dimensional squared Euclidian distance between the data points in an un-

supervised manner.

Software environment

Image processing was carried out using custom developed image analysis

software written in Pascal language (Delphi 6.0; Borland, Austin, TX) and

Mathematica 5.2 (Wolfram Research, Champaign, IL). All further data

analysis was done in Mathematica 5.2.

MATERIALS

Reagents were obtained from Sigma (St. Louis, MO) or EMD Chemicals

(Gibbstown, NJ) unless otherwise stated.

EXPERIMENTAL RESULTS

Measurement of velocity of individual
mitochondria in dendrites of
hippocampal neurons

Cultured rat hippocampal neurons expressing mitochon-

drially targeted redox sensitive GFP (mito-roGFP1 (21)),

were imaged to record mitochondrial motion in the proximal

FIGURE 8 Determination of optimal frame rate to follow the motion of mitochondria in dendrites of hippocampal neurons. To match the dynamic range of the

OptFlow calculation and the velocities of mitochondria in dendrites of hippocampal neurons, OptFlow calculation was performed at various image acquisition

intervals. (A) Typical mitochondria at 0.32 mm/pixel resolution had gradients with 1.5–3.5 pixels radii. (B) Raw fluorescent image of a hippocampal neuron

expressing mito-roGFP1. (C) Minimum intensity projected, high pass filtered, and segmented image of the same neuron. Each segment is shown in a distinct color.

(D) Absolute OptFlow image calculated using the parameters described in Fig. 6, shown with no intensity image masking. White pixels were masked by the

constraint criteria. The time lapse interval was 1 s/frame. (E) Masked absolute OptFlow image overlaid on the shapes of the segments in black. Black pixels show

those parts of mitochondria that are masked by the constraint criteria, whereas colored pixels show valid OptFlow determinations (see scale in D). (F) Histograms

of mean velocities of mitochondria. The histograms are truncated at velocities ,50 nm/s for improved visualization of higher velocities, whereas percents refer to

the total mitochondrial population. The acquisition interval (0.15 s–3 s) used for recording images for OptFlow calculation is indicated in the diagrams. Note that

there are no distinguished mitochondrial velocities, i.e., the velocity distribution is continuous. Vertical red lines indicate the estimated boundaries of the

sensitivity. These data are also shown in Table 1. Note that large parts of the histograms are outside of the red lines in i and iii, whereas the 1 s/frame acquisition

interval ii brackets most of the velocities. Data are from ;17,500 mitochondria pooled from 12 neurons and 20 repeats per cell. Scale bar, 10 mm.
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;100 mm of dendrites (Fig. 8 B). Mitochondria in these

dendrites were sufficiently plentiful for their fluorescence to

reveal the shape of the cell, and no additional fluorescence

marker was required. Mitochondria appeared as rods and

spheres with apparent radii of 1.5–3.5 pixels (Fig. 8 A).

First, the optimal image acquisition interval was assessed

for the measurement of mitochondrial velocities. Short image

sequences for the OptFlow calculation consisting of seven

frames with 0.15 s, 0.5 s, or 2 s intervals were recorded every

2 min. OptFlow was calculated by selecting two frames from

the image sequence separated by 0.15–4 s. Temporal dif-

ferentiation was done as described for wt ¼ 2avg. The min-

imum intensity-projected image sequence was segmented to

identify individual mitochondria (shown in false color in Fig.

8 C) before determination of their velocity. Segmentation

sometimes detected conglomerates of mitochondria as single

entities; however, these were very few compared to the large

number of smaller mitochondria and were therefore not ex-

pected to bias the calculation. Mean velocity of each segment

in Fig. 8 C was measured in the absolute OptFlow images

(Fig. 8 D, where the velocity of the individual mitochondria

is represented by the color coding). In Fig. 8 E, the absolute

OptFlow image was masked by the segmented image and

overlaid on the segments shown in black. The black pixels

correspond to the parts of each mitochondrion that were

masked by the constraint criteria in Fig. 8 D, whereas colored

pixels show valid OptFlow determinations that counted into

the mean velocity of each given segment.

Since individual mitochondria frequently change velocity

and direction, stop and restart, 20 measurements were done for

each neuron at 2 min intervals and the data were pooled. Each

mitochondrion in the repeated measurements was treated as a

separate, individual data point. Velocity distributions were

plotted in histograms (Fig. 8 F and summarized in Table 1).

Remarkably, these histograms confirm that mitochondria do not

have preferred velocities, but rather exhibit a continuous dis-

tribution (28,29). The power of the technique beyond conven-

tional manual rate determination is exemplified by the fact that

the histograms represent velocity determinations from ;17,500

mitochondria pooled from 12 neurons and 20 repeats per cell.

To determine the optimal acquisition interval, we consid-

ered that the OptFlow measurement is accurate between 5/64

and 1.2 pixels/frames based on Fig. 6. The actual calibrated

dynamic range is marked by the red lines on the histograms in

Fig. 8 F. As would be expected, increasing the acquisition

interval increased the sensitivity for the detection of small

velocities. Thus the percentage of stationary mitochondria

(defined here as ,1.3 nm/s corresponding to the least signif-

icant bit of the integer data storage) decreased with increasing

acquisition interval (Table 1; histograms in Fig. 8 F were

truncated to hide the large number of stationary mitochondria).

As Table 1 indicates, shorter acquisition intervals (0.15–2 s)

are suitable for detection of fast movements in dendrites since

the 99th percentile of measured velocities is substantially be-

low the top detection limit. However, at acquisition intervals

,1 s, the mean and median velocities are below the bottom

detection limit, and these velocities are considered to be in-

accurate. Therefore, we conclude that acquisition intervals of

1–2 s are optimal for overall assessment of mitochondrial

motion in dendrites of hippocampal neurons.

We have also determined the proportion of mitochondria

excluded by the OptFlow algorithm. Loss of data corresponding

to certain mitochondria occurs because of elimination of ob-

jects, which move faster than the algorithm can measure, by the

minimum intensity projection masking. The number of such

mitochondria was determined by binarization and segmentation

of both maximum and minimum intensity projection images,

followed by counting those mitochondria that show up only in

the maximum but not in the minimum intensity projected im-

ages. Table 1, column 2, shows that although the numbers of

excluded mitochondria are small, they increase with increasing

acquisition interval. A second group of mitochondria is ex-

cluded due to the constraints of the optical flow algorithm, in-

dependently of the acquisition interval (Table 1, column 3).

Measurement of velocity of individual
mitochondria in axons of hippocampal neurons

Mitochondria in axons are shorter and more sparsely dis-

tributed than in dendrites (Fig. 9 A). Therefore, the plasma

TABLE 1 Velocities of dendritic mitochondria and the dynamic range of the OptFlow measurement as a function of image

acquisition interval

Velocity of moving mitochondria (nm/s) Detection range (nm/s)
Acquisition

interval (s)

Percent lost by minimum

intensity projection

Percent lost by

constraints

Percent

stationary Mean Median 95% 99% Bottom Top

0.15 1.8 6 0.4 4.8 6 2.5 56.0 6 2.0 103 6 4.6 42.3 6 2.1 412 6 20.3 800 6 79.1 167 2560

0.3 2.1 6 0.3 5.1 6 2.7 54.6 6 2.4 69.8 6 3.4 32.1 6 1.7 263 6 16.0 489 6 36.5 83 1280

0.5 2.2 6 0.3 4.8 6 2.5 51.3 6 2.6 57.8 6 3.7 27.4 6 1.8 206 6 12.8 442 6 54.2 50 768

1 2.6 6 0.3 5.1 6 2.6 46.2 6 2.9 44.5 6 3.5 24.8 6 2.1 154 6 12.0 286 6 26.4 25 384

1.5 2.5 6 0.3 5.0 6 2.5 42.9 6 3.1 38.2 6 3.0 22.7 6 2.2 127 6 9.6 222 6 14.4 17 256

2 2.9 6 0.4 5.0 6 2.4 39.6 6 3.1 33.3 6 2.6 21.2 6 2.0 107 6 8.1 179 6 12.3 13 192

2.5 3.1 6 0.3 5.1 6 2.5 37.5 6 3.2 30.5 6 2.4 20.9 6 1.9 92.5 6 6.9 159 6 14.0 10 154

3 3.2 6 0.3 5.1 6 2.5 34.1 6 3.3 28.2 6 1.8 20.1 6 1.5 84.1 6 5.1 134 6 7.9 8 128

4 3.3 6 0.4 5.4 6 2.7 31.0 6 3.1 24.2 6 1.8 17.6 6 1.5 69.7 6 5.2 111 6 6.6 6 96

Velocities in bold indicate values within the detection range. Data are shown as mean 6 SE of neurons (n ¼ 12). Corresponds to Fig. 8 F.
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membrane marker myristoyl palmitoyl mCFP (myrplam-

CFP) was used to define the axon, together with the mi-

tochondrially targeted red fluorescent protein mito-mPlum to

study mitochondrial movement. Axons were defined by their

thin, spineless appearance shown by the myrpalm-CFP (Fig.

9 B, blue). OptFlow was calculated from image sequences of

mito-mPlum (Fig. 9, A–D). Histograms of axonal mito-

chondrial velocities (Fig. 9 E) are distinguished from the

dendritic ones (Fig. 8 E) by the longer tail of the velocity

distribution toward higher values. Table 2 summarizes the

statistical parameters of velocity distributions obtained by

different image acquisition intervals. For accurate measure-

TABLE 2 Velocities of axonal mitochondria and the dynamic range of the OptFlow measurement as a function of image

acquisition interval

Velocity of moving mitochondria (nm/s) Detection range (nm/s)
Acquisition

interval (s)

Percent lost by minimum

intensity projection

Percent lost by

constraints

Percent

stationary Mean Median 95% 99% Bottom Top

0.15 6.5 6 1.4 2.7 6 1.1 54.8 6 1.2 185 6 19.2 67.3 6 8.2 751 6 101 1299 6 104 167 2560

0.3 6.4 6 0.9 3.2 6 1.2 53.8 6 1.0 129 6 19.2 48.1 6 6.1 544 6 131 1030 6 121 83 1280

0.5 6.3 6 1.2 2.7 6 1.1 54.0 6 1.3 105 6 16.1 38.4 6 5.9 439 6 74.5 867 6 91.4 50 768

1 7.3 6 1.8 3.0 6 1.2 54.5 6 1.7 70.3 6 6.6 28.8 6 2.6 293 6 28.6 510 6 34.4 25 384

1.5 7.8 6 1.3 3.0 6 1.2 52.0 6 1.7 54.0 6 4.9 25.6 6 2.7 206 6 14.2 344 6 12.0 17 256

2 8.5 6 1.2 2.9 6 1.2 52.2 6 1.9 46.3 6 4.9 22.9 6 3.0 173 6 13.7 272 6 9.1 13 192

2.5 9.0 6 1.5 3.2 6 1.3 52.0 6 2.0 40.1 6 4.5 21.2 6 3.0 144 6 13.9 236 6 16.1 10 154

3 9.6 6 1.4 3.3 6 1.4 48.6 6 2.0 35.0 6 3.3 18.6 6 1.7 124 6 7.9 188 6 10.6 8 128

4 9.7 6 1.0 3.3 6 1.3 44.3 6 2.4 28.5 6 2.5 17.4 6 1.9 92.0 6 8.0 142 6 11.5 6 96

Velocities in bold indicate values within the detection range. Data are shown as mean 6 SE of view fields (n ¼ 6). Corresponds to Fig. 9 E.

FIGURE 9 Determination of optimal frame rate to follow the motion of mitochondria in axons of hippocampal neurons. To match the dynamic range of the

OptFlow calculation and the velocities of mitochondria in axons of hippocampal neurons, OptFlow calculation was performed at various image acquisition

intervals. (A) Raw fluorescent image of axons of hippocampal neurons expressing mito-mPlum. (B) High pass-filtered image of mito-mPlum (red) and

myrpalm-CFP (blue). For the latter, a lower cut on high pass filter was used. (C) Absolute OptFlow image. The time lapse interval was 0.15 s/frame. (D)

Masked absolute OptFlow image overlaid on the shapes of the segments in black. Black pixels show those parts of mitochondria that are masked by the

constraint criteria, whereas colored ones show valid OptFlow determinations. (E) Histograms of mean velocities of mitochondria. The histograms are truncated

at velocities ,50 nm/s for improved visualization of higher velocities, whereas percents refer to the total mitochondrial population. The acquisition interval

(0.15 s–3 s) used for recording images for OptFlow calculation is indicated in the diagrams. Vertical red lines indicate the estimated boundaries of the

sensitivity. These data are also shown in Table 2. Data are from ;6300 mitochondria from six view fields. Scale bar, 10 mm.
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ment of high velocities of axonal mitochondrial transport,

only the shortest acquisition intervals (0.15–0.3 s) were

suitable as the 99th percentile of velocities was below the top

detection limit.

Dynamics of OptFlow after artifactual cessation
of motion

To test the dynamics of the OptFlow, we recorded time lapses

of short image series (Fig. 10 A) during the addition of par-

aformaldehyde (4% in phosphate-buffered saline) to fix the

specimen while recording (Fig. 10 B). Paraformaldehyde

caused a large drop in OptFlow, but did not decrease it

completely to zero. To observe completely stationary objects,

solidly embedded 0.2 mm fluorescent beads were imaged in

similar conditions (Fig. 10 C). The remaining OptFlow was

similar to the one measured in fixed cells. The bead specimen

had similar size and intensity to the mito-roGFP expressing

mitochondria (Fig. 10, D–G). Observation of this remaining

OptFlow as velocity vectors indicated random directions

within a view field, thus this OptFlow arises from noise rather

than form microscope stage or focus drift or fluctuations of

illumination intensity (not shown). Moreover, it was possible

to eliminate the OptFlow over stationary objects by in-

creasing the k-factor of Eq. 9 for @t cut off correction. Nev-

ertheless the remaining OptFlow was below the safe lower

detection limit (25 nm/s for the 1 s acquisition interval; see

Table 1), therefore, we did not change the parameters of the

OptFlow calculation tuned with model mitochondria. These

results support the satisfactory application of the OptFlow

technique to microfluorimetric recordings.

Mitochondrial transport vs. ‘wiggle’

The primary output of the OptFlow calculation is a velocity

vector field, assigning a velocity vector to each (nonmasked)

pixel. The mean OptFlow over a single mitochondrion

was calculated above as the mean of absolute velocities

FIGURE 10 Dynamics of OptFlow during artificial cessation of motion. (A) Scheme of OptFlow time lapse calculation, corresponding to Fig. 7. A time lapse

of absolute OptFlow images was calculated from short image sequences (two frames, 1 s/frame) recorded in 2 min intervals as summarized in Fig. 7 with the

parameters described in Fig. 6. (B) Each trace indicates the mean velocity of mitochondrial movement in the proximal dendrites of a single hippocampal

neuron. Cell cultures were fixed by 4% paraformaldehyde at the indicated time point. Data were pooled from three experiments. (C) 0.2 mm diameter solidly

embedded fluorescent beads (TetraSpeck slide, Molecular Probes, Invitrogen) were time-lapse imaged in similar multidimensional image acquisition setting to

the live cell imaging. Each trace indicates the mean velocity of the beads in a view field from three experiments and three view fields per experiment. Note that

there is a residual OptFlow over stationary objects likely originating from incomplete cutoff of photon shot noise-related @g/@t signal. The fluorescently labeled

mitochondria (D) and fluorescent beads (E) had similar intensity profiles, so the noise level and the gradients were similar. The indicated photo electron counts

were calculated based on Fig. 3 in the Supplementary Material, Data S1. F and G show the images corresponding to the intensity profile measurements (D and

E, respectively). Scale bar, 5 mm.
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(Figs. 8–10). Alternatively, velocities can be averaged as

vectors. In Fig. 11, A and B, mean velocity vectors are vi-

sualized at each region of valid OptFlow determination by

arrows, typically at the tips of mitochondria as a consequence

of constraint No. 2.

If the whole mitochondrion moves in the same direction

(i.e., transport movement with no shape change), then the

absolute value of the mean velocity vector and mean of ab-

solute velocities for the whole mitochondrion are the same.

However, if the mitochondrion is undergoing shape change

or makes an uneven, rotating, or wiggling motion, then the

vectors may partially cancel each other; therefore, the abso-

lute value of the mean of vectors will be smaller than the

mean of absolute values. For easy reference, we denote the

ratio of the mean of absolute vectors over the absolute value

of the mean vector as the ‘‘wiggle ratio’’, which has a value

of ;1 for linear transport movement and is larger for wig-

gling movement. Fig. 11 C shows the relationship of velocity

(as mean of vectors) and the wiggle ratio. To analyze distinct

subpopulations of mitochondria, three groups were selected

by two-dimensional cluster analysis. The cluster analysis

groups (clusters) data points (individual mitochondria) based

on the similarity of their parameters. In our case, the simi-

larity of parameters is defined by distance of the data points in

the two-dimensional space of velocity and wiggle ratio.

13.5% of mitochondria from a total of 14,510 had faster

velocities (.120 nm/s; green in Fig. 11 C) and were typically

associated with small wiggle ratios (,1.2). Slower or sta-

tionary (,50 nm/s; red) mitochondria (5%) typically showed

a wiggle ratio .2.5. However, most of the mitochondria

(81.5%) were slow moving or stationary and not wiggling

(blue, Fig. 11, D–F). The high wiggling ratio is associated

with larger mitochondria (Fig. 11 F).

Parallel measurement of mitochondrial motion,
membrane potential, and thiol redox potential in
hippocampal neurons

DCm was measured by TMRM in nonquench mode (26) in

mito-roGFP1 expressing cultured hippocampal neurons

(Figs. 12 and 13). Imaging was performed by sequentially

recording one TMRM image, one of mito-roGFP 480 nm

excitation, and a sequence of 2 images at 1 s interval for the

438 nm excitation for the near isosbestic point image of

mito-roGFP1 (Fig. 12 A). Velocities of mitochondria were

determined from this last sequence. Cultured hippocampal

neurons have mostly radial neurites (Fig. 11 A). Therefore,

the direction of the velocity vectors, whether pointing to-

ward the soma or away, were calculated by radial projection

from the soma. This calculation results in scalar velocities;

positive for anterograde and negative for retrograde motion.

The mito-roGFP1 images were segmented and the radial

velocity and the fluorescence intensities corresponding to

single mitochondria were logged (Fig. 12 A). In addition, the

FIGURE 11 OptFlow as vector field: mitochondrial

transport and wiggle. Hippocampal neurons expressing

mito-roGFP1 were imaged and OptFlow was calculated

as detailed in Figs. 6 and 7. Velocity vectors allow the

distinction of directional transport from local, ‘‘wiggling’’

motion. (A and B) Velocity vectors shown over the absolute

OptFlow image corresponding to Fig. 8 E. Arrows (pseudo

color coded and sized according to the velocity) indicate

mean velocities in each patch of valid, in range, OptFlow

determination. (A) Scale bar, 10 mm. (B) magnification

corresponding to the rectangle in A. Note that velocity

vectors are close to parallel with the dendrites. (C) Scatter

diagram of ‘‘wiggle ratio’’ (calculated as absolute value of

mean vectors divided by mean of absolute vectors) as a

function of velocity (calculated as absolute value of mean

vectors). Each point indicates a single mitochondrion.

Different colors indicate the result of cluster analysis, and

correspond to the diagrams D–F. A total of 14,510 mito-

chondria were analyzed (mean velocities smaller than bit

noise were excluded). (D–F) Box-and-whisker plots indi-

cate the median of the data sets by dashed lines, the 633

percentile around the median by the boxes, and the entire

data set excluding outlying points by the whiskers. Outly-

ing points were defined as points farther from the edge of

the box than 150% of the range that the box spans. Below

the diagrams, the corresponding means are shown. Note

that higher velocities are associated with directional trans-

port (small ‘‘wiggle ratio’’; green in C–F), whereas high

‘‘wiggle ratio’’ (red) with larger size. Data were pooled

from 27 neurons and 20 repeats in three experiments.
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segmentation data also resulted the size of the mitochondria

(apparent area in images in mm2). The mito-roGFP1 fluo-

rescence intensity ratios for individual mitochondria were

converted into thiol redox potentials (DEroGFP; in mV) ex-

pressed relative to the mean cell redox potential. Similarly,

TMRM fluorescence expressed as the DCm for each mito-

chondrion was calculated relative to the cell mean (i.e., as

Dj DCmj in millivolts). To detect overlapping or erroneously

segmented mitochondria, the variance over the mean of the

TMRM fluorescence was measured, with the assumption that

an individual mitochondrion has a uniform potential (30,31).

The shot noise-related standard deviation as determined by

error propagation from the measured intensities and the noise

characteristics of the camera in 99% of mitochondria was for

DEroGFP and DjDCmj ,1.5 mV and 3.5 mV, respectively

(Appendix G). Table 3 summarizes how valid data points

were filtered.

To assess resting neurons, imaging was done in the presence

of the NMDA receptor inhibitor MK-801 (10 mM), the AMPA

receptor inhibitor NBQX (10 mM), and the voltage gated Ca21

channel inhibitor nifedipine (1 mM) to suppress spontaneous

activity; 102 neurons were imaged 15 times at 3 min intervals.

Importantly, only those mediocre mito-roGFP1 expressor

neurons were selected for image acquisition, which had similar

TMRM fluorescence intensity to their nontransfected neigh-

bors, indicating healthy, well-polarized mitochondria. Notably,

the neurons with the brightest mito-roGFP1 fluorescence, es-

pecially early after transfection, showed diminished DCm.

FIGURE 12 Cluster analysis of mitochondrial velocity, membrane potential, thiol redox potential, and size in hippocampal neurons. (A) Scheme of single

mitochondrion quantification. Thick black arrows denote image processing maneuvers, gray arrows stand for reading out scalar values corresponding to each

segment, and thin black arrows indicate calculation done with the obtained scalar values. (B) The pooled mitochondrial population was classified into five

groups by four-dimensional clustering in the space of Dj DCmj, DEroGFP, size and velocity. Each cluster represents a set of individual mitochondria with similar

properties, and indicated by a different color. Solid and open bars show numbers and the sizes as total area of mitochondria in the fluorescence images,

respectively, for each cluster. (C–E) Scatter plots of absolute velocity, Dj DCmj and DEroGFP, respectively, against the size of mitochondria. (F) Scatter plot of

DjDCmj against DEroGFP. (C–F) Each point represents a single mitochondrion and color coding corresponds to B. The Spearman rank correlation coefficient (r)

is indicated in the diagrams. Note that the signs of correlation coefficients suggests that (C) larger mitochondria are slower, (D) are more depolarized, (E)

oxidized mitochondria are smaller, and (F) oxidation correlates with depolarization. (G) Membrane potential as a function of redox potential. For each point,

Dj DCmj was averaged 610 mV around the indicated DEroGFP value, and then the mean 6 SE of individual neurons was calculated. (H) Redox potential as a

function of membrane potential. Note that above a certain oxidation level (;DEroGFP . 110mV), mitochondria increasingly loose their DCm. Data of 83,848

mitochondria were pooled from 102 neurons and 15 repeats per cell in four different cell culture preparations.
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To find subpopulations of mitochondria differing in any of

the four measured parameters (velocity, DjDCmj, DEroGFP,

and size), four-dimensional cluster analysis was performed

on a pooled data set consisting of 83,848 mitochondria (Figs.

12 and 13). Because the pooled mitochondrial population did

not have significantly distinct subpopulations in the above

four-dimensional space, the margins between them are con-

sidered arbitrary. The number 5 for the clusters was chosen

because this resulted in biologically meaningful categoriza-

tion for visualization of the data set. The cluster analysis

indicated the following:

a. The majority of mitochondria (in number and in total

size; Fig. 12 B) are stationary and of small to medium

size (coded blue in Fig. 12 B; see also Fig. 1 in the

Supplementary Material, Data S1).

b. The second largest group for total size consists of large mi-

tochondria and these are also stationary (Fig. 12 C, green)

and have a small variability in DjDCmj and DEroGFP (Fig. 12,

D and E).

c. The most distinct group consists of more oxidized, less

polarized, small mitochondria (Fig. 12, D and E, red).

d. and e. Mitochondria performing retrograde (yellow) or

anterograde (purple) motion, had indistinguishable prop-

erties (Fig. 13, A and B). Of note, similar clustering results

were achieved by processing data from individual neu-

rons, so the above classification reflects real heterogeneity

of mitochondria within single hippocampal neurons.

To refine the analysis, parameters were compared pair-

wise. To find linear correlations or nonlinear trends between

pairs of mitochondrial parameters, Spearman rank correlation

was used. Correlation coefficients are indicated in the scatter

diagrams in Figs. 12 and 13. This comprehensive multipa-

rameter analysis of individual mitochondria allows a range of

relevant hypotheses to be tested.

Is there a correlation between the size and the
velocity of mitochondria?

Although the correlation coefficient between size and ve-

locity is small (r ¼ �0.12; excluding stationary mitochon-

dria), the size is the strongest correlating parameter to the

velocity as compared to DjDCmj or DEroGFP (see below). The

negative sign of the correlation coefficient indicates that

larger mitochondria are slower (Fig. 12 C).

Is there a correlation between membrane potential and
thiol redox potential?

Fig. 12 F shows marked correlation at r¼�0.33 between the

DjDCmj and the DEroGFP. To further investigate this, the

mean DjDCmj was plotted as a function of DEroGFP (Fig.

12 G). To this end, for each given DEroGFP 6 10 mV range, the

mean DjDCmj was calculated and the mean 6 SE is shown.

This was done only in those neurons where at least 5 mito-

chondria with the given DEroGFP range were present during

the entire experiment, and only those data points are shown

where at least a third of the total 102 neurons was such. Fig.

12 H shows the converse relationship. Note that there is an

approximately linear relationship between DEroGFP and mean

Dj DCmj in the middle of the range. Interestingly, DjDCmj
was only slightly decreased by increasing DEroGFP until ;10

mV oxidation, but at more oxidized redox potentials DjDCmj
steeply decreased. Of note, even though the mito-roGFP1

fluorescence was used for normalization of the TMRM fluo-

rescence, the above correlation cannot be a normalization

artifact, because it was also found between DEroGFP and un-

normalized TMRM fluorescence intensity data (not shown).

Does the matrix thiol redox potential or the membrane
potential predict the direction and motility of
individual mitochondria?

DEroGFP and DjDCmj correlated very poorly with the abso-

lute value of velocities of motile mitochondria (r¼ 0.052 and

r ¼ �0.060, respectively; Fig. 13, A and B). However, the

indicated correlation coefficients were markedly larger than

the coefficients calculated from scrambled data, where jrj
was always ,0.005. Therefore, these results suggest that

more oxidized and less polarized mitochondria have a ten-

dency to move faster.

To facilitate the detection of relationships between

DjDCmj or DEroGFP and velocity, mitochondria were classified

as motile or nonmotile (see criteria in Table 3). Fig. 13, C and

D, show the mean percentage of motile mitochondria per

neuron as functions of DEroGFP and DjDCmj, respectively,

calculated in the same way as detailed for Fig. 12 G. Sub-

populations of oxidized or reduced mitochondria were mar-

ginally more motile than ones with average redox potential.

Motility was increased by depolarization until ;�40 mV but

mitochondria more depolarized than this threshold had lower

motility (Fig. 13 D).

No correlation could be detected between the direction of

movement and either DEroGFP or Dj DCmj (Fig. 13, E and F),

i.e., oxidized mitochondria were not preferentially returned

to the soma from the dendrites. It was, however, observed

that the almost all of depolarized (Dj DCmj , �40 mV),

oxidized (DEroGFP . 40 mV) small (size ,5 mm2) mito-

TABLE 3 Parameters used for selection of subpopulations

of mitochondria

Parameter

General

filtering Motile

Direction

measurement

Absolute velocity (nm/s) ,400 .25 .25

Wiggle ratio ,1.2 ,1.2

TMRM s2/mean ,90 percentile

Radial/absolute velocity .0.75

DEroGFP (mV) SD ,6 mV

DCm (mV) SD ,10 mV

Corresponds to graphs shown in Figs. 12 and 13. SD is the standard

deviation propagated from the photon shot noise converted to millivolts

(see Appendix G).
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chondria (representing 0.1% of the population) failed to line

up with other mitochondria in the neurites of the observed

neuron, suggesting that they are likely to belong to other

neurons that could be injured or dead (Fig. 2 in the Supple-

mentary Material, Data S1). In contrast, the motile, oxidized,

but only partially depolarized mitochondria appeared within

dendrites. Therefore, in resting, healthy cultured hippocam-

pal neurons, the number of damaged, discharged, and oxi-

dized mitochondria is virtually zero, suggesting an efficient

quality control of mitochondria (see (32)).

DISCUSSION

The transport of mitochondria within neuronal processes and

their targeting to specific sites such as synapses are clearly

critical to maintaining neuronal integrity. Thus defective

mitochondrial transport resulting from mutations in the mi-

tochondrial fusion gene Mitofusin-2 leads to the peripheral

neuropathy Charcot-Marie-Tooth Type 2A in which long

motor neurons become dysfunctional, whereas a similar fu-

sion deficit due to OPA1 mutation causes dominant optic

atrophy (see Chen and Chan (33)). Genetic screens in Dro-
sophila for visual dysfunction have led to the identification of

proteins such as milton (34) and miro (35) that are required

for mitochondrial attachment to kinesin motors required

for anterograde transport. Despite these advances, it is still

unclear how mitochondria are delivered to the energy-

demanding sites where they are required, and whether a

mechanism exists for the return of damaged or senescent

mitochondria to the cell body for destruction. Such studies

would be facilitated by a convenient and robust technique for

quantifying mitochondrial motion in neuronal processes that

minimizes selection bias and phototoxicity, particularly since

the latter may induce artifactual mitochondrial behavior.

Although several techniques exist, each has some limita-

tion. Early quantitative techniques included phase contrast or

fluorescence video microscopy and manual or computer as-

sisted tracking of individual mitochondria (28,36,37). These

studies shed light on the role of microtubule and actin cyto-

skeletal elements in the transport of mitochondria in neuronal

axons and dendrites. Single particle tracking, either manual

or semiautomatic, is still the most commonly used technique

applied to wide-field or confocal microscope-based digital

image acquisition techniques (2,29,38–41). A limitation,

however, is that particle tracking relies on the clear recog-

nition of individual mitochondria, which is often compro-

mised by their overlap in mitochondria-rich regions of the

cell, or by the dynamic morphological changes of mito-

chondria such as fusion and fission. Although sophisticated

algorithms exist for handling such problems (42), there are

also more robust approaches, which are less affected by these

morphological factors. Kymograms (time-space or line-scan

diagrams) and manual line fitting to the characteristic diag-

FIGURE 13 Relationships among mitochondrial membrane potential, thiol redox potential, and motility. Data correspond to the cluster analysis introduced

in Fig. 12. (A and B) Scatter plots of DEroGFP or DjDCmj against velocity. Each data point represents a single mitochondrion and color coding corresponds to the

clusters defined in Fig. 12 B. The Spearman rank correlation coefficient (r) is indicated above the diagrams. Note that the correlation was calculated for absolute

velocities. Oxidation or depolarization is less correlated to velocity than the size of mitochondria in Fig. 12, D and E. (C and D) Percentage of motile

mitochondria (defined as faster than the bottom detection limit; 25 nm/s, and not wiggling; i.e., ‘‘wiggle ratio’’ ,1.2) as a function of DEroGFP or Dj DCmj,
respectively. Note the increasing motility with depolarization in D, and the high error of the less motile, very depolarized mitochondria that are small in

numbers. (E and F) Percentage of mitochondria undergoing retrograde rather than anterograde transport as a function of DEroGFP or Dj DCmj, respectively. For

each point, motility percentage was averaged 610 mV around the indicated DEroGFP or Dj DCmj value, and then the mean 6 SE of individual neurons was

calculated. Note that very close to half of mitochondria moves in anterograde or retrograde directions, and this does not depend on DEroGFP or Dj DCmj. Data of

83,848 mitochondria were pooled from 102 neurons and 15 repeats per cell in four different cell culture preparations.
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onal trails of objects in motion have proved to be useful to

measure velocities of mitochondria with different fluores-

cence intensities in crowded areas (3,43). However, by using

only a single spatial dimension, kymograms work only in

long cellular processes, such as axons.

With these limitations, single particle tracking and ky-

mograms can give accurate data on velocity, direction, run

length, and saltatory motion for individual mitochondria.

However, both require the acquisition of a large number of

images to track objects in time. This could result in phototox-

icity, especially during high resolution fluorescence imaging of

multiple fluorophores, or in the presence of photosensitizing

mitochondrial membrane potential dyes such as TMRM.

Kymograms and single particle tracking rely on short mito-

chondria typically present in axons (44) or in injured cells (45).

Healthy, elongated, eventually branched mitochondria, which

are present in nonneuronal cells or in proximal dendrites and in

the soma of neurons, are unsuitable for such analysis.

Simple techniques for the evaluation of general motion

include counting the variation of binarized pixels in con-

secutive images of fluorescently labeled mitochondria (4), or

using the difference of consecutive images and counting

pixels changing more than a threshold (6,14,46). However

these techniques do not give information about single mito-

chondria and their velocities and directions of movements

and cannot distinguish transport from local, ‘‘wiggling’’

motion or shape changes.

OptFlow has been used in cell biology to detect subpixel

dislocations of the organ of Corti of the inner ear (47) and for

muscle contraction of the leech (48), but we are not aware of

any prior organelle transport or fluorescence microscopic

applications.

We have illustrated two basic applications of the OptFlow

technique: measurement of mean velocity of the entire mi-

tochondrial population of a neuron in the field of view (Fig.

10) and single mitochondrion assays (Figs. 8, 9, and 11–13).

Two major advantages of the OptFlow technique can be

emphasized. First, the two-dimensional velocity vectors can

be determined from a pair of low light level, noisy images

minimizing photodynamic oxidative artifacts evoked by

fluorescence excitation. The instantaneous velocity determi-

nation is also exploited in the calculation of the correlations

of data from other fluorescence assays to the motion, and in

the possibility of cyclic/revisiting imaging of different view

fields using stage motors. Second, OptFlow measures motion

irrespective of shapes and overlaps between mitochondria.

This is because gray value gradients corresponding to the

individual tips of mitochondria are visible for the algorithm

even when mitochondria form conglomerates. This allows

the measurement of mean absolute mitochondrial velocities

in typical cell lines (A. A. Gerencser, unpublished results),

where unlike neuronal dendrites, mitochondria form over-

lapping networks (31) and individual organelles cannot be

distinguished; therefore, these specimens are unsuitable for

single particle tracking. The most critical property of the

technique is the relatively narrow dynamic range as com-

pared to the wide distribution of mitochondrial velocities

(Figs. 8 and 9). The OptFlow measures dislocations with

subpixel precision and resolution, but the maximum veloci-

ties are limited by the sizes of the gradients. It is concluded

that by careful selection of the resolution of microscopy and

the acquisition interval, the biologically relevant range of ve-

locities can be matched by the dynamic range of the OptFlow

technique. In addition, the dynamic range can be extended by

calculating a combination of OptFlow from multiple pairs of

images recorded at different intervals (not shown). In the case

of single mitochondrion measurements, an unavoidable step is

the binarization and segmentation of the images. This imposes

similar problems that exist for particle tracking: binarization

may oversee dim details or fail to distinguish individual mi-

tochondria within conglomerates. When OptFlow is combined

with segmentation, the average velocities are measured within

the conglomerates. Conglomerates were excluded from sta-

tistical analysis in Figs. 11–13, based on size and heteroge-

neity of TMRM fluorescence.

The principle of the OptFlow is that the brightness of the

objects does not change in time (brightness change constraint

equation, Eq. 1). This excludes the use of those fluorophores,

which may change their fluorescence intensity in the time

frame of the acquisition of the short image sequence for the

OptFlow calculation, like mitochondrial membrane potential

dyes or calcium probes. Trivially, the illumination intensity

and the exposure timing of the camera also have to be precise,

but this is not an obstacle in research grade instrumentation.

Our implementation of the OptFlow is strictly two-dimen-

sional; therefore, in thicker samples, motion in an angle to the

image plane could lead to erroneous velocity measurements.

The OptFlow technique is typically based on wide-field

fluorescence microscopy. The scanning mechanism of laser

scanning confocal microscopes can have insufficient precision

at the subpixel level preventing accurate gradient calculations.

Importantly, the maximal resolution of fluorescence micros-

copy does not limit the precision or sensitivity of velocity

measurements. Considering one fluorescent spot (any sized

sub- or super resolution object), the point spread function of

the microscope only determines the sharpness or steepness of

the edges of the objects, but not that where the gradients are.

Out of focus blur and slightly unfocused objects cause no

problem for the OptFlow determination in wide-field micros-

copy; whereas out of focus blur is typically rejected by

masking according to constraint No. 1, slightly unfocused

objects are normally detected as long as their edge gradients

are significant compared to the photon shot noise. Image ac-

quisition for OptFlow calculation has to be designed as the

camera resolution (in Figs. 10–13, 0.32 mm/pixel) divided by

the frame interval (1 s/frame) and multiplied by the detection

range of ;0.08–1.2 pixel/s ¼ 0.025–0.38 mm/s brackets the

biologically expected values. The differentiation and smooth

kernels used for OptFlow calculation were optimized to

work on a wider range of object sizes (1.5–6 pixels radii),
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which we expect to occur in typical fluorescence micrographs

of labeled mitochondria. In a general case, when the moving

objects are bigger than this and small objects are absent,

selection of wider spatial differential and smoothing kernels

can be beneficial in terms of noise insensitivity and dynamic

range.

Mean velocities for anterograde and retrograde transport of

mitochondria of 0.44 mm/s and 0.51 mm/s, respectively, have

been reported in hippocampal neurons (29). In that study, a

range from 0.2 to 2.2 mm/s was measured (counting only

moving mitochondria) and about half moved with velocities

between 0.2 and 0.4 mm/s. Similar values were determined in

immature hippocampal neuronal processes (39). Our theo-

retical upper detection limit at a 0.15 s frame interval was

2.6 mm/s. Due to the long tail of the distribution of mito-

chondrial velocities toward the high values, it is difficult to

accurately represent the entire population. Estimating from

the short frame interval acquisitions (Tables 1 and 2), only

5% of the moving mitochondria (with in-range velocities)

was faster than 0.4 and 0.75 mm/s in dendrites and axons,

respectively. Conversely, half of the moving mitochondria

were slower than ;0.02 mm/s both in dendrites and axons

based on the longest acquisition intervals in Tables 1 and 2. It

is possible that the above cited articles overestimate mean

mitochondrial velocities by selecting clearly visible, moving

mitochondria for the particle tracking method. Conversely,

the single mitochondrion application of the OptFlow tech-

nique may underestimate motion when averaging velocities

over aggregated mitochondria and vector means or radial

velocity are calculated.

Small, depolarized, and oxidatively damaged mitochon-

dria have been thought to play a role in mitochondrial turn-

over ((32), see Kim et al. (49)). Autophagocytotic removal of

mitochondria belonging to such a subpopulation has been

recently showed by tracking mitochondria with photo-

activated green fluorescent protein (50). These authors found

in a pancreatic b-cell line that mitochondrial fission is often

asymmetric (in ;19%), resulting in a sustained partial de-

polarization in one of the daughter mitochondria, and some of

these small, depolarized mitochondria undergo autophagy

hours later. The high rate of asymmetric fission and the

long latency to removal suggests the existence of a larger

population of small, depolarized mitochondria. This depo-

larization is slight (�6.5 mV) (50), so this mitochondrial

population may be identical to the one identified by cluster

analysis in our study in hippocampal neurons as small, less

polarized mitochondria (Fig. 12 Bc; red). However, due to

the arbitrary boundaries between the clusters, the size of this

cluster is a rough estimate. Importantly, we showed here that

although these mitochondria are slightly more motile than the

average (Fig. 13 D), they do not exhibit distinct transport

patterns from the rest of the population (Fig. 1 in the Sup-

plementary Material, Data S1).

Although the focus of this article is on mitochondrial

movement, it is suggested that the technique could be used

for any other organellar movement, e.g., vesicle transport, or

because it does not rely on shape recognition, e.g., on pleio-

morph structures like the endoplasmic reticule.

APPENDIX A: IMAGE PROCESSING
IMPLEMENTATION OF THE LEAST SQUARES
METHOD OF OPTFLOW

In the image processing implementation, g(x,y,t) and Gpq(x,y) refer to a gray

value image sequence and images, respectively, with real numbers as pixel

values. The OptFlow is calculated from the g(x,y,t), as illustrated in Fig. 7.

First, separate copies of the image sequence are differentiated in x, y, and t
directions (@g(x,y,0)/@x, (@g(x,y,0)/@y and (@g(x,y,0)/@tjt¼0, respectively;

considering a three-dimensional x, y, t data set). The differentiation was

performed by kernel convolution, using simple ([1,�1]) or second polyno-

mial, first derivative order Savitzky-Golay kernels (51). These kernels, due to

their additional smoothing effects, perform well in noisy data sets. The width

of these kernels was w ¼ 3, 5, or 7 for both spatial and temporal

differentiation ([0.5, 0, �0.5], [0.2, 0.1, 0, �0.1, �0.2] or [0.107, 0.071,

0.036, 0, �0.036, �0.071, �0.107]). Spatially differentiated images were

also smoothed in the direction perpendicular to the differentiation using a

wsm ¼ 5 or 7 width Savitzky-Golay nondifferentiating smoothing kernel

([�0.0857, 0.343, 0.486, 0.343,�0.0857] or [�0.0952, 0.143, 0.286, 0.333,

0.283, 0.143,�0.0952]). In practice a rectangular, combined differentiation-

smooth kernel was used, which was obtained by the outer product of the

differentiation and smooth kernels. Whereas @g/@xjt¼0 was a result of

calculation from 2 to 7 image planes (equal to wt), @g/@x and @g/@y were

calculated from the image corresponding to the middle (0) of the symmetric

(3, 5, and 7 width) temporal differentiation kernels. The asymmetric, simple

wt ¼ 2 ([1,�1]) temporal differentiation kernel resulted in biased OptFlow.

Therefore, when using an asymmetric kernel, the OptFlow is calculated for

spatial derivatives of both frames and then averaged (wt ¼ 2avg), whereas

constraint masks (see below) are merged with logical AND.

Gpq images were calculated according to Eq. 3 by multiplication of

differentiated images pixel by pixel. The operator Ææ was implemented as

kernel convolution, using a kernel of 3 3 3, 5 3 5, or a 7 3 7 matrix of ones,

denoted as the aperture kernel (wap ¼ 3, 5, or 7 and N ¼ 9, 25, or 49,

respectively). This was followed by calculation of f by Eq. 2 performing

image arithmetics with the Gpq images, pixel by pixel.

APPENDIX B: MODEL MITOCHONDRIA FOR
THE DEMONSTRATION OF THE
OPTFLOW TECHNIQUE

Images modeling fluorescent mitochondria as fluorescent spheres and cap-

sule bodies were generated by Mathematica 5.2 as previously described (24).

Briefly, zero length (l) mitochondria were drawn as spheres of given radius

(r), or elongated mitochondria as l-long r-radius cylinders capped with

r-radius half spheres on both ends; 64 3 64 pixels images were generated

by considering that the spheres and capsule bodies are solid and fluorescent,

and the projected fluorescence intensity on the image was calculated using

bilinear interpolation to simulate diameters and positions with subpixel

accuracy. OptFlow was calculated from the model images with the same

algorithm used for processing fluorescence microscopy data. Image noise

corresponding to photon shot noise typical at low intensity fluorescence

microscopic image acquisition was simulated in the model images. Model

images were generated with intensity values corresponding to photo electron

counts. Then, each pixel was replaced with a random number, which

followed Poisson distribution with an expected value of the photo electron

count. The dark current and readout noise of the camera was not included into

this model.
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APPENDIX C: MASKING AND
IMAGE SEGMENTATION FOR SINGLE
MITOCHONDRION MEASUREMENTS

Image acquisition of TMRM and mito-roGFP1 required different dichroic

mirrors and emission filters leading to a shift of images. Therefore, TMRM

images were first corrected by subpixel alignment using affin transformation

with bilinear interpolation. Local background-subtracted (23) images were

scaled between 50 and 99.2 percentiles for dendrites or between 85 and 99.99

percentiles for axonal mitochondria at a g-value of 1.2 to enhance dim

details. Only the region of interest of the measurement (the dendritic structure

of the neuron, avoiding the soma or other nearby cells) was processed. The

scaled and g-corrected image (and not the fluorescence intensity data) was

binarized at the optimal threshold calculated by Otsu’s method (52) frame by

frame. To remove speckle-like noise from the binarized images, only those

pixels which had at least 7 ‘‘1’’-s among the surrounding 48 pixels were kept

as ‘‘1’’. In practice this was done by kernel filtering a copy of the binarized

image (considering zeros and ones as grayscale values) with a 7 3 7 kernel

of ones, and thresholding the filtered image at 8. This latter image was

multiplied pixel by pixel with the original binarized image. This resulted in

the elimination of objects ,8 pixels. Segmentation was done by separating

spatially contiguous objects .7 and ,500 pixels.

To avoid errors in fluorescence intensity readout due to dislocation of

faster moving mitochondria between the acquisition of different fluorescence

channels (TMRM, roGFP 480 nm, and roGFP 438 nm), both roGFP 480 nm

and 438 nm images were binarized and segmented (see also Fig. 12 A). The

roGFP 438 nm intensity was measured in the first frame of the short image

sequence recorded for OptFlow calculation. To read out TMRM fluores-

cence, the segmented roGFP 480 nm channel was used, because the

recording of this channel followed the TMRM channel closest in time. The

roGFP fluorescence intensities were determined using their own segmented

images. Next, a new set of images was generated by substituting the mea-

sured mean fluorescence intensity value into each pixel of the given segment.

Finally, to log fluorescence intensities and velocities for each individual

mitochondrion, the same minimum intensity projected, binarized, and seg-

mented image was used as the one used for masking the OptFlow. Therefore,

when a segment corresponding to a moving mitochondrion maintains spatial

overlap between the binarized, segmented images of the different acquisition

channels, the final intensity readout reflects true mean intensity regardless of

the extent of the dislocation and the overlap. Cases where multiple segments

of the TMRM, roGFP 480 nm, or roGFP 438 nm were overlapping with the

minimum intensity projected readout segment were rejected based on the

increased variance.

APPENDIX D: ESTIMATION OF PHOTON
SHOT NOISE

The noise characteristics of the camera were assessed by acquiring images of

evenly illuminated background at different intensities (Fig. 3 in the Supple-

mentary Material, Data S1). First, the mean intensity measured at zero

illumination (camera offset) was subtracted from all images (68 in our case).

The s2
readout corresponds to the s2 of pixel values at zero illumination (3.3 in

our case). s2
readout also contains noise arising from the dark current of the

camera; however, it was independent of exposure times used in this study

(100–200 ms), suggesting negligible contribution. 1/AD was determined as

the slope of intensity versus variance diagram (0.37 in our case).

The mean-square of differentiated noise equals the s2 of the noise (for

pixels and frames as space and time units, respectively). When using kernel

convolution for differentiation, the s2 of the differentiated noise is multiplied

by the square sum of the convolution kernel
	
+ ker2



. The s2 of differen-

tiated photon shot noise is estimated by Eq. 9 based on the proportionality

defined in Eq. 4. Equation 9 gives s2
estimated for each neighborhood from the

offset subtracted raw fluorescence intensities (g(x,y)) and corrects for the

effect of kernel filtering and summing within the aperture:

s
2

estimated ¼ k+ker
2 Ægæ

AD
1 Ns

2

readout

� �
: (9)

s2
estimated reflects the summed s2 within the aperture to accommodate to the Ææ

operator of Eq. 3. In Eq. 9, the resultant s2
estimated(x,y) is an image and N is the

number of pixels in the aperture. To tune the noise elimination, an empirical

factor (k) was used. Different k factors and
	
+ker2



values were used to

calculate s2
estimated in the different criteria (Eqs. 5, 7, and 8).

APPENDIX E: IMAGE PROCESSING
IMPLEMENTATION OF THE CONSTRAINT NO. 2
OF EQ. 2 FOR NOISY IMAGES

It is considered that if all gradient vectors (=g) of the neighborhood are

parallel, then the sum of the vector products of the gradient vectors multiplied

with their sum vector is zero in the absence of noise (Eq. 8). To avoid zero

vector sum over point symmetric objects, the absolute value of the vector

components was taken before computation. The numerator of Eq. 8 left side

(Eq. 10) cannot be generalized for image processing, because Æj=gjæ should

to be multiplied by each j=gj of the same neighborhood, whereas, if Ææ is

implemented as kernel convolution, a distinct local Æj=gjæ is multiplied by

each j=gj. In other words, Ææs must not be embedded into each other.

Therefore, we have expanded the left side of Eq. 10 and distributed the Ææ.
The right side of Eq. 11 contains only arithmetics between Ææ of gradient

images; therefore, the sum vector and the products is calculated from the

same neighborhood. This latter formula can be used for image processing as a

combination of kernel convolutions and image arithmetics:

ÆðÆj=gjæ 3 j=gjÞ2æ ¼ 0 where j=gj ¼
@g

@x
@g

@y

�������

�������

2
64

3
75 (10)

ÆðÆj=gjæ 3 j=gjÞ2æ ¼
�����@g

@x

����
2������@g

@y

����
�2

� 2

�����@g

@x

����
������@g

@y

����
������@g

@x

@g

@y

����
�

1

�����@g

@y

����
2������@g

@x

����
�2

: (11)

APPENDIX F: CALCULATION OF
FLUORESCENCE INTENSITY AT THE
ISOSBESTIC WAVELENGTH OF MITO-ROGFP1

The fluorescence corresponding to the isosbestic wavelength (FroGFPiso) was

calculated by the linear combination of fluorescence intensities F438 and F480

acquired by the 438 nm and 480 nm excitations of mito-roGFP1, respectively

(Eq. 12):

FroGFPiso ¼ aF438 1 bF480;

where arbitrarily a 1 b ¼ 1: (12)

Here we introduce what we consider a novel method for calculation of

coefficients a and b from a short time lapse experiment, where the fluores-

cence ratio R¼ F438/F480 is changed by oxidation or reduction of the roGFP,

and FroGFPiso does not have to be necessarily constant. We assume that the

time course of R and FroGFPiso are not correlated in time, thus their cross

correlation at 0 time lag or their Pearson’s correlation coefficient is zero (Eq.

13). Substituting Eq. 12 into Eq. 13, we obtain the solution Eq. 14 for a:
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+
t

ðFroGFPisoðtÞ � FroGFPisoÞðRðtÞ � �RÞ ¼ 0;

where the t is a time point of the time lapse: (13)

a ¼ 1

�
1�+ðF438ðtÞ � F438ÞðRðtÞ � �RÞ

+ðF480ðtÞ � F480ÞðRðtÞ � �RÞ

� �
: (14)

In our microscopic settings. a and b were 1.37 and �0.37, respectively.

APPENDIX G: CALCULATION OF PROPAGATED
ERROR FROM PHOTON SHOT NOISE

In low light level fluorescence imaging, the determination of mean fluores-

cence intensities in small regions consisting of only a few tens of pixels is

burdened by the photon shot noise. To assess the effect of photon shot noise

on the calibrated (millivolt) values of Dj DCmj and DEroGFP, error propa-

gation (24) of variances was performed (Eq. 15). To this end s2
fTMRM

and

s2
froGFP

were obtained by substitution of Eqs. 16 and 18 or Eqs. 17 and 18 into

Eq. 15:

s
2

f ¼ +
i

@f

@xi

� �
s

2

xi
; where f was : (15)

fTMRM ¼ 60 log
FTMRM

1:37F438 � 0:37F480

� �
; ðdescribed aboveÞ;

(16)

froGFP ¼ 60 log
F438=F480 � Rmin

Rmax � F438=F480

� �
; ðdescribed aboveÞ;

(17)

and xi denotes FTMRM, F480 or F438 fluorescence intensities

s
2

xi
¼ ð0:37ðxi original � 68Þ1 3:3Þ=n; (18)

where xi_original is the intensity without background removal and n is the

number of pixels in the segment; values correspond to Fig. 3 in the Supple-

mentary Material, Data S1.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.
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