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Abstract

Background: Noncoding RNAs (ncRNAs) play important roles in a variety of cellular processes.
Characterizing the transcriptional activity of ncRNA promoters is therefore a critical step toward
understanding the complex cellular roles of ncRNAs.

Results: Here we present an in vivo transcriptional analysis of three C. elegans ncRNA upstream
motifs (UMI-3). Transcriptional activity of all three motifs has been demonstrated, and mutational
analysis revealed differential contributions of different parts of each motif. We showed that
upstream motif | (UMI) can drive the expression of green fluorescent protein (GFP), and utilized
this for detailed analysis of temporal and spatial expression patterns of 5 SL2 RNAs. Upstream
motifs 2 and 3 do not drive GFP expression, and termination at consecutive T runs suggests
transcription by RNA polymerase Ill. The UM2 sequence resembles the tRNA promoter, and is
actually embedded within its own short-lived, primary transcript. This is a structure which is also
found at a few plant and yeast loci, and may indicate an evolutionarily very old dicistronic
transcription pattern in which a tRNA serves as a promoter for an adjacent snoRNA.

Conclusion: The study has demonstrated that the three upstream motifs UM|-3 have promoter
activity. The UMI sequence can drive expression of GFP, which allows for the use of UMI::GFP
fusion constructs to study temporal-spatial expression patterns of UMI ncRNA loci. The UMI loci
appear to act in concert with other upstream sequences, whereas the transcriptional activities of
the UM2 and UM3 are confined to the motifs themselves.

Background of the promoters of these loci could be a useful step
Genome wide analyses have in recent years revealed an  towards revealing their functional roles. Extensive analysis
increasing number of noncoding RNAs (ncRNAs) [1-12],  of ncRNA promoters have been carried out in human,

however, the functional roles of these ncRNAs are mostly ~ Drosophila and yeast [13-18]. There are more than 200
still unknown. Characterizing the transcriptional activity =~ known short ncRNAs loci reported in C. elegans (microR-
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NAs and tRNAs not included) and a recent tiling microar-
ray study suggests the existence of an additional 1200
short transcripts with unknown function (TUFs) [1].
However, compared to the extensive work on promoter of
protein coding genes, few analyses of ncRNA promoter
activity have been performed in this species [19-24].

Analysis of the 100 bp upstream sequences of 161 C. ele-
gans ncRNAs using the MEME software [25] detected three
distinct 50 bp upstream motifs (upstream motifs 1~3,
henceforth UM1-3) [6]. Among the 161 ncRNAs, UM1 is
found at the loci of 54 ncRNAs, including 23 snRNAs, 11
snoRNAs and 11 snlRNAs. UM2 is found at the loci of 47
ncRNAs, of which 40 are snoRNAs. UM3 is found at the
loci of 9 ncRNAs, all are stem-bulge RNAs (sbRNAs). Of
the 1222 transcripts of unknown function (TUF)[1],
UM1-3 are found at 76, 44 and 4 loci, respectively.

5bp

http://www.biomedcentral.com/1471-2199/9/71

The core sequence of the 50 bp long UM1 is the 21 bp
long snRNA proximal sequence element (PSE) [26]. This
core sequence is composed of two sub-motifs spaced by 5
bp (Figure 1). In the Drosophila PSE the corresponding
sub-motifs have been denoted as PSEA and PSEB [27] and
we have used the same denotation here. Most of the C. ele-
gans PSE/UM1 loci are TATA-less, and transcripts gener-
ated from such loci generally carry a 5'-end cap, suggesting
transcription by polymerase II [6].

In the second motif (UM2) the most invariant sub-motifs
are spaced by 33 bp and strongly resemble the Box A and
B motifs of the tRNA internal promoter (Figure 1), which
is known to bind transcription factor IIIC (TFIIIC) [28]. It
is possible that UM2 is derived from tRNA genes that have
served as promoters for downstream ncRNA genes, as sim-
ilar tRNA-snoRNA dicistronic transcriptional structures
have been described in plants and yeast [29-32]. Most of
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UM1 PSEA GCGGAACCCG
UM2 BoxA TGGCTCAGTGG

UM3 PSEB TGTCTGCCGC
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BoxB GGTTCGATTCC
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Structures of the three putative promoters of C. elegans noncoding RNAs. The most invariant submotifs in each
promoter have been indicated by boxes. "+1" corresponds to the first base of the mature endogenous RNA sequence.
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the UM2 loci encode snoRNAs which generally produce
uncapped transcripts terminated at an oligo-T tract, and
are thus likely to be transcribed by polymerase III [6],
though the lack of a cap could also be due to processing
of the primary snoRNA transcript [32,33].

The third motif (UM3) resembles the PSE/UM1 in that
they both contain the PSEB sub-motif, but UM3 lacks
PSEA, and has in addition a structure with the consensus
motif GTATA located closer to the ncRNA transcription
start site (TSS; Figure 1). UM3 is exclusively found at stem-
bulge RNA (sbRNA) loci. The sbRNAs are terminated at an
oligo-T tract, and most appear to be uncapped, indicating
transcription by RNA polymerase III [6].

Short ncRNA loci in C. elegans are frequently found in
introns of protein coding genes [2,6]. Such loci may or
may not have an upstream motif. Previous analyses have
found that for ncRNAs located in introns, the expression
levels of intronic ncRNA loci not containing any obvious
upstream motifs are closely correlated to the expression
levels of the host genes [34]. On the other hand, for
intronic ncRNA locus containing an upstream motif, the
expression of the ncRNA locus is uncorrelated to the host
gene expression, indicating that ncRNA loci with
upstream motifs are independently transcribed [34].

No specific analysis of the ncRNA promoters appears to
have been carried out in C. elegans, however, previous
analysis has shown that a fragment including the first 162
bp upstream of the SL.4 RNA (a variant of SL2 RNA, CeN7,
which locus contains PSE/UM1) is sufficient to drive LacZ
expression [35], and mutation of four bases in the PSEB
submotif resulted in a 10-fold reduction in transcription
of an SL2 RNA [36]. We here demonstrate the transcrip-
tional activity of the three C. elegans ncRNA promoters.
The roles of the most invariant sub-motifs were investi-
gated by mutation analysis, and the extent of upstream
sequence with influence on the ncRNA transcriptional
activity was analysed.

Results

In order to analyse the transcriptional activities of the
three common ncRNA motifs, we made constructs con-
taining varying amounts (~100 bp, ~300 bp and ~1 kb) of
upstream sequences (including 30-70 bp of transcribed
sequence from each selected ncRNA locus) fused to the
green fluorescent protein (GFP) open reading frame
(ORF). Constructs containing approximately 100 bp
upstream sequences (denoted by LOCUS NAME_100)
were used to test the inherent transcriptional activity of
each upstream motif, whereas constructs with longer
upstream sequences (LOCUS NAME_300, LOCUS
NAME_1kb) were employed to investigate the possibility
of additional regulatory elements.

http://www.biomedcentral.com/1471-2199/9/71

All the three upstream motifs are transcriptionally active
Cloning of approximately 100 bp upstream sequence
encompassing each of the three upstream motifs 1-3 in
front of chimeric ncRNA::GFP reporter genes suggested
that all three motifs have independent transcriptional
activity. To test whether the PSE/UM1 is sufficient for
ncRNA expression, we made a reporter construct consist-
ing of a fragment of the CeN7 locus including 90 bp
upstream and 67 bp transcribed (i.e. -90 to +67 bp; Addi-
tional file 1) sequence. The CeN7 locus encodes an SL2
RNA with a TATA-less PSE/UM1 upstream sequence. The
fragment was inserted into plasmid pPD95_77, which
contains a GFP OREF, thereby creating a CeN7::GFP chi-
meric reporter gene (henceforth CeN7_100). The recom-
bined gene was co-injected with the rol-6 marker gene
into young adult hermaphrodite gonads, and transgenic
strains were selected based on the presence of the roller
phenotype. Reporter gene expression was examined by
reverse transcription polymerase chain reaction (RT-PCR)
with one primer located in the CeN7 fragment and the
other primer in the plasmid sequence, using RNA
extracted from transgenic C. elegans strains (Figure 2). To
confirm that the observed transcriptional activation was
not a spurious result, we further selected an additional
PSE/UM1 SL2 RNA locus (CeN16-1). The construct
CeN16-1_100 was made as above from a fragment con-
taining 119 bp upstream sequence and 60 bp transcribed
sequence, and expression of the fusion reporter (CeN16-
1::GFP) was confirmed with RT-PCR (Figure 2). Trans-
genic strains containing the empty plasmid pPD95_77
were also obtained the same way as described above, but
no reporter gene expression was observed by RT-PCR.

The upstream motif 2 is composed of two sub-motifs with
sequence and spacing similar to that of the A and B boxes
of the tRNA promoter. To address the transcriptional
activity of UM2, two constructs were made. One
(CeN37_100) was made from a fragment containing 130
bp upstream sequence and 56 bp transcribed sequence
from the snoRNA locus CeN37, the other (CeN55_100)
from a fragment containing 134 bp upstream sequence
and 89 bp transcribed sequence from the snoRNA locus
CeN55. RT-PCR with one primer located in the CeN37
and CeN55 fragment and the other primer in the plasmid
sequence demonstrated the expression of transgenes
CeN37::GFP and CeN55::GFP, respectively (Figure 2).

Upstream motif 3 is exclusively found at stem-bulge RNA
(sbRNA) loci. To determine the transcriptional activity of
UMS3, 140 bp and 120 bp of the upstream sequence of the
sbRNA loci CeN74-2 and CeN72, respectively, was cloned
in front of the GFP ORF in pPD95_77 to yield constructs
CeN74-2_100 and CeN72_100 (the constructs also
included 32 and 36 bp of the respective transcribed
sbRNA sequences, fused to the GFP reporter gene). RT-
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Figure 2

Upstream motifs drive reporter gene expression. Expression of the reporter gene was detected by RT-PCR using
DNase | digested RNA extracted from transgenic worms as template. For the negative controls (RNA-PCR) RT-PCR was per-
formed using the same template without adding reverse transcriptase.

PCR verified the expression of both reporter fusions (Fig-
ure 2).

Additional regulatory elements

To assay whether the sequence upstream of each motif
might contain additional regulatory elements, we also
constructed plasmids containing approximately 300 to
1000 bp fragments of the 5'-flanking sequence from the
CeN7, CeN37 and CeN74-2 loci, respectively. Transgenes
expression levels were assayed by quantitative RT-PCR
(gqRT-PCR), and for each construct, 2 to 5 transgenic lines
were tested.

In the case of UM1, qRT-PCR of RNA from transgenic
strains showed that the expression driven by CeN7_300
(containing a 264 bp 5' flanking fragment) was 4-5 fold
higher than expression driven by CeN7_100 (Figure 3A),
strongly suggesting the existence of an enhancer located
within the 90~264 bp upstream region. However, a search
for 5' end features in this region of PSE/UM1 ncRNAs in
C. elegans failed to yield any common motifs (see Meth-
ods for details). The expression driven by CeN7_1k
showed an almost identical level to that of CeN7_300,
indicating that no additional regulatory elements exist
within the 264~1000 bp upstream of the ncRNA locus. In
the case of UM3, no significant increase in expression was
found by increasing the length of the upstream fragment
to 245 bp (CeN74-2_300; Figure 3B). Similarly, qRT-PCR
indicated no increase in expression of the UM2 locus
when the upstream region was extended to 294 bp
(CeN37_300) and 989 bp (CeN37_1k; Figure 3C). These
observations suggest that for the two assumed RNA
polymerase IlI-driving promoters (i.e. UM2 and UM3)
most or all the promoter activity resides within 100 bp of
the 5'end of the respective annotated loci.

Mutational analysis of promoter sub-motifs

Each of the three upstream motifs contains two sub-
motifs whose base pairs are particularly invariant among
loci. To investigate the contribution of the PSEA and PSEB
sub-motifs to the overall PSE/UM1 transcriptional activ-
ity, we mutated each of the two sub-motifs mainly by con-
verting each purine and pyrimidine residue to its opposite
purine and pyrimidine, respectively (i.e. A to G, and vice
versa), in the context of CeN7_1k. The corresponding con-
structs were labeled as CeN7_A_,, CeN7_B_ . and
CeN7_(A+B),,, Mutation of either of the two sub-motifs
(PSEA and PSEB) reduced expression to 3~7 % of that of
CeN7_1k, suggesting that both PSEA and PSEB are
required for the transcription of PSE/UMI1 loci (Figure
3A).

The sub-motifs in UM2 promoter strongly resemble the A
and B box motifs of the tRNA internal promoter. Muta-
tion of either of these two motifs in the context of
CeN37_1k caused a strongl reduction in the expression
levels of the mutant constructs (18 % for CeN37_A_,,and
26 % for CeN37_B,  compared with CeN37_1k; Figure
3B). Concomitant mutation of both sub-motifs
(CeN37_(A+B),,,) reduced the expression level to 7 %
compared with CeN37_1k.

Of the two sub-motifs in UM3, one strongly resembles the
PSEB of the PSE/UM1, whereas the second sub-motif has
the consensus sequence GTATA. We mutated both motifs
in the same fashion as described above, and observed the
effect on expression in the context of CeN74-2_300. Abol-
ishing the PSEB-like sub-motif (CeN74-2_A ) reduced
the expression level to 49 % compared with that of non-
mutated CeN74-2_300. Mutation of the GTATA sub-motif
produced an even more modest reduction (79 % com-
pared to that of non-mutated CeN74-2_300) than PSEB.
Mutating both sub-motifs simultaneously, however,
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Figure 3

Analysis of upstream motif promoter activity. The panels show the effects of additional upstream sequence length, and
of mutation of sub-motifs, on the transcriptional activity of each of the three promoters PSE/UMI, UM2 and UM3, respectively.
(A) UMI from the SL2 RNA locus CeN7. "PSEA" and "PSEB" are the most invariant sequence elements in the PSE/UMI. (B)
UM2 from the snoRNA locus CeN37. "BoxA" and "BoxB" show the two sub-motifs in UM2. (C) UM3 from the sbRNA locus
CeN74-2. "PSEB" and "GTATA" are the most invariant sequence elements of the UM3. "Gene start" corresponds to the first
69, 32 and 56 bp of the CeN7, CeN74-2 and CeN37 mature transcripts, respectively. Relative expression levels are calculated
by normalizing the gRT-PCR intensities of each CeNX_100 construct to 100. Sub-motif mutations were performed on the
constructs containing the longest upstream sequences (e.g. CeN7_1k) mainly by converting each purine and pyrimidine residue
to the opposite purine and pyrimidine, respectively (i.e. A to G, and vice versa).
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resulted in near abolishment of expression of the reporter
(CeN74-2_(A+B),,,s Figure 3C). The results suggest a cer-
tain redundancy in regulatory activity between the two
sub-motifs of UM3, but also that at least one of the sub-
motifs must be present for expression of the downstream
locus to occur at an appreciable rate.

Transcription start sites of the upstream motif loci

5' RACE performed on non-mutated constructs found that
the TSS of CeN7::GFP and CeN74-2::GFP were identical to
5' ends of the endogenous RNAs. For CeN37::GFP, how-
ever, the TSS was apparently located 70 bp upstream of
the 5' end of mature endogenous RNA and 9 bp upstream
of UM2 sequence itself (Figure 4A).

UM2 - a possible remnant of tRNA-snoRNA dicistronic loci
As shown above, 5' RACE of the reporter transcript of a
UM2 construct (CeN37_1k) found that transcription was
initiated 70 bp upstream of the 5'end of the mature
endogenous RNA, and even 9 bp upstream of the UM2
sequence. In plants, dicistronic tRNA-snoRNA transcripts,
which are subsequently cleaved to yield mature tRNA and
snoRNA have been described [32]. To investigate whether
the UM2 is also internally located with regards to the pri-
mary transcript of the endogenous RNAs, we visually
inspected the tiling microarray data [1] for possible evi-
dence of transcription of the UM2 site itself. Although we
found no indication of expression of the UM2 sequence at
the CeN37 locus, we found other 21 instances with indi-
cations of some level of expression, 16 at known snoRNA
loci and five preceding unannotated TUFs. In addition to
CeN37, we therefore selected five candidate loci (CeN50-
2, CeN39, CeN53, CeN55 and CeN119) for analysis by 3'
RACE as indicated in Figure 5. If the dicistronic tRNA-
snoRNA model also applies to the UM2-snoRNA tran-
scripts, two RACE bands should be expected, one corre-
sponding to the UM2-snoRNA primary transcript, the
other to the UM2 fragment remaining after cleavage. Four
(CeN39, CeN53, CeN55 and CeN119) of the 6 lodi
yielded RACE fragments of length expected if transcrip-
tion initiation occurred at the start of, or upstream of the
UM2 sequence, and sequencing confirmed a joint UM2-
snoRNA transcript in all four cases. A band corresponding
to a smaller fragment was observed in three cases, but
none of the sequences included the UM2 fragment. Thus,
the part of the primary transcript that contains the UM2
sequence is either rapidly degraded after cleavage, or the
UM?2-containing fraction of the primary transcript is
removed by 5'exonuclease digestion during maturation of
the snoRNA. 5' RACE analysis showed that the transcrip-
tion of the UM2 loci starts 9~13 bp upstream of the first
base in the box A-like sub-motif.

http://www.biomedcentral.com/1471-2199/9/71

Transcriptional termination

Transcripts derived from UM2 and UM3 loci are usually
terminated at a run of several consecutive thymidine (T)
residues, which is a property of loci transcribed by RNA
polymerase III. The minimal number of consecutive T res-
idues sufficient for termination of RNA polymerase III
transcription varies among organisms, but analysis of
known UM2 and UM3 loci suggests 4 consecutive Ts are
sufficient for termination in C. elegans (Figure 4B). This is
similar to what has been found in human and mouse, but
is less than the 5-7 normally needed for termination in
the yeast species (Figure 4B) [14]. In the plasmid
pPD95_77 there are runs of four (or more) Ts located at
variable distances from the plasmid multicloning site
(MCS). To determine the actual termination sites of the
UM?2 and UM3 constructs, we performed 3'RACE on the
resulting reporter transcripts. For CeN37_1k (UM2) the
reporter transcript terminated at the first, second and third
"TTTT" tracts (located 122, 177 and 236 nt downstream of
TSS; Figure 4C). For the CeN74-2_300 (UM3) construct,
reporter transcript termination was identical to what has
been observed in CeN37_1k (Figure 4C). qRT-PCR of frag-
ments corresponding to the different termination sites
suggested that most of the UM2 and UM3 reporter tran-
scripts terminated at the first "TTTT" tract (Figure 4D).

PSE/UMI| drive expression of GFP

3'RACE of the UM1 reporter transcript gave no specific
result, but RT-PCR indicated that at least a fraction of the
GFP ORF was included in the transcript. We further inves-
tigated the expression of GFP in worms from 2-3 inde-
pendent transgenic strains from each of the different
constructs. No GFP expression was observed after genetic
transformation with any of the UM2 (CeN37) and UM3
(CeN74-2) constructs. However, marked GFP expression
was observed under fluorescent microscope for the
CeN7_1k and CeN7_300 transgenic worms, and even the
CeN7_100 transgenic worms showed weak GFP expres-
sion. To eliminate the possibility that the observed GFP
expression was an effect of this particular PSE/UM1 locus,
we tested another PSE/UM1 ncRNA locus, CeN16-1,
whose upstream sequence was also able to drive GFP
expression. 5'-end RACE performed on RNA extracted
from CeN7_1k, CeN7_300 and CeN16-1_1k transgene
worms showed that the transcription start site of the
reporters were identical to that of the wild type ncRNA
loci, suggesting that the transcriptional activity resulting
in the observed GFP expression was the same as that driv-
ing the transcription of the endogenous ncRNAs.

Since PSE/UM1 could drive expression of GFP, we used
UM1::GFP fusions to analyse the temporal-spatial expres-
sion pattern of related ncRNA loci having this upstream
motif. One group of such loci are the C. elegans SL2 RNAs,
which are a nematode-specific group of ncRNAs that func-
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Figure 4

UM -3 transcript start and terminator analysis. (A) 5'RACE analysis of the UMI-3 reporter gene transcripts
(CeN7::GFP, CeN37::GFP and CeN74-2::GFP). Boxed bands correspond to the 5'RACE products of each reporter. The tran-
scription start sites indicated by the 5'RACE bands of reporter constructs CeN7::GFP (UMI) and CeN74-2::GFP (UM3) are
identical to the 5'ends of the mature endogenous CeN7 and CeN74-2 trancripts, respectively. The 5’RACE band from the
CeN37:GFP (UM2) reporter constructed corresponds to a transcript starting 70 bp upstream of the 5'end of the mature
endogenous CeN37 transcript (The lower band in the same lane is an unspecific band). (B) Distribution of C. elegans UM2 and
UM3 ncRNAs terminator lengths. Frequency distribution analysis of poly(dT) terminator length was conducted on UM2 and
UM3 ncRNA loci possessing a single RNA polymerase Il termination signal starting within the first 40 bp downstream of the
genomic sequence corresponding to the mature ncRNA. Inserted figures show data based on the analysis in ref [14]. (C) 3'
RACE of CeN74-2_300 (UM3) and CeN37_1k (UM2). Bands corresponding to transcripts terminated at the Ist, 2ndand 3rd
"TTTT" run are indicated. (Sequence analysis suggests that the band between the second and third T run corresponds to tran-
script terminated at a T rich tract "TTCTTGTT"). (D) Relative expression level of transcripts terminated at the Ist, 2ndand 3rd
T run. qRT-PCR was performed by reverse transcription using the primer located in front of the Ist, 2ndand 34T run, respec-
tively, followed by a nested PCR.(see Methods for details).
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Figure 5

The UM2-snoRNA transcript structure. (A) The H/ACA snoRNA locus CeN55 is located in an intron of the protein cod-
ing gene D1046.1. Tiling array probe signal intensities indicate that the UM2 sequence upstream of snoRNA CeN55 might also
be expressed (red box). (B) Model of RACE amplification of the putative UM2-snoRNA dicistronic fragments. 3AD is a 3'end
adaptor ligated to the ncRNAs; 3RT is the primer complementary to 3AD, primer_UM2 located in the region of UM2. The
RACE analysis was performed by reverse transcription using the 3RT as primer followed by PCR with primers primer_UM2
and 3RT. (C) Gel analysis of the RACE fragments.
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tion in trans-splicing of operonic mRNAs. There are
around 20 SL2 RNA loci in C. elegans with slightly variable
sequence characteristics. As far as is known, all participate
in the same function, i.e. joining of an additional "exon"
to the 5'end of internal (or non-first) mRNAs in operonic
loci, but nothing appears to be known about the back-
ground for the numerous and variable SL2 RNA loci in the
C. elegans genome. Previous experiments have demon-
strated that different SL2 RNA genes show different tem-
poral expression patterns [6,34,35,37], but little is known
about their spatial expression patterns. We therefore
examined the temporal-spatial expression of five SL2 RNA
genes using promoter::GFP fusion constructs. The tested
ncRNAs showed considerable variation in expression
both in time and space. CeN7 is principally expressed in
hypodermal cells, which is in agreement with previous in
situ hybridization result [35], but also showed expression
in skin muscles, excretory cells, head and ventral neuron
cells (Figure 6A &6B; Additional file 2). The CeN16-1
locus was also active in excretory cells, and showed strong
expression in the pharynx (Figure 6C; Additional file 2).
Two other loci, CeN6 and CeN11, showed marked expres-
sion in intestinal muscles near the tail (Figure 6D &G6F;
Additional file 2), however, their temporal expression pat-
tern differed, CeN11 showing visible expression from lar-
val stage 3, while CeN6 showed no expression until the
mature adult stage. The fifth SL2 RNA locus, CeN19, is
expressed in intestinal muscles near the vulva (Figure 6E;
Additional file 2). The temporal expression pattern is gen-
erally identical with previously northern and microarray
analysis [6,34,35,37]. CeN7, CeN16-1 and CeN19
showed strong expression from an early stage of embryo
development (Additional file 2) through the mature adult
stage, whereas CeNG6 and CeN11 both showed stage spe-
cific expression.

An interesting question is whether the transcriptional
activity of the various SL2 RNA loci correlates with their
target loci (i.e., the mRNAs to which the SL2 exons are
spliced). To this end we downloaded spliced leader [38]
and expressional data [19,39]. However, mRNA spliced to
a specific SL2 RNA do not show any well correlated spatial
expression patterns (Additional file 3), and even though it
is possible to find SL2 RNA loci whose expression resem-
bles one or a few of SL2 RNA [34] and mRNA temporal
expression data [20,40,41] did not show any significant
correlation between specific SL2 RNAs and their target
mRNAs (Additional file 3).

We also observed that mutations in the PSEA and PSEB
sub-motifs greatly changed the expression patterns of the
CeN7 locus constructs (i.e. CeN7_A_,,, CeN7_B_ . and
CeN7_(A+B),,) compared with that of non-mutated
constructs (i.e. CeN7_1k and CeN7_300). The CeN7_1k
and CeN7_300 constructs were clearly expressed in hypo-
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dermal cells, skin muscles, excretory cells, head and ven-
tral neurons (Figure 6A &6B; Additional file 2), however,
the expression driven by CeN7 mutations was restricted to
amphid and tail neuron cells (Figure 6G &6H). This sug-
gests that the sequence characteristics of PSEA and PSEB
are not only important for the general expression level of
a locus, but may also influence where and when a locus is
expressed.

Discussion

Non-protein-coding RNAs are gaining in importance as
functional elements in eukaryote cellular and organismal
development [42-46]. C. elegans is one of the most impor-
tant biological model systems for genetic and develop-
mental studies, and it has recently been demonstrated that
around 50 % of the transcriptional output in this organ-
ism cannot be identified as arising from protein-coding
genes [34]. Among this vast amount of transcripts there
are approximately 1400 relatively well-defined short non-
coding transcripts. A notable fraction of these have
strongly invariant upstream sequence motifs and this
study has demonstrated that three of these motifs are able
to activate in vivo transcription of otherwise inactive
reporter genes.

The PSE/UM1 sequence is found at about 10 % of the
1400 known or putative noncoding loci, and is the most
common promoter structure of C. elegans noncoding
RNAs. Most of the PSE/UM1 ncRNAs are highly expressed,
indicating this motif has relatively strong promoter activ-
ity. However, the expression levels of the PSE/UM1 loci
vary greatly, even within the same functional class. For
example, within the SL2 RNAs the expression levels of dif-
ferent loci can differ more than 10 fold [34]. Our analysis
indicated that sequence elements within -90 to -264 bp
relative to the transcription start site are also important for
expression from the UMI-type promoter. At human
snRNA loci a distal sequence element (DSE) is commonly
found around 200 bp upstream of transcription start site
[47,48], but a search in the region upstream of the PSE/
UM1 in C. elegans failed to identify any common
sequence motif (see Methods for details).

The PSE/UM1 promoter was also shown to drive expres-
sion of the protein (GFP) encoded in the reporter con-
struct, suggesting that this motif activates RNA
polymerase II expression. This agrees with previous evi-
dence that the C. elegans PSE can drive expression of a lac-
Z mRNA [35], but is the first demonstration in C. elegans
of an active protein expressed under an ncRNA promoter.
The transcriptional activity of two other upstream motifs
(UM2 and UM3) was clearly demonstrated by RT-PCR,
but no GFP expression was observed from these two pro-
moters. The UM2 motif clearly resembles the tRNA pro-
moter which is known to activate RNA polymerase III
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Figure 6

In vivo expression patterns of different SL2 loci. Expression of GFP under the UMI| promoters from the loci of (A)
CeN7:GFP (CeN7_300), (B) CeN7::GFP (CeN7_lk), (C) CeNI6-1:GFP (CeNI6-1_Ik), (D) CeN6:GFP (CeN6_1Ik), (E)

CeN19:GFP (CeN19_1k), (F) CeNI1:GFP (CeNI1_1k) are shown. (G) GFP expression of CeN7_A

of CeN7_B .«

(H) GFP expression

mut’

transcription through binding to the transcription factor
I1IC [14]. Although polymerase specificity was not inter-
rogated in this study, accumulated evidence [6] suggests
that both UM2 and UM3 activate RNA polymerase III
transcription. This is further corroborated by the finding
that both endogenous loci and reporter constructs acti-
vated by these two promoters terminate transcription at
runs of four (or more) consecutive T residues.

The observation that the PSE/UM1 promoter is able to
drive GFP expression could allow for detailed analysis of
the spatial-temporal expression of PSE/UM1 loci. Much
genome wide data on the temporal expression of coding
and noncoding genes in C. elegans have been obtained
through Serial Analysis of Gene Expression (SAGE) and
microarrays [3,6,20,34,40,41,49-51], and large scale
expression profiling aimed at the spatial expression pat-
tern of protein coding genes have been performed by sev-
eral groups [19,22,23,52-54]. However, there are almost
no data available on the spatial expression patterns of
ncRNAs. As demonstrated in this study, a GFP expression
under PSE/UM1 promoters from SL2 RNA agreed well
with reported in situ hybridization data [35], and was able
to specify the detailed expression characteristics of several

SL2 RNA loci, in some cases down to the cellular level.
Determination of the spatial and temporal expression pat-
terns of ncRNAs can be the key to their function, and this
assay could be a very convenient tool for in vivo analysis
of the expression pattern of the TATA-less UM1 loci. An
additional aspect is that there appear to be few reports on
embryo-specific promoters in C. elegans, and the finding
that some of the PSE/UM1 promoters are active at this
stage may be of practical use to other research within the
field.

As a promoter the UM2 sequence represents a particularly
interesting case. The sub-motifs of the UM2 resemble the
tRNA internal promoter elements box A and B, and
5'RACE analysis showed that the UM2 sequence was
embedded in the primary reporter transcript. Detailed re-
analysis of the C. elegans tiling microarray data [34] indi-
cated the existence of similar primary transcripts arising
from several genomic UM2 loci, and subsequent 3'RACE
verified this. The fact that a UM2-containing primary tran-
script could not be identified at all inspected loci (includ-
ing the endogenous CeN37 locus used for the reporter
construct) could owe to the primary transcripts being
inherently unstable and rapidly degraded during snoRNA
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maturation [33]. The C. elegans UM2 primary transcripts
resemble the dicstronic tRNA-snoRNA transcripts found
at a few plant and yeast loci [29,32,55,56]. Recently, sev-
eral Drosophila snoRNAs were found to derive from longer
RNA polymerase Il transcripts, some of which were
shown to contain an element similar to the B box of the
tRNA promoter [57], and closer inspection of the same
sequences in Drosophila also suggested the presence of an
A box-like element upstream of the B box-like sequence at
several loci. In the yeast genome there has also been
reported one snoRNA whose RNA polymerase III tran-
scription is driven by an A+B box configuration [13,55]. In
vitro experiments in yeast demonstrated that box A alone
can direct efficient TFIIIC-dependent transcription, while
box B is dispensable [13], however, in vivo experiments
found that both box A and B are required for the down-
stream transcripts accumulation [13]. The in vivo muta-
tional analysis reported here also suggests a requirement
for both box A and B for efficient transcription of UM2
loci in C. elegans. Given that similar snoRNA promoter
characteristics are found in animals, plants and fungi
could point to a very old promoter strategy that utilised a
tRNA-like promoter to drive expression of snoRNA genes.

Although the promoter activities of ncRNAs, in particular
those of snRNAs, have been analysed in great detail in a
variety of organisms such as human, Drosophila and yeast
for a couple of decades, little work has been done in C. ele-
gans. Our work demonstrated that all the three investi-
gated upstream motifs in C. elegans are transcriptionally
active. However, this work has only concentrated on pro-
moters with distinctive sequence characteristics, and the
great majority of intergenic ncRNA loci show no obvious
upstream motifs. What sequence elements are important
and which protein complexes are recruited to initiate the
transcription of such loci is still not known, and further
efforts are needed for better a understanding of the C. ele-
gans ncRNA transcriptional mechanism.

Conclusion

We demonstrate here the transcriptional activities of three
putative ncRNA promoters. Mutational analysis found
that the most invariant sub-motifs of the UM1 and UM?2
sequences are required for the downstream genes tran-
scription, while the two sub-motifs of UM3 show redun-
dancy with respect to transcriptional activity. We also
show that UM1 can drive expression of GFP, suggesting
that this promoter drive RNA polymerase II transcription,
and the UM1::GFP fusions have shown to be useful in
determine the temporal-spatial expression patterns of
UM1 ncRNAs. UM2 and UM3 can not drive the expres-
sion of GFP, and termination at "TTTT" tract strongly sug-
gests RNA polymerase III transcription. Several cases of
tRNA-snoRNA dicistronic transcription pattern have been
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found, and it is likely that most of the UM2 snoRNAs
apply this model of transcription.

Methods

Worm strains

Standard nematode cultivating conditions were used as
described in ref [58]. The strains used were N2 and UNC-
76.

Construction of plasmids

Individual PCR reactions were performed in 50 or 100 ul
reaction volume using wild type C. elegans (N2 strain)
genomic DNA as template. PCR products corresponding
to the desired fragments were digested with enzyme Hin-
dIll and BamHI, and then cloned into the promoter-less
vector pPD95_77 (kindly provided by Andrew Fire)
upstream of the GFP reporter gene. The constructs were
verified by sequencing. Mutations were performed using
standard PCR procedures. The primers used in this work
are listed in Additional file 4.

Transgenic C. elegans lines

Reporter constructs were injected at 50 ng/ul together
with 50 ng/ul transformation marker pRF4 [rol-
6(sul006)] or unc-76. Stable lines of transgenic worms
were established as described previously [59]. For each
construct, 2~5 transgenic lines were analysed.

RT-PCRIqRT-PCR

RNA was extracted from transgenic worms according to
Trizol (Invitrogen) protocol. RNA digested with DNase I
(Fermentas) was used as template for RT-PCR (Qiagen
one step RT-PCR kit). For qRT-PCR, reverse transcription
was performed using primers 95_77_2_R and U2_R, and
the cDNA was used as template for the qPCR according to
qPCR mix protocol (Qiagen QuantiTect SYBR Green PCR
Kit). When the expression levels of transcripts of different
length were to be compared, a nested approach using
internal primer yielding identical length PCR products
were used for the qPCR step (following reverse transcrip-
tion). The reactions were carried out on an MJ Research
Opticon T™M 2.

3'-RACE

3'-RACE was performed as described [1] with minor mod-
ifications. Briefly, DNase I digested total RNA was ligated
to the 3' end adaptor 3AD, and the ligated RNA was
reverse transcribed into complementary DNA (cDNA)
with a primer (3RT) complementary to the 3' adaptor
3AD. First round PCRs were performed by using primers
3RT and pPD95_77_1_F. Nested PCR was then per-
formed, using 3RT and pPD95_77_2_F as primers, and
the first round PCR products as template. The PCR prod-
ucts were analysed on a PAGE gel, and candidate bands
were recovered and sequenced.
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5'-RACE

DNase 1 digested total RNA was reverse transcribed into
c¢DNA with primers pPD95_77_2_R, pPD95_77_3_R and
pPD95_77_4_R, respectively. The cDNA was treated with
terminal DNA transferase (Fermentas) to add a 3'end
poly(A) tail. First round PCR was performed with 3'CDS
primer and the corresponding primer used for reverse
transcription. Second round PCR was then carried out
using the diluted first round PCR products as template,
and 3'CDS and pPD95_77_1_R as primers. The second
round PCR products were analysed, cloned and
sequenced as above.

Computational analysis

C. elegans genome annotation and sequence data were
downloaded from Wormbase (version WS140) [39]. The
MEME motif discovery tool (version 3.0.13) [25] was
used to search for conserved motifs within and upstream
of the ncRNA loci. The search for common motifs acting
as enhancer on 54 UM1/PSE ncRNAs was carried out on
100~300 bp upstream sequences of these loci.
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