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Abstract

Background—Because of similarities between brain and kidney microvascular disease, there may
be a relationship between measures of renal microvascular disease and brain structural changes in
middle aged or elderly individuals

Objective—To determine whether the urine albumin/creatinine ratio (UACR), a measure of renal
microvascular disease, is associated with brain atrophy and white matter hyperintensities.

Methods—As part of a larger study of the genetics of hypertension, we performed brain imaging
and assessed microalbuminuria and other vascular risk factors including diabetes, hypertension,
hyperlipidemia and hyperhomocysteinemia in 1253 individuals from hypertensive sibships (age
mean 63.8 years, range 50 to 91; 65% women; 49% African-American; 78% hypertensive). Semi-
automated quantitative measurements of brain atrophy (BA) and white matter hyperintensities
(WMH) were carried out on the brain MR scans.

Results—In logistic regression models, elevated UACR was associated with greater BA (odds ratio
(OR)=1.70 (95% CI 1.14, 2.54) and burden of WMH (OR=2.06 (95% CI 1.37, 3.10) after controlling
for demographic factors, blood glucose, hypertension severity, duration of smoking and serum
homocysteine. In contrast to elevated UACR, the associations with elevated creatinine or reduced
glomerular filtration rate and WMH were not significant in the fully adjusted models.

Conclusions—In this cohort with an overrepresentation of hypertensives, elevated UACR was
independently associated with both brain atrophy and white matter hyperintensities. Brain volume
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loss and WMH burden might represent expressions of microvascular disease that share common
mechanisms with nephrosclerosis.
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Introduction

Methods
Subjects

Brain microvascular disease is a strong candidate mechanism to account for associations
between vascular rlsk factors and brain structural changes such as white matter hyperintensities
and brain atrophy Neuropathologlcal evidence of micro-infarcts and lacunar infarcts in
dementing illness’~ -1 supports the clinical relevance of brain microvascular disease.

Hypertensive nephrosclerosis is the second most common cause of chronic kldney disease in
the United States. Typically, nephrosclerosis develops gradually over decades?3
Histologically, nephrosclerosis is characterized by vascular, glomerular, and mterstitial
involvement. Vascular involvement mcludes |nt|mal thickening and luminal narrowing of
small renal arteries and glomerular arterioles14. Glomerular and interstitial changes are largely
the consequence of ischemic injury. In hypertensives, microalbuminuria indicates endothelial
dysfunction and may be an early sign of renal microvascular disease leading to nephrosclerosis.
It can be measured non-invasively using a ratio of albumin to creatinine in the urine15-17,
Renal microvascular disease has been associated with strokel8 . However, there has been only
scant exammatlon of relationships between renal microvascular disease and brain structural
changes in persons without stroke.

In the setting of a large cross-sectional study of the genetics of microangiopathic complications
of hypertensionzo’ 1 we examined the urine albumin/creatinine ratio (UACR) for its
associations with white matter hyperintensities and brain atrophy. Based on prior studies, we
expected that diabetes, hypertension, and hyperhomocysteinemial’ 22 would show
associations with the MR measures of brain injury. We were interested in learning whether the
UACR would also show associations with brain volume and white matter hyperintensities,
independent of the established risk factors. This is important because while the brain and the
kidney are known to be affected by hypertension and other vascular risk factors, the
mechanisms of brain injury by microvascular disease — separate from frank infarction — remain
controversial. To the extent that cross sectional associations imply some commonality in
pathogenesis, the consequences of endothelial damage in the kidney imply that associated brain
structural changes might also be due to endothelial damage.

The subjects in the present study, the Genetics of Microangiopathic Brain Injury (GMBI)
Study, were a subset of the 3434 subjects who were members of sibships that were initially
enrolled in Rochester, MN and Jackson MS between June 1996 and August 2000 in the Genetic
Epidemiology Network of Arteriopathy (GENOA) of the Family Blood Pressure Program23,
a study designed to identify and characterize genetic determinants of hypertension and its
associated cardiac, renal and cerebral complications. Subjects were enrolled if two or more
members of their sibship had hypertension. The only exclusionary criterion at enrollment into
the GENOA study was the presence of a secondary cause of hypertension (such as documented
renal artery stenosis or advanced renal insufficiency) in the index sibs.
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The sampling frame of the GENOA Rochester cohort was the Mayo Clinic diagnostic index
and medical record linkage system of the Rochester Epidemiology Project. It was used to
identify non-Hispanic white residents of Olmsted County, MN with a diagnosis of essential
hypertension made before age 60. The Jackson MS cohort of the Atherosclerosis Risk in
Communities study 24 \which had originally been a probability sample of persons with driver’s
licenses, was used to ascertain African-American sibships. If the eligible proband had at least
one sibling with hypertension, all available full biologic siblings of the index hypertensive
including normotensive siblings were invited to participate in interviews, physical
examinations, and phlebotomy.

Between December 2000 and May 2006, the subjects returned for a second study visit that
included assessment of cardiovascular risk factors, followed by an ancillary study visit that
included a cognitive assessment and a brain MR scan. The only exclusions to participation in
the brain MR were a history of stroke, neurologic disease or implanted metal devices. For the
current analysis, we included only subjects who participated in the MR scan and were 50 years
or older. Of the 1525 MR-eligible subjects, 64 were excluded due to technically unsuitable MR
scans, 78 were excluded because they had Mini-Mental State examination scores <24, 71 were
excluded because their risk factor assessments predated the MR scan by more than 36 months,
and 59 were excluded due to missing risk factor data, leaving 1253 subjects for the current
analysis.

Study protocols were approved by the human studies review board of the Mayo Clinic and the
University of Mississippi Medical Center, and written informed consent was obtained from all
participants.

All scans were performed on identically equipped Signa 1.5 Tesla MRI scanners (GE Medical
Systems, Waukesha, WI) under the supervision of Mayo Clinic and University of Mississippi
Medical Center neuroradiologists.

The methodology for the semi-automated MR measurements has been previously described
25 Total intracranial volume was measured from T1-weighted sagittal images with each set
consisting of contiguous 5-mm-thick slices; matrix 256 x 192; no interslice gap: repetition
time=500 milliseconds, echo time=minimum full (14) milliseconds, repetitions=2, time=2.5
minutes, field of view=24 cm.

Brain volume, ventricular volume (VV) and white matter hyperintensity (WMH) volumes were
determined from axial fluid-attenuated inversion recovery images with each set consisting of
contiguous 3-mm interleaved slices with no interslice gap obtained with the following
sequence: echo time=144.8 ms, inversion time=2600 ms, repetition time=16,000 ms,
bandwidth=+32 kHz, echo train length=22, one signal average, time=8 minutes, field of
view=22 cm, matrix=256 x 160. The difference between total intracranial volume and brain
volume provided a measure of brain atrophy (BA).

Interactive image processing steps were performed by a research associate who had no
knowledge of the subjects’ personal or medical histories. A fully automated algorithm was
used to segment each slice of the edited multislice fluid-attenuated inversion recovery sequence
based on image intensity into voxels assigned to 1 of 3 categories: brain, cerebrospinal fluid,
or WMH. The mean absolute error of this method is 1.4% for brain volume and 6.6% for WMH
volume, and the mean test—retest coefficient of variation is 0.3% for brain volume and 1.4%
for WMH volume.
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Subjects with cortical infarcts (n=31) were excluded from these analyses because of the
distortion that would be introduced in the automated segmentation algorithm. Lacunar infarcts
were included in the WMH image intensity category and therefore in the WMH estimates. Both
subcortical and periventricular WMH are included in the WMH estimate.

Measurement of urine albumin and other risk factors

Analyses

For all included subjects, the assessment of urine albumin and creatinine, as well as all other
risk factors, was performed once within 36 months of the MR scan. Interviews regarding risk
factors were conducted by trained and certified interviewers.

Blood was drawn after an overnight fast, and urine was collected on the morning of the study
visit. Serum creatinine, glucose, homocysteine, total cholesterol, HDL cholesterol, and
triglyceride concentrations and urine albumin, total protein and creatinine concentrations were
measured by standard methods on a Hitachi 911 Chemistry analyzer (Roche Diagnostics,
Indianapolis, IN)26. Urinary albumin was measured by immunoturbidimetry utilizing antibody
to human albumin in an automated immunoprecipitin analysis system (Diasorin Inc, Stillwater,
MN) and urinary creatinine was measured by a colorometric dye-binding technique in the
Roche Hitachi 911 system as previously described?’. Plasma lipids and lipoproteins were
determined by enzymatic methods. LDL cholesterol was estimated by the Friedewald equation
as previously described for this study28.

A subject was considered to have an elevated UACR if the value was > 20 for men and > 30
for women. These values for a spot urine sample corresgond to microalbuminuria as measured
by a 24 hour urine collection of > 30 mg albumin/24 h 9,

Estimated glomerular filtration rate was calculated using National Kidney Foundation practice
guidelines MDRD equation30. The equation used was: eGFR = 186.3 x (serum

creatinine 1-154) x (age~0-203) x (0.742 for women) x (1.21 for blacks). Reduced estimated
glomerular filtration rate was defined as having a value of <45 ml/min per 1.73 m2,

To calibrate our measurements of creatinine with the Cleveland Clinic assay used in the MDRD
equation, 0.22 mg/dL was added to the raw serum creatinine values28. Elevated serum
creatinine was defined using the cutpoints of 1.51 mg/dL for men and 1.26 mg/dL for
women31.

In order to have a measure of hypertension that accounted for medication use, we defined
severity of hypertension based on the number of anti-hypertensive medications and the level
of blood pressure: number of hypertension medication categories a patient was taking +
(DBP-70)/30 + (SBP-120)/60.

SAS (Carey, NC) were used for all analyses. Descriptive statistics were generated for
demographic, risk factor and imaging data. We defined increased BA, VV and WMH as the
upper quartile of the residual values from models of each imaging feature adjusting for age at
MR scan, race, sex, and TIV (for BA and VVV) or brain volume (for WMH). The other 3 quartiles
served as the reference group. We used multivariable logistic regression models to estimate
the odds ratios (OR) and 95% confidence intervals (95% CI) of increased BA, VV and WMH
for persons with elevated UACR, elevated serum creatinine and reduced glomerular filtration
rate. Analyses were performed separately for each of the 3 imaging features.
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The 1253 individuals (643 whites and 610 African-Americans; 812 women and 441 men) had
a mean age of 63.8 years (standard deviation = 7.5; range 50 to 91 years). There were 994
(79%) individuals aged 50-70 years and 259 (21%) over 70 years. By virtue of the design of
the parent study, 78% were hypertensive. A large fraction (90%) of the 265 (21% of entire
study) diabetics in the study were also hypertensive. The lag between measurement of the
vascular risk factors and the MR scan was <12 months for 727 (58%) subjects, between 12—
24 months for 444 (35.5%) subjects and between 24 and 36 months for 82 (6.5%) subjects.

The median and intra-quartile values of imaging features, stratified by race and sex, are given
in Table 1. Because WMH and V'V had skewed distributions, the values were log-transformed
for analyses. Initial models (Table 2A) found that age, gender, race, and total intracranial
volume (for BA and VV) or brain volume (for WMH) were each significant predictors (p <.
01) of one or more imaging feature. Consequently, this set of covariates was forced into all
models.

Levels of UACR, other kidney functions and other vascular risk factors across race and gender
groups are shown in Table 3. Only 5.8% of subjects had an eGFR <45 ml/min per 1.73 m2. In
univariate analyses, measures of hypertension, hyperglycemia, hyperhomocysteinemia and
smoking history showed significant associations in the expected direction (p<.01) with one or
more imaging feature (Table 2B). Higher levels of total cholesterol and calculated low density
lipoproteins showed associations with lower levels of WMH.

In models controlling for age at the time of the MR scan, gender, race, and either total
intracranial volume (in the BA and VV models) or brain volume (in the WMH models),
elevated UACR was associated with increased OR’s for having increased BA, VV and WMH
(Table 4). A second set of models was constructed in which measures of hyperglycemia and
hypertension severity were included, and a third set in which smoking history (log(pack years)
and serum homocysteine were also added. In the third set of models, OR’s for both BA
(OR=1.70, 95% CI 1.14, 2.54) and WMH (2.06, 95% CI 1.37, 3.10) indicated that elevated
UACR was significantly and independently associated with increased BA and WMH burden.
Associations of elevated UACR with VV were not significant models with other risk factors.
Table E-1 shows the parameter estimates for all predictor variables in the fully adjusted models
for BA and WMH. Addition of total cholesterol or calculated low-density lipoproteins resulted
in no change in the models. Addition of an indicator variable for antihypertensive drugs and
anti-diabetic had little to no impact on the models for either BA (OR=1.61, 95% CI 1.08, 2.42)
or WMH (2.08, 95% CI 1.37, 3.16).

We also constructed similar logistic regression models using elevated creatinine and reduced
glomerular filtration rate (Table 4). The cut-points for elevated creatinine and reduced
glomerular filtration rate yielded similar numbers of subjects with impairment to that of
elevated UACR (see Table 3). Reduced estimated glomerular filtration rate was also associated
increased BA in all models, but not associated with WMH changes in any model. In models
without other risk factors, elevated creatinine was associated with increased risks for brain
imaging changes. However, in contrast to elevated UACR, there were no significant
associations with elevated creatinine and imaging features in the fully adjusted models
including hyperglycemia, hypertension severity, smoking history and serum homocysteine
levels.

We also performed a number of additional analyses to assess the robustness of the UACR
associations. When UACR was analyzed as a continuous variable using (log(UACR),
significant odds ratios were also seen in the fully adjusted model for WMH (OR=1.19 (95%
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Cl11.06, 1.33). For each doubling in the amount of UACR, there was a 4.0% increase in WMH.
However, the association was not significant for BA (OR=1.07 (95% CI 0.95, 1.20) or VV.

Analyses using elevated UACR were repeated after stratifying the cohort based on the presence
or absence of hypertension. The point estimates of the OR’s for WMH and BA were all in the
same direction and approximately the same magnitude, but because of wider confidence
intervals in the small non-hypertensive subsample (n= 270), significant associations were seen
only in the hypertensive (n=983) subsample. For example, among hypertensives, there was a
significant association in model 3 between WMH and elevated UACR (OR=2.08 (95%CI 1.34,
3.25) which is very similar to the group as a whole (Table 4). We also stratified by the presence
or absence of diabetes. The point estimates were larger for the diabetics than the non-diabetics.
For example, among diabetics, there was a significant association in model 3 between WMH
and elevated UACR (OR=2.74 (95%CI 1.43, 5.25) which was larger than in the group as a
whole but with a wider confidence interval (Table 4).

We examined models of elevated UACR stratified by gender (Table 5). OR’s for associations
with BA and WMH were significant for women in all 3 models. A similar pattern was seen for
men although the associations were not as strong. However, even in the fully adjusted models
for men, trends for increased risk were present for BA and WMH.

Models stratified by race suggested differences between African-Americans and whites (Table
5). While elevated UACR was associated with increased WMH in both race groups, the OR’s
were nearly doubled in whites compared to African-Americans. In contrast, elevated UACR
was associated with an increased risk of BA only in African-Americans.

Discussion

In the normal state, the renal glomerular filtration apparatus effectively prevents leakage of
serum albumin into the urine. A consequence of endothelial dysfunction in the renal
microvasculature is glomerular leakage of small amounts of albumin into the urinary space.
Consistent with its role as a marker of generalized microvascular dysfunction,
microalbuminuria is an established risk factor for cardiovascular disease1®-18. Although it
often occurs in the setting of diabetes or hypertension, prior studies have indicated that the
association of microalbuminuria with cardiovascular disease endpoints is independent of
diabetes and hypertensionlﬁl 18 Microalbuminuria is a more specific measure of kidney
microvascular disease than either elevated serum creatinine or reduced glomerular filtration
rate. Serum creatinine elevations and reduced glomerular filtration may occur for reasons other
than microvascular disease.

We found that elevated UACR was associated with increased risk of WMH and BA. The
association with WMH was previously reported recentlylg, while the associations with BA
are novel, to the best of our knowledge. African-Americans showed stronger associations
between UACR and BA, while whites showed stronger associations between UACR and
WMH. The associations with WMH were stronger for UACR than for either elevated serum
creatinine or reduced estimated glomerular filtration rate, consistent with the greater specificity
of microvascular pathology to both microalbuminuria and white matter lesions. The magnitude
of the associations of elevated UACR with BA or WMH were modest, roughly a 2-fold
increased risk, but the associations persisted even when other risk factors1 =8 known to affect
brain structural integrity including homocysteine, diabetes, hypertension, lipoprotein levels
and cigarette smoking were included in models, or when the group was stratified by diabetes
or hypertension.

That the presence of WMH can be linked to microvascular disease is not a new observation.
However, the mechanisms through which microvascular disease produces changes in WMH
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as well as BA are unclear. WMH3: 32, 33 and covert lacunar infarcts3% 35, accumulate
gradually with advancing age. Loss of brain volume with advancing age occurs gradually. How
might these processes occur insidiously?

The intimal fibromuscular hyperplasia and lipohyalinosis observed in cerebral arterioles of the
eIderIyS‘10 are similar to the vascular changes in nephrosclerosis. In the kidney, it is not
infarction but rather endothelial dysfunction that occurs as a result of microvascular disease.
Endothelial damage in the kidney in the setting of hypertension and other diseases occurs
gradually and cumulatively. Thus, considering the parallels between brain and kidney, gradual
endothelial damage and leakage of serum proteins into the brain’s interstitial spaces could also
be part of the pathophysiology of brain microvascular disease36. The pathology of WMH has
been considered to be due to “incomplete infarction”37, but an equally plausible mechanism
would be chronic micro-extravasation of blood proteins into perivascular spaces in white
matter. Dysfunction in cerebral endothelium has also been hypothesized to contribute to
Alzheimer’s disease38: 39, The manner in which microvascular changes occur in the kidney
illuminates how a “vascular” disease might produce gradual anatomic changes in the brain
without stroke-like clinical events. While association studies such as ours cannot prove how
microvascular disease contributes to loss of brain structural integrity, they support the
hypothesis. The magnitude of the impact of microvascular disease on brain volume or white
matter hyperintensities may be small on a yearly basis, but its cumulative consequences over
decades could be clinically important.

We found no compelling evidence for gender specificity to the association of UACR and WMH
or BA. However, the pattern of associations with WMH and BA differed between African-
Americans and whites. These differences should be replicated by others, but in the meantime,
they suggest that the expression of brain microvascular disease might differ based on racial
background.

Microvascular disease in the retina measured in late middle age has also been shown to be
associated with cognitive impairment and brain structural changes40_42. The link between
retinal microvascular changes and brain structural changes represents additional support for
the systemic involvement of microvascular mechanisms.

The strengths of the study include the large number of African-Americans and whites. Imaging
studies utilized quantitative techniques to measure brain volume, ventricular volume and
burden of white matter hyperintensities rather than more subjective rating scales. However,
there are limitations of the study. All measurements of risk factors were performed at one point
in time. Although the measurement of UACR and other risk factors preceded the MR scanning
by up to 3 years, the study should be considered cross-sectional. The study cohort was selected
on the basis of hypertension in at least 2 family members. Thus, the results may not be
generalizable to normotensive cohorts. In addition, most hypertensive subjects were being
treated with blood pressure lowering medications. Although we screened out large infarcts,
our automated image analysis combined lacunar infarcts and WMH. We also did not
differentiate between subcortical and periventricular locations of WMH.

Supplementary Material
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