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Ultra-high-throughput sequencing is emerging as an attractive alternative to microarrays for genotyping, analysis of
methylation patterns, and identification of transcription factor binding sites. Here, we describe an application of the
Illumina sequencing (formerly Solexa sequencing) platform to study mRNA expression levels. Our goals were to
estimate technical variance associated with Illumina sequencing in this context and to compare its ability to identify
differentially expressed genes with existing array technologies. To do so, we estimated gene expression differences
between liver and kidney RNA samples using multiple sequencing replicates, and compared the sequencing data to
results obtained from Affymetrix arrays using the same RNA samples. We find that the Illumina sequencing data are
highly replicable, with relatively little technical variation, and thus, for many purposes, it may suffice to sequence
each mRNA sample only once (i.e., using one lane). The information in a single lane of Illumina sequencing data
appears comparable to that in a single array in enabling identification of differentially expressed genes, while
allowing for additional analyses such as detection of low-expressed genes, alternative splice variants, and novel
transcripts. Based on our observations, we propose an empirical protocol and a statistical framework for the analysis
of gene expression using ultra-high-throughput sequencing technology.

[Supplemental material is available online at www.genome.org. Raw microarray CEL files have been deposited in the
GEO database with accession number GSE11045. The raw Illumina sequencing data are available in the NCBI short
read archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) with accession number SRA000299. A summary of the
mapped reads and of the processed microarray data is available at http://giladlab.uchicago.edu/data.html.]

Since the mid-1990s, DNA microarrays have been the technology
of choice for large-scale studies of gene expression levels. The
ability of these arrays to simultaneously interrogate thousands of
transcripts has led to important advances in a wide range of bio-
logical problems, including the identification of gene expression
differences among diseased and healthy tissues, and new insights
into developmental processes, pharmacogenomic responses, and
the evolution of gene regulation (Scherf et al. 2000; White 2001;
Rifkin et al. 2003; Passador-Gurgel et al. 2007). Nonetheless, ar-
ray technology has several limitations. For example, background
levels of hybridization (i.e., hybridization to a probe that occurs
irrespective of the corresponding transcript’s expression level)
limit the accuracy of expression measurements, particularly for
transcripts present in low abundance. Furthermore, probes differ
considerably in their hybridization properties (Gautier et al.
2004). Thus, although comparing hybridization results across ar-
rays can identify gene expression differences among samples (Al-
lison et al. 2006), hybridization results from a single sample may
not provide a reliable measure of the relative expression of dif-
ferent transcripts. Finally, arrays are limited to interrogating tran-
scripts with relevant probes on the array.

Sequencing-based approaches to measuring gene expression
levels have the potential to overcome these limitations. New,
ultra-high-throughput sequencing techniques enable thousands
of megabases of DNA to be sequenced in a matter of days. Several
technologies, including those developed by 454 Life Sciences
(Roche) (Margulies et al. 2005) and Illumina (formerly Solexa
sequencing) (Bennett et al. 2005), are currently available and
have been used to investigate genetic variation (Korbel et al.
2007), transcription factor binding sites (Mikkelsen et al. 2007), and
DNA methylation (Cokus et al. 2008). Applications to the measure-
ment of mRNA expression levels have proceeded more slowly,
partly because of difficulties in developing appropriate experimen-
tal protocols, but also because expression studies aim to identify
(perhaps subtle) quantitative differences between samples, while
other applications have, thus far, focused on detecting the absence
or presence of an event, such as a transcription factor binding.

In this study, we describe the results of a pilot project to
assess the potential of Illumina sequencing for detecting and
measuring mRNA expression levels and comparing expression
levels across samples. Specifically, we applied Illumina sequenc-
ing to a liver RNA sample and a kidney RNA sample, sequencing
each sample seven times, and compared the results with Af-
fymetrix array data on the same samples. Although several papers
have described the use of 454 sequencing to examine mRNA
expression levels (Weber et al. 2007; Sugarbaker et al. 2008;
Torres et al. 2008), we chose the Illumina sequencing platform
because currently, for a fixed cost, its coverage and depth are far
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greater than other sequencing technologies, making it particu-
larly attractive for expression studies. Our study also differs from
previous reports in its assessment of variability across technical rep-
licates for a single sample, and direct comparison of the sequence-
based results with those from a state-of-the-art array platform.

We find that the sequencing data are highly reproducible,
with few systematic differences among technical replicates. Sta-
tistically, we find that the variation across technical replicates
can be captured using a Poisson model, with only a small pro-
portion (∼0.5%) of genes showing clear deviations from this
model. This Poisson model can be used to identify differentially
expressed genes, and using this approach, the sequence data
identified 30% more differentially expressed genes than were ob-
tained from a standard analysis of the array data at the same false
discovery rate. We also illustrate the potential for sequence-based
approaches to identify alternative-spliced forms.

Results

Experimental design

Illumina’s sequencing technology uses massively parallel Sanger
sequencing to simultaneously sequence millions of short frag-
ments of DNA. Each time a machine is run, DNA samples can be
independently sequenced in one of eight lanes, although one
lane is normally used to sequence a control sample. Typically,
each lane generates many millions of short reads (e.g., 32 bp in
the data considered here). To assess the ability of Illumina se-
quencing to measure gene expression differences between
samples, we used the following study design (Fig. 1A): We ex-
tracted total RNA from liver and kidney samples of a single hu-
man male, purified the poly(A) mRNA, and sheared it prior to
cDNA synthesis. The cDNA was then processed into a library of
template molecules suitable for sequencing on the Illumina Ge-
nome Analyzer (see Methods). To assess technical variance

within and between runs, we sequenced each sample seven
times, split across two runs of the machine (Fig. 1B). To investi-
gate the effects of cDNA concentration, two different cDNA con-
centrations were used: 3 pM (five lanes per sample) and 1.5 pM
(two lanes per sample).

To allow comparisons with an array-based technology, we
hybridized the same RNA samples to Affymetrix U133 Plus 2
arrays (www.affymetrix.com/products/arrays/specific/
hgu133plus.affx). We used three arrays (technical replicates) for
each RNA sample, and the sample preparation and data analysis
were designed to be as similar to the sequence-based approach as
possible (Methods). To facilitate a direct comparison between the
sequence and array data, we mapped the array probe sets to an-
notated genes in the Ensembl database v.48 (Flicek et al. 2008). In
total, 70% of probe sets mapped to an Ensembl gene, and, after
accounting for multiple probe sets mapping to the same gene
and probe sets that did not map uniquely, we identified a set of
17,708 probe sets, mapping uniquely to 17,708 genes, which
were used in subsequent analyses (see Methods).

Illumina sequencing data processing

Each RNA sample was sequenced in seven lanes, producing 12.9–
14.7 million reads per lane at the 3 pM concentration and 8.4–9.3
million reads at the 1.5 pM concentration (Supplemental Table
1). We aligned all reads against the whole genome using the
Illumina-supplied algorithm ELAND, which is designed to be par-
ticularly efficient for 32-bp reads. Tolerances were set to allow at
most two mismatches in each alignment, and reads that aligned
to multiple genomic locations were ignored. By these criteria,
40% of reads mapped uniquely to a genomic location, and of
these, 65% mapped to autosomal or sex chromosomes (the re-
mainder mapped almost exclusively to mitochondrial DNA).
These percentages were similar for 3 pM and 1.5 pM concentra-
tions and are comparable to results from other studies that have

used Illumina sequencing (Nagalakshmi
et al. 2008). Possible reasons for reads
not mapping uniquely to the genome
include the presence of sequencing er-
rors or polymorphisms, reads that come
from repetitive sequence, and reads from
exon–exon junctions (which can poten-
tially be recovered by a more sophisti-
cated alignment strategy; see below).

As expected, the distribution of the
locations of mapped reads showed a
strong bias toward annotated genic re-
gions based on the Ensembl database:
83% of mapped reads fell in such re-
gions; of these, 68% fell in annotated ex-
ons. Furthermore, reads mapping to in-
tergenic locations (i.e., reads mapping
outside the furthest 5� and 3� exons for
every gene) tended to fall near an anno-
tated gene (Supplemental Fig. 1), sug-
gesting that many genes in the Ensembl
annotation may require extension or re-
vision. Nonetheless, a sizable minority
(10.6%) of intergenic reads was mapped
to locations at least 100 kb from a
known gene, supporting other pub-
lished data (The ENCODE Project Con-

Figure 1. Graphical representation of the study design. (A) Summary of the experimental design. (B)
The lanes in which each sample was sequenced across the two runs. In each run, the control sample
was sequenced in lane 5. Samples were sequenced at two concentrations: 1.5 pM (indicated by an
asterisk) and 3 pM (no asterisk).
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sortium 2007), suggesting that many
transcriptionally active regions (TARs)
are currently unannotated.

We obtained, for each lane, a mea-
sure of the “overall” expression of each
gene in the Ensembl database by sum-
ming the number of reads mapping to
exons within each gene (Supplemental
Table 2). For genes with multiple tran-
scripts, we took the median across tran-
scripts. Within each lane, under ideal-
ized assumptions (e.g., no alignment
errors, and no sequence-context se-
quencing bias), these “gene counts”
would, in expectation, be proportional
to the transcript length times the mRNA
expression level. Of the genes in the En-
sembl database, 22,925 (72%) were
mapped to by at least one read. Among
these, the distribution of the number of
reads was very skewed across genes
(Supplemental Fig. 2), with many genes
having relatively few reads (median = 46
for liver, 101 for kidney).

A first (albeit rather rough) indica-
tion that sequence data are highly repli-
cable is that, for each sample, the gene
counts are highly correlated across lanes
(average Spearman correlation = 0.96)
(Supplemental Fig. 3).

An issue of particular importance is
to what extent the data exhibit a “lane
effect,” by which we mean systematic
differences between results for the same
sample, sequenced at the same concen-
tration in different lanes, over and above
those expected from sampling error. We
examined this issue in two ways, first by
considering each pair of lanes in turn
(which allows any outlying lanes to be
identified), and then by considering
multiple lanes simultaneously (which should increase the
power to detect lane effects if they consistently affect the same
genes).

When comparing a pair of lanes, we computed, for each
gene, a P-value testing the null hypothesis that the gene counts
in one lane resembled a random sample from the reads in both
lanes (this is done using the fact that, in the absence of a lane
effect, after accounting for the different total gene counts in each
lane, the individual gene counts in each lane should follow a
hypergeometric distribution). In the absence of a lane effect, the
distribution of these P-values across genes should be uniform,
whereas deviations from uniformity (which we assessed using a
qq-plot) indicate a lane effect. Among the 22 total two-way com-
parisons between lanes in which the same sample was sequenced
at the same concentration, we found that only a small propor-
tion of genes (consistently <0.5%) had very small P-values that
indicated clear evidence for a lane effect (Fig. 2A; Supplemental
Fig. 4). This was true for comparisons both within and across the
two different runs, although comparisons across different runs
seemed to show slightly larger proportions of genes with small
P-values (larger experiments will be required to assess compre-

hensively run-to-run variability). In contrast, using the same pro-
cedure to compare results from the same sample sequenced at
different concentrations produced P-values that showed much
greater deviations from uniformity (Fig. 2B; Supplemental Fig. 5).

To compare multiple lanes for a lane effect, we took a closely
related approach based on the following Poisson model. If xijk

represents the number of reads mapped to gene j for the kth lane
of data from sample i, xijk can be modeled as independent Poisson
random variables with mean µijk = cik�ijk, where the �ijk are con-
strained to sum to 1 across genes j. The parameter cik represents
the total rate at which lane k of sample i produces reads, and the
parameter �ijk represents the rate at which reads map to gene j (in
lane k of sample i) relative to other genes. The hypothesis of no
lane effect corresponds to �ijk being constant across lanes k. For
each gene, we compute a goodness-of-fit statistic across L lanes to
test this hypothesis: if there is no lane effect, then this statistic
should be �2 distributed on L � 1 degrees of freedom. A qq-plot
of these values (Fig. 2C,D; Supplemental Fig. 6) shows that, in
each case, only a small proportion of genes (∼0.5%) show strong
evidence for a lane effect (i.e., extra-Poisson variation).

In summary, for lanes sequencing the same sample at the

Figure 2. Plots to assess lane effects. Each panel shows a qq-plot comparing the distribution of a
statistic (Y-axis) against its theoretical distribution in the absence of a lane effect (X-axis). Deviations
from the line y = x indicate the presence of a lane effect. (Points in red) Those above the 95th
percentile; (points in blue) those above the 99.5th percentile. (A) A typical result when using P-values
derived from a hypergeometric test statistic to compare two lanes used to sequence the same sample
at the same concentration. (In this panel, data generated when the kidney sample was sequenced in
Run 1, lane 1 and Run 2, lane 2 were used; see Supplemental Fig. 4 for all pairwise comparisons.) (B)
Analogous results when comparing two lanes used to sequence the same sample at different concen-
trations. (In this panel, data generated when the kidney sample was sequenced in Run 1, lane 1 and
Run 2, lane 4 were used; see Supplemental Fig. 5 for all pairwise comparisons.) (C,D) Results (on two
different scales) when the goodness-of-fit statistic is used to assess the fit of the Poisson model to the
kidney data sequenced at a concentration of 3 pM. The liver sample showed a similar pattern (Supple-
mental Fig. 6).
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same concentration, only a small proportion of genes show evi-
dence for differences among lanes over those expected from sam-
pling error. For sequences sampled at different concentrations,
the differences were more appreciable. Thus, for the remainder of
this paper, we consider only the data sequenced at a concentra-
tion of 3 pM (five lanes for each sample).

Identifying differentially expressed genes

The Poisson model described above provides a natural framework
for identifying differentially expressed genes. Indeed, the model
can be cast as a generalized linear model (McCullagh and Nelder
1989), and standard methods exist to estimate parameters, and to
compute P-values for each gene testing the null hypothesis that
it is not differentially expressed between two groups (see Meth-
ods).

The results from the goodness-of-fit test above suggest that
a small proportion of genes show deviations from the Poisson
assumption (extra-Poisson variation). To check whether this as-
pect of the data will lead to false-positive identifications of dif-
ferentially expressed genes, we applied the Poisson model to
identify differentially expressed genes between groups of lanes
used to sequence the same sample. We observed that even for the
pair of lanes that displayed the strongest evidence of a lane effect,
only 14 genes were identified as differentially expressed at a false
discovery rate (FDR) of 0.1% (Supplemental Fig. 7). Similarly,
when we applied this model to groups that each contained two
lanes used to sequence the same sample, the worst comparison
yielded only 24 genes that were incorrectly identified as differ-
entially expressed. We conclude that, in this context, at this
stringent FDR, deviations from the Poisson model do not lead to
the identification of an appreciable number of false-positive dif-
ferentially expressed genes.

We next used this approach to identify differentially ex-
pressed genes from the Illumina sequencing data, by comparing
five lanes each of liver-versus-kidney samples. At an FDR of 0.1%,
we identified 11,493 genes as differentially expressed between
the samples (94% of these had an estimated absolute log2-fold
change > 0.5; 71% > 1).

Comparison of results
across technologies

As a first step to comparing the sequence
and array data, we compared the number
of sequence reads mapped to each gene
with the corresponding (normalized) ab-
solute intensities from the array (Fig. 3).
Reassuringly, these two independent mea-
sures of transcript abundance are highly
correlated (Spearman correlation = 0.73
for liver, 0.75 for kidney). Interestingly,
where results from the two technologies
differ, it is generally where the array inten-
sities are large and the sequence counts
small; a pattern that might be explained
by probe-specific background hybridiza-
tion on the array.

We next compared differentially
expressed genes called from the Illumina
sequencing data with those identified
from the array. By applying a widely
used empirical Bayes approach (Smyth

2004) to the array data, we identified 8113 genes as differentially
expressed at an FDR of 0.1% (83% with an estimated absolute
log2-fold change > 0.5, 43% > 1). Of these, 81% of genes were
also identified as differentially expressed from the Illumina se-
quencing data, providing strong evidence that the majority of
genes called from the sequence data are genuinely differentially
expressed between the two samples. Furthermore, estimates of
the log2-fold changes of gene expression levels between the
samples across the two technologies are correlated (Spearman
correlation = 0.73) (Fig. 4). The correlation is greater for genes
that are mapped to by large numbers of sequence reads. For ex-
ample, for genes mapped to by (on average) more than 32 reads
in both tissues (�5 on the log scale in Fig. 3), the Spearman
correlation of the fold changes across technologies is 0.79 com-
pared with 0.60 for genes mapped to by at least one but fewer than
32 reads. These comparisons with the array data demonstrate that
the Illumina sequencing technology and our analysis approach are
performing well. A complete comparison of genewise results from
both technologies is available in Supplemental Table 3.

Considered together, 6538 genes were identified as differen-
tially expressed using either the sequencing or the array data but
not by both (Fig. 5). To further examine these discrepancies, we
used a third technology, quantitative PCR (qPCR), to test for
differences in expression between the liver and kidney samples
for five genes called differentially expressed from the sequence
data but not the array (MMP25, SLC5A1, MDK, ZNF570, GPR64)
and for six genes that were found to be differentially expressed
using the array, but not the sequencing data (C16orf68, CD38,
LSM7, S100P, PEX11A, GLOD5). We designed primers for the
qPCR within 1 kb upstream of the annotated 3�-end of the genes
(Methods). The qPCR results confirmed as differentially ex-
pressed (t-test, P < 0.01) four of the first set of genes (all but
ZNF570), but only two of the second set (CD38 and GLOD5).
Thus, overall, the qPCR results agreed more closely with the Il-
lumina sequencing results than with the array.

Beyond the analysis of differences in gene expression

In addition to identifying gene expression differences, sequenc-
ing data can be used to identify novel exons and transcripts and

Figure 3. Comparing counts from Illumina sequencing with normalized intensities from the array,
for kidney (left) and liver (right). In each panel, the average (log2) counts for each gene are plotted on
the X-axis, and the corresponding normalized intensities from the array are shown on the Y-axis. To
avoid taking the log of 0, we added 1 to each of the average counts prior to taking logs.
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to study alternative splicing. For example, to find novel exons or
transcripts, the distribution of intergenic reads (i.e., reads
mapped between currently annotated genes) across the genome
could be examined. If a large number of reads were mapped to a
particular genomic region, it would suggest that this region
might provide a good target for follow-up work. Additionally,
identifying sequence reads that span exon–exon junctions
should help reconstruct the composition of alternative splice
variants (although reconstructing entire transcripts will be chal-
lenging, particularly with short reads). A comprehensive analysis
of both these topics is beyond the scope of this study. Neverthe-
less, to illustrate the potential of these data, we performed a pre-
liminary analysis to identify reads that span exon–exon junc-
tions.

Since reads that cover exons that have been spliced together
will not map directly back to the reference human genome, we
developed a splicing detection algorithm (see Methods) to exam-
ine all of the reads that did not align to (at least one location in)
the genome. In kidney, we identified more than 200,000 reads
that mapped to possible exon–exon junctions within a gene. Of
the junctions mapped to, more than 30,000 showed twofold or
greater coverage. As expected, we also found evidence for alter-
native splicing (i.e., splice junctions that skip one or more of the
exons). An example of a specific gene for which putative alter-
native splice variants are present is C17orf45 on chromosome 17
(Fig. 6). We observed similar proportions of splicing isoforms for
the liver. The number of reads supporting alternative splicing
(Supplemental Table 4) should be taken as an estimate of the
order of magnitude at this point, because a more careful analysis
is needed to resolve possible exon-annotation conflicts in the

databases. A comprehensive examination of these data and their
reliability is therefore still necessary, but these preliminary data
show the potential for short-sequence reads to detect splicing
variation.

Discussion

Our results demonstrate the efficacy of high-throughput se-
quencing for measuring gene expression levels. Using the Illu-
mina sequencing platform, we detected differential expression
for 81% of genes called significantly differentially expressed from
the array data, and the correlation of fold change ratios between
the two technologies (Spearman correlation = 0.73) is similar or
higher than observed in comparisons across different microarray
platforms (Shi et al. 2006). Furthermore, our analysis suggests
that a large proportion of genes called differentially expressed
from the sequencing data but not from the array may be true
positives: First, comparisons of lanes from the same sample iden-
tified at most 14 genes as differentially expressed, and secondly,
results from qPCR on five genes identified as differentially ex-
pressed in Illumina sequencing but not on the array confirmed
four of them. The remaining gene (ZNF570) may represent a false
positive in the Illumina sequencing data. Alternatively, it may
reflect differences in the genic regions surveyed by the two tech-
nologies.

Alternative analysis strategies

The approach we took here to identifying differentially expressed
genes in the sequence data was based on a Poisson model. Good-
ness-of-fit tests indicate that a small proportion of genes show
clear deviations from this model (extra-Poisson variation), and
although we found that these deviations did not lead to false-
positive identification of differentially expressed genes at a strin-
gent FDR, there is nevertheless room for improved models that
account for the extra-Poisson variation. One natural strategy
would be to replace the Poisson distribution with another distri-

Figure 4. Comparison of estimated log2 fold changes (liver/kidney)
from Illumina (Y-axis) and Affymetrix (X-axis). We consider only genes
that were interrogated using both platforms and genes where the mean
number of counts across lanes was greater than 0 for both the liver and
kidney samples. (Red and green dots) Genes called as differentially ex-
pressed based on the Illumina sequencing data at an FDR of 0.1%, with
a mean number of counts greater than (red) or less than (green) 250
reads in both tissues. (Black dots) Genes not called as differentially ex-
pressed based on the Illumina sequencing data. The set of differentially
expressed genes that show the strongest correlation between the two
technologies seems to be those that are mapped to by many reads (red),
while the correlation is weaker for differentially expressed genes mapped
to by fewer reads (green).

Figure 5. A Venn diagram summarizing the overlap between genes
called as differentially expressed from the (left circle) sequence data and
from the (right circle) array. The number of genes called by both tech-
nologies is indicated by the overlap between the two circles.
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bution, such as the quasi-Poisson distribution (Venables and Rip-
ley 2002) or the negative binomial distribution (Robinson and
Smyth 2007), which have an additional parameter that estimates
over- (or under-) dispersion relative to a Poisson model. Alterna-
tively, with appropriate transformations of the count data, exist-
ing approaches for microarray experiments (Allison et al. 2006)
may also work well. For example, a natural approach would be to
first convert the count data in each lane to proportions, and then
to apply an arcsin-root transformation, which is the standard
variance-stabilizing transformation for a proportion. More pre-
cisely, we suggest transforming each count x to √n arcsin (√x/n),
where n is the total number of counts in the lane. These trans-
formed data could then be used as input to the Empirical Bayes
approach of Smyth (2004). Although this approach lacks the el-
egance of working directly with the count data, the hierarchical
structure of the Empirical Bayes method may provide more ac-
curate estimates of the gene-specific variability than a simple
quasi-Poisson approach, potentially improving power.

RNA-seq study design

An important aspect of our study is the investigation of technical
variance associated with Illumina sequencing. Our analyses sug-
gest that the Illumina sequencing data are highly replicable, with
relatively few genes showing evidence for a “lane effect”: the
reads in one lane represent an approximately random sample
from those obtained across multiple lanes. Note that this does
not require, or imply, that sequence data exhibit few systematic

biases [e.g., effects of GC content, or
poly(N)s]. However, it does suggest that
any such biases are largely consistent
across lanes, both within and between
runs of the same concentration (al-
though to fully assess variation among
runs, data from many more runs will be
necessary).

We note that our study design did
not include replicates of the processing
step of the Illumina sequencing library.
As equivalent processing steps for micro-
arrays (i.e., fragmentation and amplifi-
cation) result in the introduction of very
little technical variance, we expected
that rather than the processing of the
library, sequencing over different lanes
and flow-cells would introduce most of
the technical variance associated with Il-
lumina sequencing. However, given our
observation that very little technical
variance is associated with sequencing
in different lanes or plates, the variance
introduced in the library processing step
may contribute a nontrivial proportion
of the total technical variance associated
with the sequencing technology.

The relatively small proportion of
genes exhibiting a lane effect, combined
with the count nature of the data, makes
it possible to perform meaningful com-
parisons between samples sequenced in
just one lane each. This does not, in it-

self, imply that sequencing each sample in just one lane will
necessarily suffice: fewer lanes of data will inevitably reduce the
number of genes whose expression can be assessed and reduce
the power to detect differences in expression. However, in our
data, additional lanes provided only modest gains in the number
of genes detected. For example, increasing the number of lanes
per sample from one to two, and hence doubling the experi-
ment’s cost, increased the number of genes mapped to by at least
one read by only 7%–8%; adding further lanes produces smaller
additional increases (Supplemental Table 5). Similarly, while the
power to detect differentially expressed genes increases more sub-

Figure 6. An example of alternative splicing. The full exon structure of C17orf45
(ENSG00000175061) is shown for kidney (top) and liver (bottom), with exons plotted to scale. (Black)
The number of reads mapping to each exon and to each exon junction. (Gray) The number of reads
mapping to alternative splice exon junctions (i.e., junctions between non-consecutive exons). (The
black lines below the exon) The location of reads mapped to this gene in Run 2, lane 2 (kidney) and
Run 2, lane 3 (liver).

Table 1. Power to detect differentially expressed genes depends
on the number of lanes used for each sample

No. of lanes
compared

Differentially
expressed

genes

Overlap
with genes
called from
the array

Correlation of fold
changes between
the sequence data

and the array

One vs. one 5670 4208 0.67
Two vs. two 7994 5340 0.70
Three vs. three 9482 5909 0.71
Four vs. four 10,580 6278 0.72
Five vs. five 11,493 6534 0.73

The first column shows, for different numbers of lanes, the average num-
ber of genes called differentially expressed between the liver and kidney
samples (at an FDR of 0.1%) from the Illumina sequencing data. The
average overlap with the 8113 genes identified as differentially expressed
from the Affymetrix array data is also shown, as is the average correlation
between the estimated log2 fold changes.
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stantially with additional lanes of data (Table 1), even using only
one lane identifies 5670 differentially expressed genes, 70% as
many as were found using three technical microarray replicates.
Furthermore, using three lanes of sequence data detects more
than the three microarrays.

Typical gene expression experiments compare expression
levels among many RNA samples (e.g., technical and biological
replicates), hybridizing each sample only once to a microarray.
Our data suggest that, in this setting, with current sequencing
protocols, replacing each array with a single lane of Illumina
sequencing data (randomizing samples appropriately across
runs) is already an attractive alternative, and one that will be-
come increasingly popular as improvements in experimental
protocol and alignment methods lead to more usable data being
generated in each lane.

Finally, while the primary focus of this work was establish-
ing whether Illumina sequencing could be used to characterize
gene expression differences between samples, sequence data may
help answer other questions that are difficult to address using
arrays. In particular, array technologies can measure expression
only of genes that have corresponding probes on the array, and,
in most cases, probes are designed only to cover a very small
portion of a gene (in the case of the Affymetrix U133 Plus 2 array,
most of the probes are at the 3�-end of the transcripts). Conse-
quently, it is not possible to detect novel transcribed regions or
(in general) the presence of alternative splice forms of a gene.
Both of these problems can potentially be tackled using the Illu-
mina sequencing data, and we have developed approaches to
begin addressing these issues (Methods). However, identifying
splice variants using a sequencing approach assumes that a suf-
ficient number of reads span exon–exon junctions. This may not
be the case if a sample is sequenced in only a single lane, and
additional data will probably be required to solve this problem.

In summary, Illumina sequencing appears to be an extremely
promising technology for measuring mRNA expression and iden-
tifying differentially expressed genes, comparable, and in some
ways superior, to existing array-based approaches. Given the rap-
idly falling costs of sequencing, it seems only a matter of time
before sequence-based approaches are widely adopted for this
purpose.

Methods

Processing samples for Illumina sequencing
Tissue samples from liver and kidney from one human male were
collected for us by the National Development and Research In-
stitute (NDRI; http://www.ndri.org/), within 6 h post mortem.
The tissue samples were snap-frozen and kept on dry ice until
processing. We extracted total RNA from each tissue using TRIzol
(Invitrogen). Total RNA quality from both tissues was high and
comparable, based on analysis with a Bioanalyzer 2100 (Agilent).

Aliquots from the total RNA samples were subjected to Illu-
mina sequencing, following the protocol offered by Illumina for
sequencing of cDNA samples. Briefly, we used Dynal oligo(dT)
beads (Invitrogen) to isolate poly(A) mRNA from the total RNA
samples. We then fragmented the mRNA by using the RNA frag-
mentation kit from Ambion, followed by first- and second-strand
cDNA synthesis using random hexamer primers. We comple-
mented the cDNA synthesis by an “end repair” reaction using T4
DNA polymerase and Klenow DNA polymerase for 30 min at
20°C. We then added a single A base to the cDNA molecules by
using 3�-to-5� exo-nuclease, and ligated the Illumina adapter. The

detailed laboratory protocol is available upon request. Images
taken during the sequencing reactions were processed in three
stages by Illumina’s software (v.192): Firecrest performs image
analysis, base-calling is done by Bustard, and the sequence analy-
sis is performed with Gerald.

Microarray processing and low-level analysis
Aliquots from the same total RNA samples used for the Illumina
sequencing were hybridized to Affymetrix HG-U133 Plus 2.0 ar-
rays in three technical replicates (5 µg of total RNA were used for
each hybridization). To minimize sources of variation and to
make the comparison between the sequencing and array-based
approaches as fair as possible, the RNA samples hybridized to the
array were subjected to a single labeling reaction. Hybridizations
and scanning were performed at the University of Chicago Func-
tional Genomics Facility.

We obtained background-corrected, normalized, summary
raw values for all probe sets from each array using the RMA al-
gorithm (Gautier et al. 2004). We used MA plots (hybridization
intensity plotted against the fold change in expression) (Smyth
and Speed 2003) to assess the quality of the data and the consis-
tency across technical replicates (see Supplemental Fig. 8).

Subsequently, we considered the subset of probe sets that
were mapped to Ensembl genes. We used mapping information
from the NetAffx Analysis Center (v24; www.affymetrix.com/
analysis/index.affx) and BioMart (Flicek et al. 2008) to map as
many probe sets as possible. Hence, of a total of 54,675 probe sets
on the array, we were able to map 38,059 to Ensembl genes.
Where only a single probe set was mapped to a gene, we used the
corresponding intensities in all future analyses. Where multiple
probe sets mapped to the same gene, we considered the probe set
that was most often called as present by the Affymetrix software
across the six hybridizations. If two or more probe sets were
called present in the same number of hybridizations, we chose a
probe set at random and used it in all further analyses. To iden-
tify differentially expressed genes between the two tissues, we
used an empirical Bayes modified t-statistic (Smyth 2004). The
false discovery rate (FDR) for these P-values was calculated using
the approach of Storey and Tibshirani (2003).

Quantitative PCR
We designed qPCR primers for gene regions within 1 kb upstream
of the 3�-end of each gene. Primer sequences are available upon
request. As templates, we used the same liver and kidney total
RNA that was used for the Illumina sequencing and microarray
experiments. Quantitative RT-PCR was performed in a 25-µL re-
action containing 2� SYBR master mix (Sigma), 0.2 pM each
primer, and 1 µL of cDNA template. PCR was performed in a
7900HT Fast Real-Time PCR System (Applied Biosystem, Inc.), in
three technical replicates for each sample. The detection thresh-
old cycle for each reaction was determined using a standard
curve, after normalization of the results using quantitative RT-
PCR with primers for the RPS7 gene, which was shown to have
constant expression levels in many tissues (de Jonge et al. 2007);
this was also the case for both technologies used in our experi-
ments. The significance of differences in transcript levels be-
tween tissues was assessed by a t-test. We note that although we
report results for 11 qPCRs, we originally chose 12 genes (six
genes that were called differentially expressed from Illumina se-
quencing but not the array and six genes that were found to be
differentially expressed using the array, but not Illumina se-
quencing). However, we erroneously included the FBXL6 gene,
which was only marginally significant in the sequence data (Q-
value = 0.001003) and not significant in the array data (Q-
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value = 0.078); this gene was also found to be differentially ex-
pressed using qPCR.

Assessing lane effects, within and between runs
For each gene mapped to by at least one read, we used a test based
on the hypergeometric distribution to compute a P-value testing
whether the number of counts in each lane differed over and
above what would be expected under random sampling. Specifi-
cally, let xt1 and xt2 denote the number of counts for gene t in two
lanes, and C1 and C2 denote the total number of reads in these
lanes. In the absence of a lane effect, the reads in one lane will be
a random sample from the reads in both lanes. This results in xt1

having a hypergeometric distribution (conditional on xt1 + xt2).
Specifically, under the null hypothesis of no lane effect, the prob-
ability that xt1 = x is given by

p0�x� = Hyper�x;C1,C2,xt1 + xt2�

where

Hyper�p;m,n,k� =
�m

p �� n

k − p�
�m + n

k � .

Based on this null distribution, we compute a one-sided P-value
for the observed value of xt1, as

p = �
x=0

xt1 − 1

p0�x� + Up0�xt1�

where U is a random number generated uniformly on [0, 1). (The
use of this randomized U ensures that the P-values are genuinely
uniform under the null; without this step, the P-values would
have a discrete distribution under the null that is only approxi-
mately uniform.) We then converted these one-sided P-values
into two-sided P-values: if the original P-value was <0.5, we mul-
tiplied it by 2 and, if the original value was >0.5, we subtracted it
from 1 and multiplied this value by 2.

Under the null hypothesis of no lane effect, these hypergeo-
metric P-values are uniformly distributed on [0, 1). We assessed
deviations from uniformity visually via qq-plots (Fig. 2; Supple-
mental Figs. 4, 5).

Likelihood ratio test
For each gene, we separated the L lanes of interest into two
groups (e.g., group A might be all lanes used to sequence the
kidney mRNA, and group B might be all lanes used to sequence
the liver mRNA). We then fitted the Poisson model described in
the main text, computing the maximum likelihood estimates
both under the null hypothesis that, for gene j, �ijk = �j, and
under the alternative that �ijk = �j

A for samples/lanes in group A,
and �ijk = �j

B for samples/lanes in group B. The standard likeli-
hood ratio statistic, being twice the log-likelihood ratio, was com-
puted, and P-values were obtained using the fact that, under the
null hypothesis, this statistic has a �2 distribution with 1 degree
of freedom.

This procedure leads to a P-value for each gene. The signifi-
cance threshold to control the FDR at a given value was calcu-
lated using the method of Storey and Tibshirani (2003), using the
package qvalue within the R statistical package.

Fold changes were estimated by fitting the Poisson model
under the alternative hypothesis to the lanes of interest. The
estimated fold change for gene j was therefore calculated as �̂j

A/

�̂j
B where �̂j

A and �̂j
B denote the maximum likelihood estimates of

�j
A and �j

B.

�2 goodness-of-fit test
The �2 goodness-of-fit statistic, Xij, is calculated for gene j and
sample i as

Xij = �
k

�xijk − �̂ijk�2

�̂ijk

where the sum is over all lanes for sample i. Here µ̂ijk denotes the
maximum likelihood estimate of the Poisson mean µijk = cik�ijk,
under the constraint that �ijk is constant across lanes k.

If the counts xijk are independent Poissons with mean µijk,
then these statistics should follow a �2 distribution with L � 1
degrees of freedom, where L is the number of lanes for sample i.
To assess whether this is the case for a given sample i, the values
of Xij can be plotted against the quantiles of the appropriate �2

distribution using a qq-plot.

Identifying novel alternative splice forms
To examine splicing and alternative splicing, we used a two-stage
approach. First, we removed from consideration all reads that
were aligned by ELAND to a unique position or multiple posi-
tions in the human genome (Build 36, hg18), allowing for up to
two mis-matches. To discover reads mapping to exon–exon junc-
tions in novel splice forms, we used the following alignment
strategy:

First, we extracted all exon sequences from the Ensembl
gene annotations (v. 48) and used a Perl program to create a
database (an exon-edge database, EEDB) consisting of two parts:
a 3� database containing the 32 bp from the 3�-end of every exon,
and a 5� database containing the 32 bp from the 5�-end of every
exon.

We then repeatedly partitioned each unmapped read into
two segments, A and B, where A has increasing size n (9 < n < 23),
and B has decreasing size (32 � n). We tested A for alignment
with the last n bp of each entry in the 3� database, and B for
alignment with the first 32 � n bp of each entry in the 5� data-
base. In these tests, we required exact matches (no mismatches).
For each n, if we found an alignment for both A and B, then this
pair of alignments was noted as an exon–exon junction to which
the read maps. This search was conducted for both forward and
reverse strand orientations.

This process maps reads to exon junctions, some reads map-
ping to one or more junctions, others mapping to no junctions.
Of the junctions that are mapped to, some span multiple exons
that are in the same gene, whereas others span exons in different
genes. In this study, we report numbers of matches only for those
junctions that span exons in the same gene, leaving investigation
and verification of other junctions for future study.
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