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Abstract
We developed and compared two approaches for automated validation of phosphopeptides tandem
mass spectra identified using database searching algorithms. Phosphopeptide identifications were
obtained through SEQUEST searches of a protein database appended with its decoy (reversed
sequences). Statistical evaluation and iterative searches were employed to create a high quality
dataset of phosphopeptides. Automation of post-search validation was approached by two different
strategies. By using statistical multiple testing, we calculate a p-value for each tentative peptide
phosphorylation. In a second method, we use a support vector machine (a machine learning
algorithm) binary classifier to predict whether a tentative peptide phosphorylation is true or not. We
show good agreement (85%) between post-search validation of phosphopeptide/spectrum matches
by multiple testing and that from support vector machines. Automatic methods confirm very well
with manual expert validation in a blinded test. Additionally, the algorithms were tested on the
identification of synthetic phosphopeptides. We show that phosphate neutral losses in tandem mass
spectra can be used to assess the correctness of phosphopeptide/spectrum matches. An SVM classifier
with a radial basis function provided classification accuracy from 95.7% to 96.8% of the positive
dataset, depending on search algorithm used. Establishing the efficacy of an identification is a
necessary step for further post-search interrogation of the spectra for complete localization of
phosphorylation sites. Our current implementation performs validation of phosphoserine/
phosphothreonine containing peptides having 1 or 2 phosphorylation sites from data gathered on an
ion trap mass spectrometer. The SVM-based algorithm has been implemented in a software package
DeBunker. We illustrate the application of the SVM-based software DeBunker on a large
phosphorylation dataset.

Introduction
Reversible phosphorylation on proteins is one of the most important regulatory post-
translational modifications (PTMs), with close to a third of proteins in higher organisms being
phosphorylated1. Regulation through protein phosphorylation modulates processes such as the
cell cycle, cell differentiation, metabolism as well as protein localization, protein-protein
interaction, etc. Abnormal levels of protein phosphorylation have been detected in both
biological models of diseases and tissues from patients with cancer, diabetes, Alzheimer’s and
heart failure, as well as other major human diseases. Therefore, large scale identification of
protein phosphorylation may pinpoint pathways or processes activated or perturbed as a
function of disease.

Most approaches for the identification of phosphorylation sites involve digesting a protein or
protein mixture. As phosphorylation is usually present at low stoichiometry, a variety of
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enrichment strategies have been developed to improve the detection of phosphopeptides.
Antibodies are an effective tool for enrichment of phosphotyrosine (pY)-containing
peptides2,3 prior to mass spectrometry. Phosphoserine (pS)/phosphothreonine (pT) containing
peptides are usually enriched by stand alone procedures or a combination of the following
techniques: immobilized metal ion affinity chromatography (IMAC)4,5, chemical replacement
of the phosphate group with an affinity tag such as biotin6, strong cation exchange
chromatography7 and titanium oxide chromatography8.

Affinity based methods are effective for enrichment of phosphopeptides and tandem mass
spectrometers are well suited to identify both the amino acid sequence of the peptide and the
site of phosphorylation1,9–12. Collision-activated dissociation is widely used to fragment both
peptides and phosphopeptides to generate the information necessary to identify the amino acid
sequence. A major obstacle in identifying phosphopeptides from CAD-MS2 spectra is the
facile loss of phosphate groups from phosphoserine and phosphothreonine13. A large
percentage of phosphopeptides undergo a significant neutral loss of phosphoric acid, a process
known as beta-elimination, where pS and pT convert to beta-dehydroalanine and
dehydroamino-2-butyrate, respectively. Consequently, fragmentation of the peptide backbone
yields little or no sequence ions. To improve the fragmentation information of peptides
undergoing neutral loss, this feature in a spectrum can be used to trigger an MS3 event to
fragment the neutral loss ion. More efficient fragmentation of the peptide backbone is observed
allowing higher quality identification of the phosphopeptide7. New dissociation methods such
as electron capture dissociation (ECD)14,15 and ETD16 are capable of generating
phosphopeptide spectra without neutral losses and thus potentially more informative
fragmentation patterns. A recent study suggests that the higher sensitivity and faster duty cycle
of CAD-MS2 could be used for increased phosphopeptide identification by ETD in a non-
linear Paul trap17. Alternatively, CAD-MS2 and ETD-MS2 could be used independently to
complement each other and potentially reduce the false positive rates provided post-acquisition
algorithms (PhosTShunter) are applied18. In this work, we focus on validation techniques for
identification of pS/pT phosphopeptides from CAD-MS2 spectra acquired in a linear ion trap.

A statistical evaluation of proteomic data is often used to assess the data. While in principle
the large scale analysis of phosphopeptides follows the experimental design of a proteomics
assay, there have been few attempts if any to transfer the statistical evaluation of database
searches to phosphorylated peptides. Gygi and colleagues reported a large set of 2002
phosphorylation sites7. An incipient algorithm that emulates manual validation of
phosphopeptides was used to evaluate the post database search data. No statistical analysis of
the identifications, however, was presented. Three issues are unique to the identification of
differential modifications such as phosphorylation: 1) the dynamics of false positive rates as
a function of database size (e.g. number of modified amino acids allowed per peptide), 2)
establishing a tandem mass spectrum contains the suspected modification, 3) validating the
site identified in a database search.

We develop and compare two methods to validate phosphopeptide spectrum matches. In the
first method a p-value is calculated for a match using spectral features of phosphopeptides and
statistical multiple testing. The second method uses a support vector machine (SVM) binary
classifier, a statistical learning approach, to learn from extracted features of phosphopeptide
tandem mass spectra. The trained algorithm is then used to validate a match. SVM has been
used to validate SEQUEST search output19, to determine charge states for low resolution
tandem mass spectra20, and to classify mass spectrometry data of diseased and normal
samples21. Neutral loss of phosphoric acid is a common feature of phosphopeptide tandem
mass spectra and is often used to substantiate the presence of phosphoserine or
phosphothreonine in a peptide sequence. This feature is used predominately to evaluate
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phosphopeptide identifications in the generation of p-values and for classification by SVM.
We show that features associated with phosphate neutral losses have good classifying power.

As a working example, we used highly enriched fractions of phosphopeptides from a rat brain
nuclear extract. We show that these automatic methods compare well with manual expert
validation in a blinded test. The validity of the methods was further confirmed using synthetic
peptides containing phosphoserines. We further tested the sensitivity of the SVM-based
algorithm for validation of phosphopeptide-spectrum matches on phosphopeptides from a
HeLa cell nuclear extract.

Experimental Section
Preparation of nuclear extracts from rat brain tissue and HeLa cells

Nuclei were pelleted from homogenized brain tissue centrifuged at 1,500 rpm for 15 min.
Nuclear proteins were extracted with a nuclear/cytosolic fractionation kit (BioVision, Inc.).
Protein concentration was determined using a modified Bradford assay (Biorad). One
milligram of nuclear extract from rat brain was further processed by methanol/chloroform
extraction. Protein pellet was dissolved by sonication in 50% MeOH in 100mM TRIS pH 7.6
and digested with trypsin (1:50) at 37C overnight. Phosphopeptides were enriched in three
fractions by a strategy that will be described elsewhere.

Extraction of phosphopeptides from HeLa cells nuclear extract followed the same preparation
steps.

MudPIT analysis
Samples were pressure-loaded onto a 250-μm i.d. fused silica capillary column containing 3
cm of 5-μm Aqua C18 material (Phenomenex, Ventura, CA) followed by 3 cm of 5-μm
Partisphere strong cation exchanger (Whatman, Clifton, NJ) and capped with a 2 μm filtered
union. The biphasic column was washed with buffer A. The biphasic column was then
connected to an analytical column of a 100-μm i.d. capillary with a 5-μm pulled tip and packed
with 12~13 cm of 3-μm Aqua C18 material (Phenomenex, Ventura, CA).

The column was placed inline with an Agilent 1100 quaternary HPLC and analyzed using a
12-step separation. The buffer solutions are 5% acetonitrile/0.1% formic acid (buffer A), 80%
acetonitrile/0.1% formic acid (buffer B), and 500 mM ammonium acetate/5% acetonitrile/0.1%
formic acid (buffer C). Step 1 consisted of 15 min of 100% A followed by a gradient of 80 min
from 0 to 55 % B, reversal to 100% A in 2 min and 3 min of re-equilibration with 100%A.
Steps 2–11 have the following profile: 3 min of 100% buffer A, 2 min of X% buffer C, a 10
min gradient from 0–15% buffer B, and a 97 min gradient from 15–45% buffer B. The 2 min
buffer C percentages (X) are 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 % respectively for the 12-step
analysis. The final step, the gradient contained: 3 min of 100% buffer A, 20 min of 100% buffer
C, a 10 min gradient from 0–15% buffer B, and a 107 min gradient from 15–70% buffer B.

Peptides were electrosprayed directly into an LTQ mass spectrometer (ThermoFinnigan, Palo
Alto, CA) and analyzed with a data dependent neutral loss routine MS3. A cycle of full scan
MS (400–1,800 m/z) followed by MS/MS on the seven most abundant ions. For every m/z
difference of 32.5, 49 and 98 in the three most abundant ions in an MS/MS spectrum, an MS3
spectrum was acquired. Normalized collision energy of 35% and an isolation width of 3 m/z
units were used for acquisition of both MS2 and MS3 spectra. Each MS2 spectrum was
averaged by combining 3 microscans during acquisition. A total of 100 counts were required
as minimum signal threshold for MS3.
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Phosphopeptides from HeLa cells nuclear extract were analyzed as above except the use of 1
microscan during acquisition of fragmentation spectra.

Analysis of MS2 and MS3 data
Raw files were extracted with in-house software22 to produce distinct sets of MS2 and MS3
files. MS2 spectra were filtered using a quality assessment algorithm23. Filtered MS2 spectra
were searched using SEQUEST24 with differential modification of + 80 Da on STY
(phosphorylation), while MS3 spectra were searched with differential modification of −18 Da
on ST (β elimination of phosphate) and M-48 resulting from the neutral loss of HSOCH3 (64
Da) from oxidized methionine. We searched the EBI-IPI rat protein database (version 3.05
date April 2005) and its reversed sequences. Results from the SEQUEST analysis were
statistically evaluated with DTASelect version 2.0 that incorporates false positive identification
rates using decoy matches. MS2 data were analyzed with the following options for
DTASelect2.025: -o (removes proteins that are subsets of others), --fp 0.03, selects only
peptides with a false positive rate of 3 %, -p 1, considers proteins identified by a single peptides,
-m 0, display (for visualization) only the modified peptides, -Smn 10, minimum peptide length
of 10 aa, -Smx 25, maximum peptide length of 25 aa. In a separate analysis, MS3 spectra were
filtered as above except, --fp 0.05, –Smn 7 (minimum peptide length) and –Smx 30 (maximum
peptide length).

Data from HeLa cells nuclear extract were searched by SEQUEST with differential
modification of +80Da on STY with no protease specificity against EBI-IPI human protein
database (version 3.04, March 2005). DTASelect2 filtering criteria allowed for 5% false
positive rate irrespective of the modification status of peptides.

Synthetic peptides Analysis
Two synthetic peptides, pSFVLNPTNIGMSKSSQGHVTK (AnaSpec, California), and
SFVLNPTNIGMpSKSSQGHVTK (AnaSpec, California) were analyzed by direct infusion to
a LTQ mass spectrometer with a 2.5kV spray potential. Samples were introduced at a constant
flow rate of 1uL/min using an infusion pump (Harvard Apparatus). Normalized collision
energy of 35% and an isolation width of 3 m/z units were used for acquisition of MS2 spectra.

We also acquired tandem mass spectra for the peptide pSFVLNPTNIGMSKSSQGHVTK at
various microscan and injection time conditions under the above setting. We varied 1 or 3
microscans with 100 milliseconds or 250 milliseconds injection time to obtained tandem mass
spectra of different quality for the purpose of testing the validation algorithms.

Theory
Multiple testing and Bonferroni correction

We employed multiple testing in the derivation of p-values for peptide phosphorylation
validation. Multiple testing is a way of constructing individual confidence levels so that the
familywise confidence level can be controlled. With multiple testing, the greater the number
of tests performed, the higher the chance that a low p-value will be found for at least of the
individual tests. The Bonferroni correction is a correction method for performing several
dependent or independent statistical tests simultaneously. Explicitly, given n tests Ti for
hypotheses Hi (1 ≤ i ≤ n) under the assumption H0 that all hypotheses Hi are false, and if the
individual test critical values are ≤ α/n, then the familywise critical value is ≤ α. In equation
form, if

(1)
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for some i, 1 ≤ i ≤ n, then

(2)

In our case, the familywise null hypothesis is that the current peptide is not phosphorylated.
We then choose the following individual tests. We let A be the event of observing a precursor
neutral loss (NL)/base peak (BP) ratio of r, let B be the event of observing n number of fragment
ion neutral losses, and let C be the event of seeing q percentage of unassigned intensity
explained by fragment ion neutral losses. We then have individual tests T1, T2, and T3 for events
A, B, and C, respectively, where P(A) = P(T1 passes|H0), P(B) = P(T2 passes|H0), and P(C) =
P(T3 passes|H0). The familywise test will then be significant at α level if P(A), P(B), or P(C)
is less then α/3 by Bonferroni correction. Or say, the familywise p-value is 3 times the minimum
of P(A), P(B) and P(C).

To compute the probabilities P(A), P(B) and P(C), we constructed a large random set: a
collection of 5498 spectrum/peptide identifications that are known to be of non-phosphorylated
peptides. From the random set we can build empirical random distributions. See the Results
and Discussions section for details.

Classification by a support vector machine (SVM)
Here we give a brief introduction to SVM for pattern recognition. Vapnik26,27 or Cristianini
and Shawe-Taylor28 present an extensive treatment to support vector classification. SVM is
one of the supervised statistical learning methods for classification problems, which can also
be applied to regression and ranking problems. For a two-class classification problem, the SVM
classifier will find a hyperplane to separate the data into two classes by implementing the
following ideas.

First, the SVM classifier searches for a hyperplane that separates the two classes with a
maximum margin. For data sets that could not be separated by a simple hyperplane, SVM maps
the input vectors into a high dimensional feature space and constructs the Optimal Separating
Hyperplane (OSH) in the feature space, known as kernel mapping. Finally, for data containing
noisy or mislabelled data points, SVM introduces a slack parameter that controls the tradeoff
between margin and misclassification error. The optimized hyperplane found by SVM may
nearly, but not perfectly, separate the two classes, allowing a few data points to be misclassified.

Mathematically, the decision function by SVM can be expressed as:

(3)

where x⃗ represents the input vector and y its associated output values. Coefficients αi can be
computed by quadratic programming, while the sign function provides the decision rule.

Our classification study by SVM was implemented using the LIBSVM package29. Details of
the study are described in the Results and Discussion section.

Results and Discussion
In this paper we develop an approach for identification and validation of phosphopeptides with
high confidence. We propose a multi-tier strategy that assesses the statistical nature of each
process along of the identification pipeline. False positive rates are estimated by employing a
decoy database containing reversed protein sequences30. Matches to a tandem mass spectrum
are challenged by comparing those derived from two different search conditions. Modification
search space is artificially increased by allowing more missed proteolytic cleavages and more
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modifications per peptide sequence (e.g. 3 versus 6)31. By comparing the matches between
one search state (e.g. 3) versus another search condition (e.g. 6), only the highest quality and
most confidant matches are found in both search conditions. To develop a phosphopeptide data
set for the development of methods of spectral evaluation, we used the above methods to create
a stringently filtered dataset. This dataset was used to identify spectral features of
phosphopeptides for use in validating phosphopeptide/spectrum matches.

Acquisition of phosphopeptide spectra by MudPIT
Nuclear extracts were prepared from lysates of brain tissue. For further processing, samples
were extracted with methanol/chloroform and then digested with trypsin in 50% organic
solvent without any reduction/alkylation. To simplify the peptide mixture, we enriched for
phosphopeptides through a simple fractionation procedure that will be described elsewhere.
Three fractions with high content of phosphopeptides were analyzed by our standard MuDPIT
platform32 as described under experimental section. We acquired MS2 and on-the-fly neutral
loss triggered MS3 spectra for thorough characterization of phosphopeptides, an instrument
routine first described by Beausoleil et al7.

Phosphopeptide Data sets
This section describes generation of datasets for both classification by SVM and statistical
multiple testing.

For each of the three mass spectrometry data sets generated from the rat brain sample, two
separated tryptic SEQUEST searches (against IPI rat protein database v3.05 complemented
with its decoy) were carried out, each allowing differential phosphorylation modification (mass
shift: +80) on S, T, and Y, but one allowing up to 3 modifications per peptide and 1 missed
cleavage site per peptide (3-mod), the other allowing up to 6 modifications per peptide and 4
missed cleavage sites per peptide (6-mod). Tandem mass spectra of identified phosphopeptides
in both “3-mod” and “6-mod” intersection set were collected with a 3% false positive rate as
measured using a decoy database. Phosphopeptides were limited to lengths between 10 and 25
amino acids. A false positive rate was calculated without separating modified from unmodified
peptides, therefore the same criteria were applied independent of spectral appearance. All
spectra of phosphopeptides were passed to the next step.

A second SEQUEST search was performed using this smaller set of tandem mass spectra
against the original IPI rat protein database under no-enzyme search conditions.
Phosphopeptides containing phosphotyrosine residues were discarded. Phosphopeptides
identified from this second search that passed the DTASelect filtering criteria constituted the
positive sets. We partitioned positive sets into a “positive training set” (376 spectrum/peptide
matches) and a “positive testing set” (308 spectrum/peptide matches). Non-phosphorylated
peptides (from “3-mod” SEQUEST search results) formed the negative sets that were further
partitioned into a “negative training set” (376 spectrum/peptide matches) and a “negative
testing set” (1011 spectrum/peptide matches).

Phosphopeptide identifications present in only one search condition (e.g., “3-mod”) but not in
the other (e.g., “6.-mod”) were collected in an “exclusion set” (684 spectrum/peptide matches).
Thus, the phosphopeptide identifications in the exclusion set are not as reliable as the
phosphopeptide identifications in the positive set. The exclusion set serves as a useful testing
set as shown below.

One set of 5498 non-phosphorylated peptide identifications are also collected from the “3-
mod” search results. This set serves as the non-phosphorylation random set (as outlined in the
Theory section) for the purpose of generating a random distribution for several critical features:
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the precursor neutral loss/base peak ratio, the fragment ion neutral loss count and the fraction
of fragment ion neutral loss intensities of total unassigned peaks.

A total of 281 tandem mass spectra were collected from the direct injection of the synthetic
peptides into the LTQ mass spectrometer. The spectra were searched using SEQUEST against
a yeast fasta database with the sequence of the synthetic peptide appended. Peptide
identifications were then filtered by using the DTASelect program to produce the set of 143
MS/MS spectra corresponding to two different synthetic peptides.

Characterizing training data sets
For each spectrum/peptide match, we extracted an 8-dimensional feature vector x⃗ = (f1, f2, …,
f8) in R8 where fi is the i-th feature below:

1. Precursor “neutral loss (NL)”/“base peak (BP)” ratio;

2. Average b-ion intensity;

3. Average y-ion intensity;

4. Average intensity of the 2L unassigned peaks, where L is the length of the peptide;

5. Number of fragment ion neutral losses;

6. Average intensity of fragment ion neutral losses;

7. Percentage of unassigned peak intensity explained by fragment ion neutral losses;

8. Percentage of unassigned peak counts explained by fragment ion neutral losses.

The mean and standard deviation of each feature were calculated for the positive training set
and negative training set (see [Table 1] for more details). The distributions for the positive set
and negative set were further analyzed and some features that differ significantly between the
positive set and negative set are selected for discussion below.

One prominent feature of tandem mass spectra of phosphopeptides is the dominant intensity
of precursor neutral loss peak (a well known feature). Most often the precursor neutral loss
peak is also the base peak. We studied the distribution of NL/BP ratios between the positive
and negative set. [Figure 1A] shows that for the positive set, the NL/BP ratios are generally
higher, of which 51% (191 out of 376) spectra have NL/BP ratio value 1 (meaning the precursor
neutral loss peak is also the base peak).

The second feature that differentiates well the positive from the negative set is the number of
fragment ion neutral losses (also a well known feature of phosphopeptides). For the positive
set, the mean number of fragment ion neutral losses is 6.173, with a standard deviation of 3.159.
For the negative set, the mean is 1.386 with a standard deviation of 1.758. The distributions of
this second feature for the positive set and negative set are shown in [Figure 1B]. Neutral losses
from fragment ions represent a critical feature of phosphopeptide/spectrum matches.
Unambiguous localization of a phosphorylation site is critical for any phosphorylation mapping
experiment. In principle, phosphosite localization could be obtained to some confidence level
by sequencing b and y ions for singly phosphorylated peptides. However, b/y ions pairs have
limited use in localizing phosphosites from multiply phosphorylated peptides displaying
clusters of neutral losses.

The third feature that distinguishes the positive from the negative set is the percentage of
unassigned peak intensities that could be explained by neutral losses from fragment ions. We
annotated each tandem mass spectrum for b-ions and y-ions, as well as the precursor neutral
loss ion. The top 2L most intense un-annotated peaks from experimental spectrum are then
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classified as unassigned peaks. For each spectrum, we determined how many of these 2L
unassigned peaks can be explained by fragment ion neutral losses and computed the fragment
ion neutral loss intensities over the total intensity for the 2L peaks. The distributions for the
positive and the negative set are shown in [Figure 1C].

Average y-ions intensity, a fourth feature, is quite different between the positive and the
negative set as shown in [Figure 1D]. This difference could be a result of the dominant intensity
of the precursor ion neutral loss peak. We also found that the distribution of average b-ion
intensity is different between the positive set and negative set, although the difference is not
as prominent (See [Supplement Figure 1B]).

The histograms of all these eight extracted features for the positive training set and negative
training set are detailed in [Supplement Figure 1].

Classifications by SVM
We used a binary classifier support vector machine (SVM) to assess the correctness of
phosphopeptide identification. Each spectrum/phosphopeptide pair can be classified as one of
the two classes: correct phosphopeptide identification or incorrect phosphopeptide
identification.

We evaluated the classification power of SVM using the eight features described above. We
used the LIBSVM package29 and trained the program using 376 positive (phosphorylated)
spectrum/peptide identifications and 376 negative (non-phosphorylated) spectrum/peptide
identifications. The following kernel functions were tried: linear kernel function, polynomial
kernel function with d = 2, and radial basis function (RBF). The LIBSVM-based program
outputs predictive posterior probability as a predictive value. A predictive value larger than
0.5 means the phosphorylation is positive. A predictive value smaller than 0.5 means the
phosphorylation is negative. A predictive value close to 1 means a strong phosphorylation
prediction, while a predictive value larger than 0.5 and close to 0.5 means a weak
phosphorylation.

The prediction accuracies on the testing sets are shown as ROC (Receiver Operating
Characteristic) curves in [Figure 2] (also see [Supplementary Table 1]). For SVM with the
RBF kernel, 95.78% of identifications from the positive testing set are classified as correct
phosphopeptide identifications, 97.82% of identifications from the negative testing set are
classified as correct unphosphorylated peptides, while 27.78% of identifications from the
exclusion set are classified as correct phosphopeptide identifications. The percentage of correct
phosphopeptide identifications (as determined by the SVM classifier) in the exclusion set is
lower than that of the positive set but higher than that of the negative set.

These findings are consistent with the fact that phosphopeptide identifications in the exclusion
set are not as reliable as those in the positive set, as previously discussed. However, there still
may be some correct phosphopeptide identifications in the exclusion set and a correspondingly
higher percentage of phosphopeptide identifications are present as compared to the negative
set. Twenty tandem mass spectra from the positive set and 20 of each of the three categories
(strong positive phosphorylation, weak positive phosphorylation, and negative
phoshporylation) of the exclusion data set are provided as supplementary materials.

Classifying the testing set using different kernel functions gives different correct
phosphopeptide identification percentages ([Supplementary Table 1]. In our experiments,
SVM classification with the RBF kernel provided the most stringent correct phosphopeptide
identifications.
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The error rates of SVM classification were estimated by leave-one-out cross validation. The
estimated cross-validation error rates for linear, polynomial (d = 2) and RBF kernel functions
are 6.52%, 6.25%, and 5.32%, respectively.

One attractive property of SVM is that SVM has the capability to use selected training data
points (support vectors) for classification purpose. It is believed that all the information in the
training data can be represented by these selected support vectors. In our study, about 40%
~45% of the training vectors ended up as support vectors. For example, for the SVM with
second degree polynomial kernel function, 155 (41%) of training vectors were selected as
support vectors.

To see which features provide the most discriminatory power, the Fisher criterion score (FCS)
for each feature was also computed. For a pair of distributions A and B for a specific feature,
with means μA and μB and standard deviations σA and σB, the FCS is defined as

(5)

The higher the FCS score for a feature, the greater the difference between the positive set and
the negative set will be for that feature. A higher FCS score also means that the corresponding
feature can provide more discriminatory power for SVM. For example, according to [Table
1], the feature that differentiates the positive training set the most from the negative training
set is the number of fragment neutral loss ions, with an FCS score of 4.661. The second most
predictive feature is the precursor neutral loss to base peak ratio, with a FCS score of 1.095.
We tested the performance of the SVM trained with the top five features ranked by FCS scores.
The classification power remained almost the same (data not shown), indicating that the top
features indeed provide the most important information for the SVM.

Empirical random distributions and p-values calculation
To compute the p-value for each single event P(A), P(B) or P(C) (as discussed in the Theory
section), a random distribution is required. We generated the random distributions by using a
large collection of non-phosphorylated spectra/peptide identifications. Consistent with the
assumption in our theory, we postulate that the current peptide was not phosphorylated. [Figure
3A, 3B, and 3C] show the empirical random distribution for the following features: the
precursor neutral loss/base peak ratio, the fragment ion neutral losses count, the fraction of
fragment ion neutral loss intensities for the total unassigned peaks, respectively.

From these empirical random distributions, we can then compute the p-value for each single
event. For example, let A be the event of observing a precursor neutral loss/base peak ratio
larger or equal to 0.6, then P(A) = area of bars in the distribution ([Figure 3A]) with NL/BP
larger or equal to 0.6 = 0.0111. After the p-values for each individual single event are calculated,
the familywise p-value will then be assessed according to a Bonferroni correction (see Theory
section).

We computed the p-values for the three sets: positive testing set, negative testing set, and
exclusion set. The distributions for these three sets are shown in [Figure 4]. For the positive
testing set, we see that most p-values are close to 0 [Figure 4A], confirming the positive set
contains a large portion of phosphorylated peptides. For the negative testing set, most p-values
are close to 1 [Figure 4B], which is what we expected. For the exclusion set [Figure 4C],
approximately 28% of spectrum/peptide identifications have p-values close to 0. As concluded
from [Figure 4C], a good portion of phosphopeptide identifications are still present in the
exclusion set.
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After calculating the p-values, a p-value cutoff can be set to screen for correct identifications.
[Table 2] shows the results on the testing sets using two p-value cutoffs: 0.05 and 0.01. At p-
value 0.05 cutoff, 82.79% (255/308) of spectrum/peptide identifications from the positive
testing set are classified as phosphorylated peptides, with 91.10% (921/1011) of spectrum/
peptide identifications from the negative testing set classified as un-phosphorylated peptides.
When the p-value cutoff is lowered to 0.01, although only 68.50% (211/308) of spectrum/
peptide identifications from the positive testing set are classified as phosphorylated peptides,
97.73% (988/1011) of spectrum/peptide identifications from the negative testing set are
classified as un-phosphorylated peptides. The phosphorylated peptide portions for the
exclusion set are 23.25% (159/684) and 9.94% (68/684) for p-value cutoff 0.05 and 0.01,
respectively, again indicating that the quality of phosphopeptide identifications for this set
contains features from both the positive set and the negative set.

Comparing multiple testing method to SVM
We compared the multiple testing method to the SVM method on the positive testing set. By
using the 0.05 p-value cutoff for the multiple testing method and the RBF kernel for the SVM
method, we found that the two methods agree with each other 85% of the time (262 out of 308
spectrum/peptide identifications, [Supplementary Figure 2]). The SVM method produces more
true positive and less false positive in general ([Table 2] and [Supplementary Table 1]). For
those spectra where the two methods do not agree with each other, the p-values and the SVM
predictive values are in the marginal area. We find the SVM method is more sensitive and more
specific in this study.

Validation of the methods with a blinded test
We also carried out a blinded test to validate the algorithms. Twenty four spectrum/peptide
identifications from the exclusion set were selected and the p-values and class labels (correct
or incorrect phosphorylation identifications) were masked. For these 24 phosphopeptide
identifications, the multiple testing method (with p-value 0.05 cutoff) and the SVM method
(with RBF kernel) agree with each other very well, except for 2 spectra/peptide identifications
where the two methods do not agree with each other. Again both sets of scores are in the
marginal area of p-values and SVM predictive values, as shown in [Supplement Figure 3].
These masked spectrum/peptide identifications were then presented to a human expert for
manual validation of peptide phosphorylation. [Supplement Figure 3] shows the manual
validation results. There are 3 spectrum/peptide identications where manual validation does
not agree with the SVM method. The same number of disagreements is also observed when
manual validation method is compared to the multiple testing method. In each case, two of the
three disagreements are with spectra/identifications of marginal scores, while the third
disagreement (see [Supplement Figure 3]) has a low p-value and a high SVM predictive value.
An MS3 spectrum was also observed for this third identification. A preponderance of evidence
suggests that manual validation was incorrect and the automated methods were correct on this
particular identification.

Validation of the methods with synthetic peptides
We further validated the two methods using the synthetic phosphopeptides
pSFVLNPTNIGMSKSSQGHVTK and SFVLNPTNIGMpSKSSQGHVTK. These two
peptides have the same amino acid sequence. Both contain one phosphoserine, but at different
positions within the peptide, as indicated by the lower case “p”. A total of 281 tandem mass
spectra were searched using SEQUEST against a yeast fasta protein sequence database with
the synthetic peptide appended. DTASelect filtering on the SEQUEST search results gave rise
to 143 redundant spectra/peptide identifications corresponding to the two synthetic
phosphopeptides.
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The correctness of these 143 redundant spectrum/peptide identifications were assessed by the
SVM classifier and multiple testing method. For the SVM classification with either one of the
three kernel functions (linear, polynomial kernel function of degree d = 2, or RBF), all
identifications were classified as positive. All p-values computed were smaller than the 0.05
cutoff. The results confirm the validity of the methods. Example spectra for the two synthetic
peptides are shown in [Figure 5].

Sensitivity and specificity of the multiple testing and SVM methods
To illustrate the sensitivity of the multiple testing and SVM methods, we performed the
following two experiments. In experiment one, we varied microscan and injection time
conditions in an infusion experiment for the synthetic peptide
pSFVLNPTNIGMSKSSQGHVTK to obtain tandem mass spectra of different quality33. The
results are shown in [Table 3]. The mean and standard deviation for SEQUEST XCorr scores
for tandem mass spectra acquired under 1 microscan and 100 milliseconds injection time are
1.9107 and 0.3946, respectively. The mean XCorr score is increased to 2.9674 when we set
acquisition conditions to 3 microscans and increase the injection time to 250 milliseconds. We
obtained intermediate mean XCorr scores of 2.3358 and 2.7479, using 1 microscan and 250
milliseconds injection time condition, and 3 microscans and 100 milliseconds injection time
condition, respectively. The SVM algorithm gives consistently high predictive posterior
probability scores. Multiple testing also gives consistently low p-values for this synthetic
peptide data set. Overall, both methods are more sensitive in term of detecting phosphopeptide
spectrum matches (also see [Supplementary Table 2]).

In experiment two, we tested the classification power of the SVM with RBF kernel on a large
dataset acquired from HeLa cell nuclear extra. After SEQUEST analysis and DTASelect
filtering, we obtained 6332 forward phosphopeptide/spectrum identifications with 313 reverse
phosphopeptide/spectrum identifications, i.e a forward false positive rate of 4.94%. Further
processing of this dataset by SVM (RBF kernel) reduced the false positive rate by 50% while
retaining more than 90% of the forward hits. Consequently, SVM (RBF kernel) showed
increased power for post-SEQUEST filtering of phosphopeptides.

Test of the SVM method on OMSSA search results
The features we used for the validation of phosphopeptide identification are not derived from
SEQUEST scores. Thus the methods we developed here should be search engine independent
and will be widely applicable to proteomics studies. To prove this, we tested the use of the
SVM method (with RBF kernel) on OMSSA34 search results. The 308 MS/MS spectra from
the positive testing set were used to search against the IPI rat protein database v3.05 using
OMSSA and allowing differential phosphorylations on S, T, and Y. OMSSA returned 219
phosphopeptide identifications. The SVM classifier trained using SEQUEST results was then
applied. Out of these 219 phosphopeptide identifications, 212 (or 96.80%) were classified by
the SVM classifier as correct phosphopeptide identifications. This shows that our method could
be widely applicable to proteomic studies of phosphorylation using data from linear ion trap
mass spectrometers.

Conclusions
We developed two methods for the automatic validation of phosphopeptide identifications
using a linear ion trap mass spectrometer and SEQUEST database searches. By using statistical
multiple testing, we can calculate the p-value for each tentative peptide phosphorylation. In a
second method, we use a binary classifier to predict whether a tentative peptide phosphorylation
is true or not. Both methods were developed for the validation of phosphoserine and/or
phosphothreonine containing peptide identifications with one or two phosphorylations per
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peptide. We used highly enriched fractions of phosphopeptides from a rat brain nuclear extract.
We show that these two methods agree well with each other with better performance by the
SVM method. We also show that these automatic methods match very well with manual expert
validation in a blinded test. Additionally, the algorithms were tested on the identification of
synthetic phosphopeptides.

We focused on the validation of phosphorylated peptides that were identified by the SEQUEST
search engine, but demonstrated the approach is applicable to other search algorithms. Since
some phosphorylated peptides might have low fragmentation efficiency over the peptide chain
backbone, the identification of such peptides will still be a challenge. The SVM and statistical
multiple testing approaches developed simply assess whether or not a search result is likely to
be phosphorylated or not. We are also examining strategies to assess the predicted sites of
modification. Note: While this paper was under review two papers addressed the statistical
evaluation of identifications of phosphopeptides.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations
NL  

neutral loss

BP  
base peak

SVM  
support vector machine

MS  
mass spectrometry

MS/MS  
tandem MS

MS2  
tandem MS

MS3, MS/MS/MS 
sequential mass spectrometry after MS2

LC  
liquid chromatography

SCX  
strong cation exchange

MudPIT  
multiple dimensional protein identification technology
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CID  
collision induced dissociation

ESI  
electrospray ionization

PTM  
post-translational modification

pS  
phosphoserine

pT  
phosphothreonine

pY  
phosphotyrosine
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Figure 1.
Distribution of extracted features for the training set. The plots show the distributions of
features for 944 positive spectrum/peptide identifications and 944 negative spectrum/peptide
identifications (randomly selected from the 1064 negative training spectrum/peptide matches).
A. Distribution of precursor neutral loss/base peak ratios; B. Distribution of the number of
fragment ion neutral losses; C. Distribution of percentage of unassigned peak intensities that
could be explained by fragment ion neutral losses; D. Distribution of average y-ions intensity.
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Figure 2.
ROC (Receiver Operating Characteristic) plots for SVMs using different kernels on the test
datasets. The true positive and false positive rates are calculated from the positive test set and
negative test set, respectively. The plots show results from the linear kernel SVM, polynomial
(d=2) kernel SVM, and RBF kernel SVM.
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Figure 3.
Empirical random distributions for extracted features. Sample size: 5498. A. Random
distribution for precursor neutral loss/base peak ratios; B. Random distribution of the number
of fragment ion neutral losses; C. Random distribution of percentage of unassigned peak
intensities that could be explained by fragment ion neutral losses.
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Figure 4.
Distribution of p-values for the testing sets. A. Distribution of p-values calculated from the
positive testing set; B. Distribution of p-values from the negative testing set; C. Distribution
of p-values from the exclusion set.
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Figure 5.
Example spectra from synthetic phosphopeptides. A. Example spectrum for synthetic peptide
pSFVLNPTNIGMSKSSQGHVTK. B. Example spectra for synthetic peptide
SFVLNPTNIGMpSKSSQGHVTK.
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Table 2
Correctness of assignments by multiple testing.

P-value cutoff Positive Set Negative Set Exclusion Set

0.05 82.79% 8.92% 23.25%
0.01 69.48% 2.27% 9.94%
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