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ABSTRACT In vitro, different techniques are used to study the smooth muscle cells’ calcium dynamics and contraction/
relaxation mechanisms on arteries. Most experimental studies use either an isometric or an isobaric setup. However, in vivo, a
blood vessel is neither isobaric nor isometric nor isotonic, as it is continuously submitted to intraluminal pressure variations arising
from heart beat. We use a theoretical model of the smooth muscle calcium and arterial radius dynamics to determine whether
results may be considerably different depending on the experimental conditions (isometric, isobaric, isotonic, or cyclic pressure
variations). We show that isobaric conditions appear to be more realistic than isometric or isotonic situations, as the calcium
dynamics is similar under cyclic intraluminal pressure variations (in vivo-like situation) and under a constant pressure (isobaric
situation). The arterial contraction is less pronounced in isotonic than in isobaric conditions, and the vasoconstrictor sensitivity
higher in isometric than isobaric or isotonic conditions, in agreement with experimental observations. Interestingly, the model
predicts that isometric conditions may generate artifacts like the coexistence of multiple stable states. We have verified this model
prediction experimentally using rat mesenteric arteries mounted on a wire myograph and stimulated with phenylephrine.

INTRODUCTION

The regulation of hemodynamics by variations of the arterial

diameter results from the contraction of smooth muscle cells

(SMCs) present in the muscular arterial wall. The SMC

contraction is due to an increase in the cytosolic calcium

concentration (1–4), and calcium increases result from the

presence of vasoconstrictors. Vasomotion consists of cyclic

diameter variations of muscular arteries or arterioles that are

not a consequence of heart beat, respiration, or neuronal in-

put, but result from calcium oscillations in the SMCs (5–8).

A blood vessel is continuously exposed to intraluminal

pressure variations arising from heart beat. In vivo, a vessel is

therefore neither submitted to constant pressure ( i.e., isobaric

conditions), nor to constant radius (i.e., isometric conditions),

nor to constant tension (i.e., isotonic conditions). However,

most in vitro experimental studies on calcium dynamics,

contraction/relaxation mechanisms, and vasomotion of arte-

rial segments make use either of an isobaric (9–11) or an

isometric (6,12,13) setup. These setups allow to control, re-

spectively, the intraluminal pressure and measure arterial

diameter variations, or to control the arterial diameter and

measure tension or pressure variations. Experiments can be

performed either on wire-mounted (wire myograph) or

pressurized cannulated arterial preparations.

Tanko et al. (14,15) and VanBavel and Mulvany (16) re-

port an enhanced vascular sensitivity to vasoconstrictor

during isometric compared to isobaric loading on pressurized

cannulated arterial segments. Similarly, on arterial rings

mounted on a wire myograph, McPherson (17) found that

vascular reactivity to the a-adrenoceptor agonist methox-

amine was significantly higher under isometric than under

isobaric or isotonic conditions. In addition, the maximum

response to methoxamine, in terms of diameter change, was

always greater under isobaric than under isotonic conditions.

The aim of this study is to analyze, theoretically, whether

there may be important differences in the results (calcium

dynamics, contraction, and vasomotion of arteries) depend-

ing on the kind of experimental conditions: isometric, iso-

baric, or isotonic. We have previously developed a model

describing the calcium dynamics of a coupled population of

SMCs and the resulting arterial diameter variations (18). This

model is used here to perform a bifurcation analysis of the

mean SMC calcium concentration and vessel radius in the

isometric, isobaric, and isotonic cases. We compare these

cases to a more in vivo-like situation where the artery is

exposed to cyclic pressure variations. The differences in the

results arising from these various conditions are analyzed and

compared to experimental results in the literature. Moreover,

an experiment with rat mesenteric arteries mounted on a

myograph and stimulated with increasing and decreasing

concentrations of phenylephrine (PE) is performed to con-

firm a model prediction under isometric conditions, for which

no experimental comparison has been found in the literature.

METHODS

Mathematical model

The model is composed of equations describing the mean SMC calcium

dynamics, the smooth muscle stress development, and the vessel radius

dynamics. All model equations are taken from our previous article (18) and

are briefly discussed here.
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Calcium dynamics

The SMC calcium dynamics is described by five variables: the calcium

concentration in the cytosol c, the calcium concentration in the sarcoplasmic

reticulum s, the cell membrane potential v, the open-state probability w of

calcium-activated potassium channels, and the IP3 concentration I:

dc

dt
¼ JIP3 � JSRuptake 1 JCICR � Jextrusion 1 Jleak � JVOCC

1 JNa=Ca � 0:1Jstretch; (1)

ds

dt
¼ JSRuptake � JCICR � Jleak; (2)

dv

dt
¼ gð�JNa=K � JCl � 2JVOCC � JNa=Ca � JK � JstretchÞ; (3)

dw

dt
¼ lðKactivation � wÞ; (4)

dI

dt
¼ JPLCagonist

� Jdegrad: (5)

The precise expressions of the various terms appearing in this set of nonlinear

differential equations are given in the Appendix. The term Jstretch, modeling

stretch-activated channels (SACs), is given by

Jstretch ¼
Gstretch

1 1 e
�aðs�s0Þðv� ESACÞ; (6)

where Gstretch is the whole-cell conductance for SACs, ESAC the SAC

reversal potential, a the slope of stress dependence of the SAC activation

sigmoidal, and s0 the half-point of the SAC activation sigmoidal. The arterial

wall stress s is written differently depending on the conditions studied (see

below). SACs increase the cytosolic calcium level by promoting a direct

influx of extracellular calcium (Eq. 1) and by depolarizing the SMCs (Eq. 3),

which leads to a calcium influx through voltage-operated calcium channels.

The coefficient 0.1 of Jstretchi
in Eq. 1 takes into account that calcium is a

divalent ion and carries ;20% of the total SAC current (19).

An increase in the SMC vasoconstrictor concentration is simulated by an

increase of the agonist-activated phospholipase C (PLC) rate JPLCagonist
.

Active stress dynamics

Calcium and force development in SMCs are related by the cross-bridge

phosphorylation and latch state model of Hai and Murphy (20). In this model,

an elevated calcium level induces a contraction through the formation of

cross bridges between actin and myosin filaments. There are four possible

states for myosin: free nonphosphorylated cross bridges (M); free phos-

phorylated cross bridges (Mp); attached phosphorylated cross bridges

(AMp); and attached dephosphorylated latch bridges (AM). The dynamics of

the fraction of myosin in a particular state is given by

d½M�
dt
¼ �K1½M�1 K2½Mp�1 K7½AM�; (7)

d½Mp�
dt
¼ K4½AMp�1 K1½M� � ðK2 1 K3Þ½Mp� (8)

d½AMp�
dt

¼ K3½Mp�1 K6½AM� � ðK4 1 K5Þ½AMp�; (9)

d½AM�
dt

¼ K5½AMp� � ðK7 1 K6Þ½AM�; (10)

where the rate constants Kn (n ¼ 1, . . ., 7) regulate the phosphorylation and

bridge formation. The only nonconstant parameter K1 [ K6 is related to the

cytosolic calcium concentration

K1 ¼ gc
3
; (11)

where g is a constant characterizing the sensitivity of the contractile

apparatus to calcium. Active stress is directly proportional to the fraction

of attached cross bridges [AM] 1 [AMp].

Vessel radius dynamics

The vessel radius is computed by considering the equilibrium of tangential

forces in the wall (Laplace law): s ¼ pr/h ¼ sp 1 sa 1 sv, where p is the

intraluminal pressure; r is the inner vessel radius; h is the vessel wall

thickness; sp is the elastic stress; sa is the active stress; and sv is the viscous

stress. Viscous stress is given by sv ¼ hdr/dt, where h is the wall viscosity

coefficient. The time evolution of the inner vessel radius r is then given

by (21)

dr

dt
¼ 1

h

pr

h
� sp � sa

� �
: (12)

Depending on the value of the radius, the expressions for sp are (21)

sp ¼ sp0
ðekpðr�r0Þ � 1Þ if r $ r0 and

sp ¼ sp0
kpð1� ðr2

=r
2

0Þ
�3=2Þ if r # r0; (13)

where r0 is the unstressed radius. Active stress sa is directly proportional to

the fraction of attached cross bridges [AM] 1 [AMp], and is dependent on

the vessel external radius (21)

sa ¼ sa0

½AMp�1 ½AM�
ð½AMp�1 ½AM�Þmax

e
�kaðr1h�raÞ2 ; (14)

where sa0
is the maximal active stress and ([AMp] 1 [AM])max the maximal

fraction of attached cross bridges. The expression for the wall thickness h is

written by assuming that the wall is incompressible and the vessel length

constant, i.e., the wall volume, is assumed constant (22):

h ¼ �r 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

2
1 2rbhb 1 h

2

b

q
: (15)

Isobaric conditions

Isobaric conditions are generated using a fixed pressure p. With Laplace law

s ¼ pr/h, the term Jstretch modeling SACs is given by Koenigsberger et al.

(18) as

Jstretch ¼
Gstretch

1 1 e
�aðpr=h�s0Þðv� ESACÞ: (16)

Isometric conditions

Isometric conditions are generated by fixing the arterial radius, i.e., by setting

Eq. 12 to zero: ðdrÞ=ðdtÞ ¼ 0. The term Jstretch modeling SACs is then given by

Jstretch ¼
Gstretch

1 1 e
�aðsp1sa�s0Þðv� ESACÞ; (17)

where the vessel radius r is a fixed parameter in terms sp (Eq. 13) and sa

(Eq. 14).

Isotonic conditions

Isotonic conditions are generated by fixing the arterial tension T ¼ pr
(Laplace law). Eq. 12 is then written as

Isometric, Isobaric, Isotonic Conditions 2729
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dr

dt
¼ 1

h

T

h
� sp � sa

� �
; (18)

where the wall tension T is a constant. The term Jstretch modeling SACs is

then given by

Jstretch ¼
Gstretch

1 1 e
�aðT=h�s0Þðv� ESACÞ: (19)

Cyclic pressure variations

In vivo, the pressure is subject to cyclic variations arising from heart beats.

This is modeled by considering sinusoidal pressure p variations

p ¼ p0 1 Dp0sinð2pf tÞ; (20)

where p0 is the mean pressure, Dp0 the oscillation amplitude, and f the

oscillation frequency. These cyclic pressure variations arise in term Jstretch (Eq.

16) and in Eq. 12. The meanings and values of all parameters are given in

Tables 1 and 2.

Numerical methods

The model equations were solved using a fourth-order Runge-Kutta method.

The software AUTO implemented in XPPAUT (23) was used for bifurcation

diagrams. All stable solutions indicated by AUTO have been found in our

numerical simulations.

Experimental methods

Isometric force measurement

Male Sprague-Dawley rats aged 6–10 weeks, and weighing 200–350 g were

obtained at the animal house of the University of Geneva and treated in

agreement with the Care of Animals (edited by ‘‘l’Académie Suisse des

Sciences Médicales’’ and ‘‘la Société Hélvétique des Sciences Naturelles’’).

Rats were anesthetized with 2-bromo-2-chloro-1,1,1-trifluoroethane (halo-

thane), and then the neck was disrupted. The mesentery was isolated and a

first-order mesenteric artery was dissected from the mesenteric vascular bed.

The blood vessel was cleaned of surrounding tissues and cut to obtain a ring

of 2 mm length in a buffered Krebs solution (at room temperature) of the

following composition (mM): NaCl 118.7, KCl 4.7, CaCl2 2.5, MgSO4 1.2,

KH2PO4 1.2, NaHCO3 24.8, D-glucose 10.1, pH 7.4 and aerated with 95%

O2 and 5% CO2 gas mixture. The ring was incubated for isometric tension

recording in a Mulvany microvessel Myograph (Multimyograph, model 610

M, Danish Myo Technology A/S, Aarhus, Denmark). The stainless steel

organ bath had a volume of 5 ml. It contained warmed (37�C) and oxy-

genated (95% O2, 5% CO2) Krebs-Ringer buffer. The ring was threaded on

two stainless wires (40 mm diameter). One of the wires was connected to the

lever of a force-displacement transducer to record the isometric force de-

TABLE 1 Parameter values for the SMC model

Parameter Description Value

F Maximal rate of activation dependent calcium influx. 0.23 mM/s

Kr Half saturation constant for agonist-dependent calcium entry. 1 mM

GCa Whole cell conductance for VOCCs. 0.00129 mM mV�1 s�1

vCa1 Reversal potential for VOCCs. 100.0 mV

vCa2 Half-point of the VOCC activation sigmoidal. �24.0 mV

RCa Maximum slope of the VOCC activation sigmoidal. 8.5 mV

GNa/Ca Whole cell conductance for Na1/Ca21 exchange. 0.007 mM mV�1 s�1

cNa/Ca Half-point for activation of Na1/Ca21 exchange by Ca21. 0.5 mM

vNa/Ca Reversal potential for the Na1/Ca21 exchanger. �30.0 mV

B SR uptake rate constant. 2.025 mM/s

cb Half-point of the SR ATPase activation sigmoidal. 1.0 mM

C CICR rate constant. 55 mM/s

sc Half-point of the CICR Ca21 efflux sigmoidal. 2.0 mM

cc Half-point of the CICR activation sigmoidal. 0.9 mM

D Rate constant for Ca21 extrusion by the ATPase pump. 0.08 s�1

vd Intercept of voltage dependence of extrusion ATPase. �100.0 mV

Rd Slope of voltage dependence of extrusion ATPase. 250.0 mV

L Leak from SR rate constant. 0.025 s�1

Gstretch Whole cell conductance for SACs. 0.0061 mM mV�1 s�1

ESAC Reversal potential for SACs. �18 mV

a Slope of stress dependence of the SAC activation sigmoidal. 0.0074 mmHg�1

s0 Half-point of the SAC activation sigmoidal. 500 mmHg

g Scaling factor relating net movement of ion fluxes to the membrane potential (inversely

related to cell capacitance).

1970 mV/mM

FNa/K Net whole cell flux via the Na1-K1-ATPase. 0.2 mM/s

GCl Whole cell conductance for Cl� current. 0.00134 mM mV�1 s�1

vCl Reversal potential for Cl� channels. �25.0 mV

GK Whole cell conductance for K1 efflux. 0.002 mM mV�1 s�1

vK Reversal potential for K1. �94.0 mV

l Rate constant for net KCa channel opening. 45.0

cw Translation factor for Ca21 dependence of KCa channel activation sigmoidal. 0 mM

b Translation factor for membrane potential dependence of KCa channel activation sigmoidal. 0.13 mM2

vCa3
Half-point for the KCa channel activation sigmoidal. �27.0 mV

RK Maximum slope of the KCa activation sigmoidal. 12.0 mV

k Rate constant of IP3 degradation. 0.1 s�1
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veloped by the ring. Recorded data were digitized with an analog-digital

interface (MacLab, World Precision Instrument, Sarasota, FL) and then

stored on the hard disk of a MacIntosh compatible computer. A commercially

available and validated software program (MacLab System, World Precision

Instrument) was used to analyze these data.

Study design

A passive resting tension of 0.3 mN was initially applied and the rings

were allowed to stabilize for 45 min. The incubation bath was perfused at

20 ml/min with an increasing concentration of PE from 0 to 100 mM then a

decreasing concentration from 100 to 0 mM PE. This concentration gra-

dient was built up in the following manner. A conic flask (Erlenmeyer)

containing 590 ml of 100 mM PE in Krebs solution was connected by

polyethylene tubing to a cylindrical bottle containing 900 ml Krebs solu-

tion without PE continuously mixed with a magnetic stirrer. A peristaltic

pump pumped in this bottle the solution for bath perfusion. By com-

municating vessels principle, the solution level was the same in the

Erlenmeyer and in the cylinder. Thus, the PE solution progressively flowed

into the cylinder. This creates an exponential increase of PE concentration

in the cylinder and consequently in the bath. Then the system was inverted,

and the perfusion solution was pumped in the Erlenmeyer that contained

100 mM PE. This solution was then progressively diluted by the Krebs

solution coming from the cylinder.

RESULTS AND DISCUSSION

Isometric, isobaric, and isotonic conditions

Bifurcation diagrams

Fig. 1 a gives bifurcation diagrams of the cytosolic calcium

concentration c and of the vessel radius r with respect to the

agonist-activated PLC-rate, JPLCagonist
in isobaric conditions

(constant pressure p¼ 80 mmHg). At low values of JPLCagonist
;

i.e., at low vasoconstrictor concentration, the cytosolic cal-

cium level is in a stable steady state (domain I). Increasing the

vasoconstrictor concentration, the calcium concentration and

the vessel contraction increase, and a Hopf bifurcation oc-

curs: the steady state becomes unstable and the calcium level

begins to oscillate, giving rise to an oscillating radius, thus

vasomotion (domain II). The mean calcium level and the

oscillation frequency essentially become higher and the mean

radius smaller with increasing values of JPLCagonist
. Note that

for a small range of JPLCagonist
; the branch of periodic orbits is

unstable. This unstable part is delimited by period doubling

bifurcations, and period doubling solutions are found for the

corresponding small range of JPLCagonist
. Finally, the diagram

of Fig. 1 a has another Hopf bifurcation from which the

steady state becomes stable again (domain III). The cytosolic

calcium level is high and no longer oscillates, and the radius

is constant and small.

Fig. 1, b and c, gives the corresponding bifurcation dia-

grams in isotonic and isometric conditions, respectively. In

this figure, the radii in the absence of vasoconstrictor are the

same, i.e., the isometric radius is chosen in order that the

isometric circumferential stress equals the isobaric and iso-

tonic stress pr/h¼ T/h at JPLCagonist
¼ 0 mM=s. The differences

of the bifurcation diagrams arising from different conditions

(isobaric, isotonic, or isometric) are discussed below.

Vasoconstrictor sensitivity

The calcium level is higher and the three domains of Fig. 1

are shifted to the left in isometric with respect to isobaric or

isotonic conditions. In isobaric preparations, the vessel

contraction after a vasoconstrictor concentration rise di-

minishes the circumferential stress pr/h. This reduces the

SAC conductance (Eq. 16), decreasing the direct calcium

influx through SACs and the calcium influx through volt-

age-operated calcium channels (VOCCs) because of a

smaller cell depolarization. In isotonic conditions, the stress

T/h also slightly decreases with a rise in the vasoconstrictor

concentration, since the arterial thickness increases during

contraction (Eq. 15). In the isometric case, there is no such

counterregulatory mechanism after an increase in the va-

soconstrictor concentration. Indeed a vasoconstrictor con-

centration elevation significantly increases the active stress

sa and thus the total stress, thereby enhancing the calcium

influx through SACs. This leads to a higher vasoconstric-

tor sensitivity and a lower vasoconstrictor concentration

threshold necessary for vasomotion in isometric conditions.

This is in agreement with the experimental observations

of Tanko et al. (14), VanBavel and Mulvany (16), and

McPerson (17) reporting an enhanced vascular sensitivity to

vasoconstrictor in isometric compared to isobaric or iso-

tonic conditions. Thus, higher vasoconstrictor concentra-

tions should be used to induce vasomotion in isobaric and

TABLE 2 Parameter values for contraction

Parameter Description Value

K2 Rate constant for phosphorylation

and bridge formation.

0.5 s�1

K3 Rate constant for phosphorylation

and bridge formation.

0.4 s�1

K4 Rate constant for phosphorylation

and bridge formation.

0.1 s�1

K5 Rate constant for phosphorylation

and bridge formation.

0.5 s�1

K7 Rate constant for phosphorylation

and bridge formation.

0.1 s�1

([AMp]

1 [AM])max

Maximal fraction of attached cross

bridges.

0.8

g Phosphorylation coefficient. 17 mM�3s�1

h Viscosity coefficient. 10 mmHg s

sp0 Elastic stress. 0.0191 mmHg

kp Elastic coefficient. 0.15 mm�1

r0 Unstressed radius. 50 mm

sa0 Maximal active stress. 1.8 � 105 N/m2

ka Muscular coefficient. 0.0006 mm

ra Optimal radius for active stress. 95 mm

rb Basal radius. 56.3 mm

hb Basal thickness. 15 mm

p0 Mean pressure. 100 mmHg

Dp0 Pressure oscillation amplitude. 20 mmHg

f Pressure oscillation frequency. 1 Hz
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isotonic conditions. Note that in the isotonic case, the three

domains of Fig. 1 are also slightly shifted to the left with

respect to the isobaric case. Starting from identical initial

conditions at JPLCagonist
¼ 0 mM=s; the isotonic stress T/h

becomes actually higher than the isobaric stress pr/h at a

given vasoconstrictor concentration, since T is a constant

and r decreases with increasing vasoconstrictor concentra-

tions.

FIGURE 1 Bifurcation diagrams of the calcium concentration c (left column) and the vessel radius (right column) with respect to the agonist-activated PLC-

rate, JPLCagonist
. (Thick solid line) Stable rest state; (thick dashed line) unstable rest state; (thin solid line) minima and maxima of stable oscillations; and (thin

dashed line) minima and maxima of unstable oscillations. (a) Isobaric case (the constant pressure p ¼ 80 mmHg corresponds to that of the isometric and

isobaric cases at JPLCagonist
¼ 0 mM=s). (b) Isotonic case (the constant tension T ¼ pr corresponds to that of the isometric and isobaric cases at

JPLCagonist
¼ 0 mM=s). (c) Isometric case (the constant radius r ¼ 84.225 mm corresponds to that of the isobaric and isotonic cases at JPLCagonist

¼ 0 mM=s).

2732 Koenigsberger et al.
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Contraction amplitude

The mean contraction is less pronounced in isotonic than in

isobaric conditions, i.e., the mean arterial radius is smaller at

a given vasoconstrictor concentration (compare panels b and

c in Fig. 1). This result is in agreement with the experimental

findings of McPherson (17). In our model, this is a conse-

quence of the fact that at a given nonzero vasoconstrictor

concentration, term T/h in Eq. 18 is higher than term pr/h in

Eq. 12.

Multistability

Under isometric conditions, several stables states may co-

exist at a given vasoconstrictor concentration (multistability,

see Fig. 1 c at JPLCagonist
’ 0 mM=s). Depending on the radius

value, this multistability is more or less pronounced or even

absent. Fig. 2 gives bifurcation diagrams of the cytosolic

calcium concentration with respect to the agonist-activated

PLC-rate, JPLCagonist
; at two different radius values in isometric

conditions. The branch of periodic orbits emanates from an

infinite period bifurcation (Fig. 2 a), and terminates via a

Hopf bifurcation. Note that, in Fig. 2 b, domain I does not

exist (no multistability); i.e., for this radius value, vasomo-

tion is always obtained in the absence of vasoconstrictor.

This multistability can be explained intuitively by consid-

ering the radius dynamics with respect to pressure at a fixed

vasoconstrictor concentration (see Fig. 3). At low pressure,

the radius increases with pressure. For a certain pressure

range, the radius decreases with increasing pressure, a phe-

nomenon called the myogenic response. The myogenic re-

sponse is often obtained experimentally and has been first

observed by Bayliss (24). The radius decreases when active

stress sa dominates the term pr/h in Eq. 12. This is caused by

a significant increase in the open probability of the SAC (and

thus the calcium level) after a pressure increase. At high

pressure, the radius increases again with pressure. Indeed, the

open probability of the SAC is then nearly one, resulting in

low calcium and sa variations after a pressure increase. The

dominant term in Eq. 12 becomes again pr/h, causing a radius

increase. A vessel presenting a myogenic response has the

property that multiple values of pressure or circumferential

stress pr/h correspond to a given radius value r and vaso-

constrictor concentration (Fig. 3). Therefore, several states of

calcium concentration may coexist in isometric conditions. In

Fig. 1 c and Fig. 2, a and b, the solutions of the bifurcation

diagram at JPLCagonist
¼ 0 mM=s correspond to the ones given

by the intersection of the horizontal dashed line (for Fig. 1 c),

the dotted line (for Fig. 2 a), and the shaded line (for Fig. 2 b)

with the branch of solutions in Fig. 3. Experimentally, one

would then expect to observe different behaviors at a given

vasoconstrictor concentration depending on the initial con-

ditions. Note that there is no multistability if the vessel presents

no myogenic response, i.e., if the conductance of the SACs is

small.

Fig. 4 gives the time evolution of the SMC calcium con-

centration c and active stress sa during a continuous linear

FIGURE 2 Bifurcation diagrams of

the calcium concentration c with respect

to the agonist-activated PLC-rate,

JPLCagonist
in isometric conditions. (Thick

solid line) Stable rest state; (thick dashed
line) unstable rest state; (thin solid line)

minima and maxima of stable oscilla-

tions; (thin dashed line) minima and

maxima of unstable oscillations; (HB)

Hopf bifurcation; and (IPB) infinite pe-

riod bifurcation. (a) r ¼ 77.205 mm. (b)

r ¼ 86 mm.

FIGURE 3 Bifurcation diagram of the vessel radius r with respect to

pressure in the absence of vasoconstrictor (JPLCagonist
¼ 0 mM=s). The inter-

sections of the branch of solutions with the horizontal dashed, dotted, and

shaded lines give the solutions of the bifurcation diagram at JPLCagonist
¼

0 mM=s for Fig. 1 c and Fig. 2, a and b, respectively.
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vasoconstrictor concentration change (increase of JPLCagonist

from 0 to 0.11 mM/s in Fig. 4 a and decrease of JPLCagonist
from

0.11 to 0 mM/s in Fig. 4 b) at a fixed radius of r¼ 77.205 mm

(same radius value than in Fig. 2 a). Note that the active stress

sa rapidly reaches its maximal value due to a saturation of the

fraction of attached cross bridges. Indeed, increases of the

calcium concentration exceeding ;0.8 mM no longer result

in active stress sa variations. Such high calcium concentra-

tion variations that do not bring about stress and radius var-

iations have been observed experimentally (8). In this figure,

the multistability manifests itself as a sudden steep calcium

increase (Fig. 4 a) or decrease (Fig. 4 b). Such a discontinuity

or sudden steep increase in a concentration-response curve

has also been observed experimentally (Fig. 6 of (16)). Note

that on Fig. 4 a the vasomotion domain of Fig. 2 a has been

missed due to the coexistence of stable and oscillatory states.

Indeed, at JPLCagonist
¼ 0 mM=s the calcium concentration is in

domain I (no multistability), and stays on the same branch

after an increase in JPLCagonist
. When this branch becomes

unstable, the calcium concentration directly jumps to domain

III. In Fig. 4 b, the vasoconstrictor concentration is linearly

decreased, allowing us to obtain the vasomotion domain.

Indeed, the calcium concentration is initially in domain III,

and stays on the same branch after a decrease in JPLCagonist
. A

stable branch of periodic orbits is emanating from this branch

via a Hopf bifurcation (see Fig. 2 a). When this branch of

periodic orbits terminates, the calcium concentration jumps

to the stable steady-state branch (domain I). This result

suggests that experimentally existing vasomotion domains

may be missed in isometric conditions when performing

concentration-response curves. Different vessel radius values

and the effects of a vasoconstrictor concentration increase

and decrease should be studied to ensure that a possible va-

somotion domain has not been missed.

On vessels where the myogenic response is less pro-

nounced, which may be the case in presence of endothelium

(18), the domain of multistability and thus the probability of

missing a vasomotion domain become smaller. This result

FIGURE 4 Time evolution of the SMC calcium concentration (left column, solid curve) and active stress (right column) during a continuous vasoconstrictor

concentration change (left column, dotted line) at a fixed radius of r ¼ 77.205 mm (same radius as in Fig. 2 a). (a) The agonist-activated PLC-rate, JPLCagonist
is

increased linearly from 0 to 0.11 mM/s. (b) JPLCagonist
is decreased linearly from 0.11 to 0 mM/s.
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may also provide an explanation why, in some experimental

studies, vasomotion is not observed in isometric conditions in

the absence of endothelium (6,12,13).

We have performed an experiment to confirm the model

prediction that concentration response curves under isometric

conditions are different if the vasoconstrictor concentration is

increased or decreased (Fig. 5). Four out of four experiments

with a rat mesenteric arterial ring mounted on a myograph

showed a sudden steep increase in isometric force during a

continuous PE concentration increase. During the PE con-

centration decrease, the shape of the isometric force curve was

different with a smoother decrease (n ¼ 4), as predicted pre-

viously by the model (Fig. 4). Note that, just before the PE

decrease, there is a change in the vessel tone resulting from the

interruption of the pump. All experiments (n ¼ 4), therefore,

showed the expected different time evolution of the isometric

force during a PE increase or decrease. However, only one

vessel exhibited vasomotion, and this vasomotion occurred in

the ascending and not in the descending part of the curve. In

the model, the existence and the location of the vasomotion

domain is dependent on the isometric radius value chosen

(compare Fig. 1 c and panels a and b of Fig. 2), and on our

particular choice of model parameters (18). Indeed, changes in

some parameters can shift the vasomotion domain (18,25).

Cyclic pressure variations

Fig. 6 shows time-course simulations in the vasomotion

domain of the calcium and radius dynamics of an artery

subject to cyclic pressure variations (Fig. 6, a and b) and to a

constant pressure of 100 mmHg (Fig. 6, c and d). With the

parameter values for p0, Dp0, and f chosen (Table 2), Fig. 6, a
and b, mimics a situation where blood pressure oscillates

between a diastolic value of 80 mmHg and a systolic value of

120 mmHg, at a frequency corresponding to 60 heart beats

per minute. On Fig. 6 b, vessel radius variations resulting

from the pressure oscillations can be seen, in agreement with

experimental observations (26). The calcium dynamics is not

changed significantly in SMCs subject to a constant pressure

p0 compared to SMCs experiencing sinusoidal pressure

variations with the same mean pressure p0 (compare Fig. 6,

panels a and c)). Only if the pressure oscillation frequency is

similar to the vasomotion frequency (which is not physio-

logical), is the calcium dynamics affected by becoming more

chaotic (data not shown).

Discussion of model hypotheses

In this study, we have only considered the calcium dynamics

of a single SMC, representing the mean smooth muscle cal-

cium concentration of the arterial wall. The corresponding

calcium dynamics in large populations of SMCs has been

analyzed in our previous articles (18,25,27). Moreover, we

have not taken into account the endothelium, as in our model

the endothelium plays only a modulatory role. We have

previously studied its precise effects (25,28).

We have assumed that the only effect of stress is to activate

SACs without considering other possible mechanosensitive

pathways. It has, for example, also been suggested that stress

may activate the calcium release from the intracellular stores

(29). This other possible pathway can be modeled by in-

creasing the terms JIP3 or JCICR. This does not qualitatively

change our results, as the cytosolic calcium concentration is

then also increased and the three domains are shifted to the

left (results not shown).

In our model, calcium and active force development are

related by the cross-bridge phosphorylation model of Hai and

Murphy (20). We have not introduced any cross-bridge ve-

locity in this model (30), as the bifurcation diagrams repre-

sent the attractors (steady-state solution, periodical solution)

to which the dynamical system converges after a certain time.

The cross-bridge velocity does not intervene in the calcula-

tion of the steady-state solution (zero velocity), and the po-

sition of the oscillatory vasomotion domain coincides with

the unstable part of the steady state. Within the oscillatory

domain, the cross-bridge velocity can be neglected. Indeed,

the oscillation frequency (ranging from 0.018 to 0.075 Hz

(18)) is smaller than the smallest cross-bridge formation rate

constants (Table 2), and therefore the spatial distribution of

the cross-bridges AM and AMp approach the steady-state

distribution at all times (30). The inclusion of the cross-

bridge velocity is only important if one is interested in the

time evolution of the dynamical system before it has con-

verged to the attractors (31).

FIGURE 5 Isometric force measurement in a rat mesenteric arterial ring.

At the beginning of the acquisition, the PE concentration was continuously

increased from 0 mM to 100 mM. Then the pump was stopped for ;6 min

before the PE concentration was continuously decreased from 100 mM to

0 mM. After ;15 min in a 0 mM PE solution, the responsiveness of the ring

was checked with 100 mM of PE.
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An in vivo condition has been mimicked by considering

cyclic pressure variations, which is a considerable simplifi-

cation. For instance, in vivo, different types of vasocon-

strictors are released simultaneously, and this release often

occurs in a pulsatile way (32). However, our aim here was to

compare, in terms of wall stress, different experimental con-

ditions. Note that Fig. 6, a and b, would be slightly changed if

the cross-bridge velocity had been taken into account. In-

deed, the high frequency arterial radius oscillations resulting

from heartbeat would then decrease active force development

FIGURE 6 Time evolution of the SMC calcium concentration (a and c) and the vessel radius r (b and d) at JPLCagonist
¼ 0:09 mM=s. In panels a and b, the

pressure is subject to sinusoidal variations with a mean value of p0¼ 100 mmHg. In panels c and d, the pressure is kept constant at 100 mmHg. The simulations

start from the equilibrium state of the vessel in the absence of vasoconstrictor.
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(30). However, this effect is limited (30), as the amplitude of

these radius oscillations is small (,2%). An analysis of this

effect would need further investigations, and the inclusion of

cross-bridge velocity would require a model based on partial

differential equations (30,31).

The main conclusions (vasoconstrictor sensitivity, multi-

stability) of our study are not qualitatively dependent on the

precise model characteristics and parameter values. Indeed,

the coexistence of multiple states under isometric conditions

is only a consequence of the vessel presenting a myogenic

response, and the enhanced vasoconstrictor sensitivity in

isometric conditions results from a higher arterial wall stress.

Our model results are in agreement with experimental find-

ings in the literature. The multistability that may manifest

itself by different concentration-response curves depending

whether the vasoconstrictor concentration is increased or

decreased has been verified experimentally in this study, as

we have not found any experimental confirmation of this

important model prediction in the literature.

CONCLUSION

We have compared bifurcation diagrams of the smooth mus-

cle mean calcium concentration and of the arterial radius in

isometric, isobaric, and isotonic conditions, and we have an-

alyzed the effects of cyclic pressure variations. Having in

mind that we have neglected the cross-bridge velocity during

the cyclic pressure variations, we have shown that isobaric

conditions seem the most realistic, as the calcium dynamics is

similar under cyclic pressure variations (in vivo-like situation)

and under a constant pressure (isobaric situation). The con-

traction is less pronounced in isotonic than in isobaric con-

ditions, in agreement with experimental findings. Isometric

conditions may considerably change the calcium dynamics.

The sensitivity to vasoconstrictor of SMCs is higher in iso-

metric than isobaric or isotonic conditions, in agreement

with experimental observations. The threshold vasoconstric-

tor concentration necessary for vasomotion is therefore higher

in isobaric than isometric setups. The model predicts that

isometric conditions may generate some artifacts, and care

should be taken in the interpretation of experimental results.

Indeed, the model suggests that isometric conditions may

generate the coexistence of multiple stable states. This pre-

diction is independent of the precise model characteristics and

parameter values and is only a consequence of the vessel

presenting a myogenic response. The multistability may bring

about the condition that an existing vasomotion domain is

missed in a concentration-response curve to vasoconstrictor,

and that this curve is different depending upon whether the

vasoconstrictor concentration is increased or decreased.

APPENDIX A: DETAILS OF THE
MATHEMATICAL MODEL

The various terms appearing in Eqs. 1–5 are described by the following

expressions as presented previously (18,25,27). The calcium flux

JIP3 ¼ F
I

2

K2

r 1 I2 (21)

models the calcium release from IP3 sensitive stores,

JSRuptake ¼ B
c2

c
2
1 c

2

b

(22)

models the SR/ER uptake,

JCICR ¼ C
s

2

s
2

c 1 s
2

c
4

c
4

c 1 c
4 (23)

describes the calcium-induced calcium release (CICR),

Jextrusion ¼ Dc

�
1 1

v� vd

Rd

�
(24)

is the calcium extrusion by Ca21-ATPase pumps,

Jleak ¼ Ls (25)

corresponds to the leak from the SR,

JVOCC ¼ GCa

v� vCa1

1 1 e
� ðv�vCa2

Þ=RCa½ � (26)

is the calcium influx through VOCCs, and

JNa=Ca ¼ GNa=Ca

c

c 1 cNa=Ca

ðv� vNa=CaÞ (27)

is the Na1/Ca21 exchange. The term

JNa=K ¼ FNa=K (28)

is the Na1-K1-ATPase,

JCl ¼ GClðv� vClÞ (29)

models the chloride channels,

JK ¼ GKwðv� vKÞ (30)

is the K1 efflux,

Kactivation ¼
ðc 1 cwÞ2

ðc 1 cwÞ2 1 be
� ðv�vCa3

Þ=RK½ � (31)

describes the calcium and voltage activation of K1 channels, and the IP3 flux

Jdegrad ¼ kI (32)

models the IP3 degradation. The constant JPLCagonist
is the rate of PLC activated

by agonists. The parameter values for the SMC model are given in Table 1.
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