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Abstract
Trajectory clustering is a novel and statistically well-founded method for clustering time series
data from gene expression arrays. Trajectory clustering uses non-parametric statistics and is hence
not sensitive to the particular distributions underlying gene expression data. Each cluster is clearly
defined in terms of direction of change of expression for successive time points (its ‘trajectory’),
and therefore has easily appreciated biological meaning. Applying the method to a dataset from
mouse mammary gland development, we demonstrate that it produces different clusters than
Hierarchical, K-means, and Jackknife clustering methods, even when those methods are applied to
differences between successive time points. Compared to all of the other methods, trajectory
clustering was better able to match a manual clustering by a domain expert, and was better able to
cluster groups of genes with known related functions.

1 Introduction
Clustering is one of the most widely used approaches for analysis of genome-wide
expression data. All clustering methods make assumptions about the nature of the items
clustered and the definition of “similarity” among those items. For example, the popular K-
means clustering method assumes that items to be clustered can be described by values
drawn from K univariate Normal distributions. When the assumptions underlying a
clustering method are violated, that method is unlikely to produce clusterings that reflect the
true underlying groupings of the data. In addition to their distributional assumptions, K-
means and other widely used clustering methods are not specifically able to take into
account the relationship among adjacent points in a time series.

In this paper, we introduce “trajectory clustering,” a non-parametric method of clustering
gene expression data from time course experiments. No assumptions about the distributional
nature of gene expression levels are required, nor are uniformly spaced time points or any
assumptions about the behavior of expression between time points. Furthermore, the method
itself involves no free parameters (such as the K in K-means) which must be estimated
separately. The trajectories used in our clustering method are defined by the direction of
change between adjacent time points in a series. The direction of change can take on one of
three possible values: increasing, decreasing or flat. For a time series containing N time
points, there are N-1 changes, and 3N-1 possible trajectories.

We apply trajectory clustering to a dataset from mouse mammary gland development, and
show that the trajectory clusters correspond better to a manually derived expert clustering,
and group genes with known biological function more accurately than two other popular
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clustering methods, Hierarchical and K-means. Data was acquired by Affymetrix
oligonucleotide-based microarray data showing secretory activation in the mouse mammary
gland. Secretory activation is a unidirectional process that takes place with high temporal
coherence during the physiological transition from pregnancy to lactation (Neville et al,
2002). Many of the biochemical events in this process have been studied extensively for
more than three decades (Wilde et al. 1986; Mellenberger and Bauman, 1974; Kuhn, 1968),
and it is clear that many of the changes are transcriptionally regulated (Rosen et al. 1999).
However, the molecular mechanisms that regulate and coordinate these changes in vivo are
not well understood. Because the process is complex, the most efficient way to approach the
problem is to begin with a global analysis of gene expression prior to, during and subsequent
to secretory activation.

2 Methods
2.1 Acquisition of time course data from mice

Five time points were collected between day 12 of pregnancy and day 9 of lactation, with 4
replicates at each data point. Four FVB mice were sacrificed for each of the time points
investigated (P12, P17, Lac1, Lac2, and Lac9). Both fourth mammary glands were removed
from each animal and the imbedded lymph nodes excised. The mammary tissue was stored
in RNAlater stabilization buffer (Qiagen, Valencia, CA) at -20 °C according to protocol.
Total RNA was isolated and purified from each sample following the Qiagen RNA
extraction/clean-up protocol. Using a spectrophotometer and the RNA 6000 Nano Assay
(Agilent Technologies, Palo Alto, CA), purity, concentration and integrity of the total RNA
was verified. If the samples qualified, the RNA was amplified, labeled, and fragmented
following the 2002 protocol for eukaryotic target preparation (Affymetrix, Santa Clara, CA).
The labeled and fragmented cRNA products of the Affymetrix protocol were again verified
for sample integrity and concentration using RNA 6000 Nano Assay. Accepted samples
were hybridized to Affymetrix Mu74Av2 microarray chips. Raw data were gathered from
scanned array chips using Affymetrix Microarray Suite version 5.0. All animal procedures
were approved by the Institutional Animal Care and Use Committee of the University of
Colorado Health Sciences Center.

2.2 Computational analysis
We describe our computational approach in three phases. First, we describe how we selected
portions of the raw data for further analysis. Then, we describe the details of the trajectory
clustering algorithm itself. Finally, we describe the processes by which we evaluated the
method and compared it to other approaches. All original algorithms were implemented in
Matlab v6.1.R12 (MathWorks Inc); others were either implemented in Matlab or were from
the GeneSpring (Silicon Genetics, Inc.) expression array analysis toolkit.

2.2.1 Identifying genes with significant changes during the time course—Many
mammary genes are not related to secretory activation, and therefore most genes' expression
will not change significantly over the course of this experiment. Before analyzing the genes
putatively related to secretory activation, we applied three computational methods to filter
out genes which did not vary significantly during the course of the experiment.

The first filter (Hogg & Craig, 1978, p175) identifies genes with at least moderate variance
over the entire experiment; genes which do not vary at all are not likely to be related to
secretory activation. Since we can assume that most genes are not related to activation, then
the gene with the median variance is a reasonable model of null variation, that is, the
variation due to factors other than secretory activation. We calculate the variance s2 for each
gene. The null hypothesis is that these variances represent random and Normally distributed
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noise. We can then compute the statistic W=(N-1)s2/median(s2) where N is the number of
observations of the gene, which is approximately chi-square distributed with N-1 degree of
freedom. We calculate a p value for rejecting the null hypothesis that the gene did not vary,
and perform the False Discovery Rate (FDR) multiple testing correction, (Benjamini et al,
1995) setting the false discovery rate to be 10%. This results in a list of genes with
significantly greater variation than the median variation gene, with at most 10% of that list
including genes having true variation less than or equal to median variation.

Our second filter uses Affymetrix's mRNA detection call to exclude all genes with an
Absolute Call of “Absent” in all experiments. The third filter is used to test the consistency
of the gene across replicates of a particular time point. Genes whose within-replicate
coefficient of variation was greater than 0.03 were removed. These preprocessing steps
screen out genes with low variance, low mRNA levels, and inconsistent expression
measurements.

The final preclustering step is to apply the non-parametric Kruskal-Wallis statistic to select
genes whose expression levels are significantly different between at least two time points.
Kruskal-Wallis is the non-parametric equivalent of an ANOVA test. We then again perform
the False Discovery Rate test for multiple comparison correction for these genes, setting
FDR to 0.015. The initial filtering steps greatly reduce the number of genes tested, and
hence reduce the penalty in statistical power incurred by this correction.

2.2.2 The Trajectory Clustering algorithm—Trajectories are defined to be a sequence
of length T-1, where T is the number of time points, and each element of the sequence is
either I (increase), D (decrease), or F (flat). For example, all the genes whose expression
decreased at each point in a four measurement series would be assigned to cluster DDD.
Given a list of genes which varied significantly across at least two time points, the goal of
the clustering algorithm is to assign each of these genes to a particular trajectory. Because
the Kruskal-Wallis test requires at least one significant difference, no gene should ever be
assigned to the sequence of all flat (FFFF).

When the Kruskal-Wallis test identifies a significant difference between an adjacent pair of
points, the assignment of the gene to the I or D trajectory is trivially based on the sign of the
difference. However, it is possible that a significant difference is found between expression
levels that are not adjacent, yet none of the adjacent pairs themselves are found to be
significantly different. For example, the expression of a gene at time point 3 may be
significantly greater than at time point 1, yet there may not be a significant difference
between the expression levels at time points 1 and 2, nor between the expression levels at
time points 2 and 3. The challenge in this situation is to determine whether to assign this
gene to the II trajectory, the FI trajectory or the IF trajectory.

We will first present a solution to this problem in the three point case, and then generalize it
to N points. Let Tij represent the interval between time points i and j. The nontrivial case
arises when T13 is significant, but not T12 or T23. It is possible that T12 and T23 contribute
equally to the difference in T13, or the difference might be heavily weighted toward T12 or
T23. We discriminate between these possibilities as follows. For each of these genes, we sort
the expression levels and assign a rank to each measurement, then calculate the mean rank
difference Ci,j,k,l = |Ri-Rj| - |Rk-Rl| for the transitions from i to j and k to l, where the Rs are
the average rank of the expression level at a particular time point (over all replicates). By
assumption, the difference between points i and l is statistically significant, but the
differences between i and j and between k and l are not. The C value is a non-parametric
measure of the relative contribution of the two transitions to the difference between the first
and last point. A large positive C value means the first transition made more of a
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contribution to the total difference than the second transition, and therefore that we should
assign that gene to the (I or D)F trajectory depending on the sign of the overall difference. A
large negative value implies an F(I or D) trajectory, and a value near zero means that the
relative contributions are similar and the trajectory should be either II or DD. In the three
time point example above, we are interested in C1,2,2,3.

All that remains is to determine where the cutoff should be for being “near” zero. Since
there are many orderings in which both mean ranks are the same, many Ci,j,k,ls will be
exactly zero. However, we might also reasonably treat small differences in average rank by
assuming that the relative contributions are similar. We used an ad hoc, percentile-based
cutoff C*, calling the top C* percentile of the negative differences, and the bottom C*
percentile of the positive differences to be near zero. In this dataset, the clustering is not
very sensitive to the particular choice of C*. We chose C* to allow average rank differences
of <= 1 to count as near zero. Any C* between 26 and 31 achieved this for most of the
clusters, so we selected C*=30 for the analysis below. If the distribution of C scores were
known, a statistically sound cutoff could be specified, but that is currently an open problem.

The above approach can be generalized to more than three time points. We initialize an
upper diagonal matrix H with bits set to one based on the significance tests, i.e. Hij = 1 if the
null hypothesis was rejected for Tij, and 0 otherwise. We work three points at a time, starting
with the final time point and executing along successive diagonals. Additional bits are set to
1 based on the following process. At the end of the process, the last diagonal of the H matrix
can be straightforwardly translated to a particular trajectory, substituting F for 0s and either I
or D for 1s, depending on the sign of the difference. Figures 1 (pseudocode) and 2 describe
the process in detail.

2.3 Manual clustering
One of the authors [Neville] has long experience in secretory activation, and performed an
ad hoc, semi-manual clutering of the genes, using tools available in GeneSpring (Silicon
Genetics, www.sigenetics.com) and her extensive knowledge of the biology of secretory
activation. The ad hoc method required direct user interaction and took many hours to
complete, and relied on a variety of unsupported assumptions. The procedure was as
follows. Beginning with the same list of genes that varied significantly over at least one pair
of time points, each pair of adjacent time points was tested for differences using the Mann-
Whitney U test (which is equivalent to the Kruskal-Wallis test when there are only two
conditions) with a critical level of P< 0.05. These were assigned to the I or D trajectory
using the fold change filter with the fold difference set at 1.1. All genes that did not fit this
criterion were initially assigned to the F trajectory. These cutoffs were set to coincide with
intuition for a subset of the important genes which we examined manually. The one interval
sets were combined into 81 preliminary classes reflecting the patterns of expression over the
four intervals in the dataset.

Classes containing two or more flat sets in a row (e.g. DDFF, IFFD, IFFF, FFFF) were
further examined to determine whether there was a statistically significant change over two
or more consecutive intervals. For each FF class an initial sort was made into genes that
changed or remained flat over two intervals using the Mann-Whitney test as describe above.
For FFF or FFFF classes the genes were initially examined in sets of FF classes. Those that
showed no significant change were examined by eye over 4 or 5 time points. A significant
change was seen in about 200 genes in classes containing the FF, FFF and FFFF patterns,
about half the genes in FF and FFF trajectories and all the genes in the FFFF trajectories as
predicted.
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As with the automated method, the hardest problem is to apportion the changes in these
genes over the two, three, or four intervals over which a significant change was noted. To do
this each of the intervening adjacent pairs was tested using a Welsh t-test with a critical
value of 0.20. Again, this particular value was selected because it agreed with the expert's
intuitions about the assignments; also note that the Normality assumptions underlying this
test are not valid for this data. Adjacent pairs which were different under this test we
assigned to either I or D, all others were left as F.

2.4 Other clustering techniques
For comparison to more established techniques, hierarchical and K-mean clustering were
used to cluster our time series data. In hierarchical clustering (Eisen MB et al. 1998), two
types of similarity metric were calculated; Euclidean distance and jackknife correlation
(Heyer LJ, et al. 1999). A complete-linkage hierarchical clustering was used for the purpose
of computing a dendrogram that represent all elements into a single tree. We used Matlab's
“cluster” function to draw a horizontal line on the dendrogram tree, and produced the user
defined number of clusters. We divided the hierarchical tree into 20 and 9 clusters, to obtain
results comparable to the trajectory method (see results). In addition, K means clustering
(Tavazole, S. et al, 1999) is designed to partition the data into K groups by minimizing the
within-group sum-of-squares. We used the K means algorithm in GeneSpring with Pearson
correlation to partition the genes into 20 and 9 clusters.

3 Results
3.1 Significantly varying genes and their trajectory clusters

The preprocessing and Kruskal-Wallis test resulted in 1358 genes with at least one
significant difference (with FDR=0.015, so approximately 20 of these are likely false
positives). There are 4 intervals between the points and therefore the potential to generate
34=81 trajectories (actually 80, since FFFF cannot be occupied with this method). Figure 3
shows the 72 populated clusters, identifying the trajectory and the number of genes in the
cluster; 20 of these were occupied by 20 or more genes. These 20 large clusters contained
975 (or 72%) of the total genes. We therefore used 20 as the target for K means and
hierarchical clustering.

3.2 Comparison with manual trajectory clustering
Manual clustering resulted in 73 clusters which in general overlapped the results of the
automated algorithm, particularly in the twenty large clusters. Table 1 shows the degree of
overlap between each of the clustering methods and the manual method. In mouse mammary
gland secretory activation studies, the two middle intervals (P17-Lac1-Lac2) showed the
greatest number of significant changes, we therefore also combined clusters that had the
same trajectories for these two central transitions, creating 9 clusters. In this latter analysis
77.4% of the genes mapped to the same cluster in the automatic and manual methods (Table
1). Furthermore, inspection suggested that genes that differed between the automatic and
manual methods diverged only slightly in assigned trajectories, and then only when the
difference between two time points was small relative to the variance of the time points.

3.3 Comparison with other clustering methods
The same mapping approach was used to compare 20 and 9 clusters from K-Means and
hierarchical jackknife methods to the manual clusterings. We matched each K-means and
hierarchical cluster to the manual cluster that had the most genes in common, without
allowing multiple matches. As seen in Table 1, 41% and 28.6% of the genes in the 20 and 9
K-Means clusters mapped on to the most closely corresponding manual cluster. Similarly,
39.4% and 30% of the 20 and 9 hierarchical Jackknife clusters were mapped on to the
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manual clusters. To ensure a fair comparison, we performed another set of K-Means and
hierarchical Jackknife clusters using differences between adjacent time points rather than the
raw values. The results show that 34.6% and 32.9% of 20 and 9 K-Means clusters, and
26.9% and 43.9% of hierarchical Jackknife clusters mapped on to the closest manual cluster.

3.4 Separation of functional groups by trajectory clustering
Although trajectory clustering produces a statistically well-founded grouping that is much
more similar to the ad hoc expert grouping than traditional methods, it is unclear how well
the manual clustering represents biological reality. To determine whether trajectory
clustering could separate and/or identify biologically relevant genes we examined the genes
associated with six functional classes known to be important in secretory activation (milk
proteins, energy metabolism, fatty acid synthesis, cholesterol synthesis, adipocyte-specific
and fatty acid degradation), and measured the purity of each cluster with respect to these
classes. A discrimination index was calculated as follows. For each cluster, consider each
pair of functional groups A and B. If the cluster contains only genes of one or the other
functional group, the cluster gets a discrimination score of 1. If the cluster contains both
groups, it gets a score of 1 - {(GA + GB) / (TotA + TotB)}, where GA and GB are the number
of genes of each functional type in the cluster and TotA and TotB are the total number of
genes in that functional group. The discrimination score for the cluster is the mean score
over all pairs of functions. Table 1 shows the discrimination scores. Both automatic and
manual trajectory clustering gave a discrimination index of 0.80 using the full number of
clusters derived here. All other methods gave lower discrimination scores, although the K-
means method for 20 clusters gave an index of 0.78 which is quite close.

We also examined each of the genes with known function specifically in the trajectory
clustering. With one exception milk genes clustered into related groups all beginning with I,
indicating that they all increase significantly at the end of pregnancy. All continued to
increase in subsequent intervals falling into 4 related groups with slightly different patterns
of expression. The one gene that does not increase during pregnancy (clustered to FFIF 75)
is PTHrP, a gene encoding a protein hormone involved in calcium regulation (Neville et al,
2002), which could be deleterious in the pregnant animal and may, therefore be
differentially regulated. The genes of energy metabolism, with two exceptions, fell into
downward going clusters, suggesting a relative fall in ATP generation in this tissue, which
must devote most of its energy to synthetic reactions and transport. Of greatest interest of
the genes for fatty acid and cholesterol synthesis; both groups cluster predominantly to FIFF
75 and are, therefore, turned off during pregnancy, turning on immediately after birth of the
pups, a point at which our histological studies show that secretion is activated
(McManaman, J. and Neville, M.C., unpublished). These genes are likely, therefore, to be
coordinately regulated and indeed many in both classes are up-regulated by the transcription
factor SREBP-1 (Horton, et al. 2002). Interestingly SREBP-1 itself falls into the cluster
FFIF 75. Genes that mediate fatty acid degradation, in general by the β-oxidation pathway
were distributed among four clusters showing different butrelated patterns of decrease. The
mammary gland contains several different tissue compartments whose proportion changes
with secretory development. We know that the milk protein genes reflect the epithelial
compartment and assume that the changes in the metabolic pathways illustrated also
represent this compartment. In order to evaluate changes in another tissue compartment, the
adipose compartment which is quite prominent in the mammary gland, we examined the
expression pattern of 5 adipose specific genes. These genes cluster into 5 distinct clusters,
which have in common a D in first interval, the interval that reflects late pregnancy. We
know from other studies (McManaman and Neville, unpublished) that a the relative
proportion of adipose tissue declines steeply during pregnancy, with much small changes
during lactation as reflected in the variation in the last three time intervals. We also

Phang et al. Page 6

Pac Symp Biocomput. Author manuscript; available in PMC 2008 September 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



examined two categories of genes known to decrease during secretory activation, adipocyte
specific genes and genes that are involved in fatty acid degradation. Both segregated into
predominantly down-going clusters.

4 Discussion
Trajectory clustering is a non-parametric clustering method using only the direction of
change between subsequent time points to group genes in time course study. Clustering
using various ad hoc schemes to conform as closely as possible to expert intuition gave quite
similar results to trajectory clustering, and rather different than the other methods. More
importantly, trajectory clustering also showed the ability to discriminate among genes in
relevant functional categories better than the alternative methods.

Trajectory clustering has a natural interpretation, unlike the other methods studied. In this
case, where each interval studied represents a well-characterized and different process,
linking gene change directions to each of these intervals facilitates interpretation. For
example, two important synthetic processes, milk protein synthesis, and lipid and sterol
synthesis show distinct temporal activation. Thus the synthesis of all but one of the proteins
we have classified as milk proteins are turned on in late pregnancy; many of these (see
group IFIF 48) do not change between late pregnancy and the first day after birth, increasing
sharply on the second day of lactation. Many of these molecules including β-casein, and
whey acidic protein are known to be regulated by stat5, a mediator of prolactin signaling,
whose mRNA and phosphorylation change little over the period of parturition (Rosen, et al.
1999). On the other hand the genes that regulate lipid synthesis are known to be regulated by
the transcription factor, SREBP-1. A large proportion of these genes does not increase
during pregnancy but are activated on the first day of lactation. SREBP-1 shows a similar
pattern of activation, suggesting that its activation and up-regulation are needed to turn on
lipid and cholesterol synthesis. A number of other transcription factors are found in these
two clusters, JunD1, Pou 11 and TCFL4 (MCX) are located in IFIF whereas NFAT and
Sox13 are found in FIFF. These genes are candidates for further investigation.

The spread of some classes of functionally related genes across similar clusters (e.g. FIFF
and FIIF) suggests that collapsing some distinctions may be of biological value. Certainly as
the number of time points increases, the number of trajectories increases exponentially, and
therefore some cluster combining is probably warranted. Since each trajectory has a well
defined relationship to all the others, we expect in future work to be able to identify a well-
founded method for combining trajectory clusters as defined here.
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Figure 1.
Pseudocode for iterative clustering of more than 3 time points. diag(i) is the ith diagonal of
the matrix counting from the main diagonal; it is equivalent to Matlab's diag function.
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Figure 2.
Recursive expansion of the three point case, starting with the final time point (see
pseudocode in Figure 1) and executing along successive diagonals. Diag(x) represents the
values in x's diagonal, shown by the dashed-boxes. The last diagonal is translated to the a
trajectory by sign.
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Figure 3.
Clusters produced by automatic trajectory clustering for secretory activation in the
mammary gland. Four replicates at each of five time points, Pregnancy days 12 and 17 and
lactation days 1, 2 and 9, are represenedt in each plot. Intensities were normalized to the
median for each gene and plotted on a log scale.

Phang et al. Page 11

Pac Symp Biocomput. Author manuscript; available in PMC 2008 September 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Phang et al. Page 12

Ta
bl

e 
1

C
lu

st
er

in
g 

qu
al

it
y 

m
ea

su
re

s 
(s

ee
 t

ex
t)

. T
C

 is
 t

ra
je

ct
or

y 
cl

us
te

ri
ng

, K
M

 is
 K

-m
ea

ns
 a

nd
 J

K
 is

 h
ie

ra
rc

hi
ca

l j
ac

kk
ni

fe

N
um

be
r 

of
 in

te
rv

al
N

um
be

r 
of

 m
an

ua
l C

lu
st

er
O

th
er

 c
lu

st
er

N
um

be
r 

of
 o

th
er

 C
lu

st
er

P
er

ce
nt

 o
f 

ot
he

r 
C

lu
st

er
 t

o 
m

an
ua

l C
lu

st
er

D
is

cr
im

in
at

io
n 

in
de

x

4
73

T
C

72
55

.1
0.

80

4
20

T
C

20
61

.0
0.

75

2
9

T
C

9
77

.4
0.

56

4
20

K
M

20
41

.0
0.

78

2
9

K
M

9
28

.6
0.

59

4
20

JK
20

39
.4

0.
59

2
9

JK
9

30
.0

0.
34

U
si

ng
 m

ea
n 

di
ff

er
en

ce
 v

al
ue

s

4
20

K
M

20
34

.6
0.

47

2
9

K
M

9
32

.9
0.

42

4
20

JK
20

26
.9

0.
57

2
9

JK
9

43
.9

0.
48

Pac Symp Biocomput. Author manuscript; available in PMC 2008 September 02.


