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In the course of analyzing a series of cloned circular retroviral DNAs, we recovered an unusual clone. The
molecule consisted of a complete viral genome containing two copies of the long terminal repeat with extra
sequences between the repeats. These extra bases proved to be a nearly complete DNA copy of a glycine tRNA,
including bases that corresponded to modified and nonpairing bases of the mature tRNA. A model is proposed
to account for the formation of the aberrant clone.

In the early phase of retrovirus infection, the single-
stranded genomic RNA is reverse transcribed in a complex
reaction to form a full-length double-stranded DNA flanked
by long terminal repeat (LTR) sequences (4). Synthesis of
the first strand of this DNA is initiated by a tRNA primer
bound near the 5' end of the template RNA and results in the
formation of a short DNA molecule termed minus-strand
strong-stop DNA (7). This DNA is translocated to the 3' end
of the template and elongated; later in the reaction, probably
after the second DNA strand has been initiated, the tRNA is
removed from the DNA (15). The completed duplex linear
DNA is cyclized to generate two circular forms in the
nucleus of the infected cell (20, 25). One of these forms
contains one LTR sequence, and the other contains two
tandem LTR sequences. The latter molecule is apparently
formed by the blunt-end ligation of the duplex linear DNA
(21) and probably serves as the immediate precursor for the
formation of the integrated proviral DNA (16). Many of the
details of these steps are poorly understood; for example, it
is not known precisely how strong-stop DNA transfers occur
nor how the linear duplex DNA is cyclized to form the two
circular species.
We are studying the replication of Moloney murine leuke-

mia virus and have generated a series of mutants with
alterations at the edge of the LTR near the tRNA primer-
binding site (2; Colicelli and Goff, manuscript in prepara-
tion). Many of these alterations do not dramatically affect
any stage of the life cycle, including reverse transcription,
cyclization of the linear DNA, or formation of the integrated
provirus. One such silent mutation, designated in594-2,
consists of a substitution of the two 3'-terminal bases (TT) of
the viral LTR by a four-base sequence (TATA), yielding a
net insertion of two bases. To characterize the effects of the
mutation, we introduced the altered DNA into cells by
cotransformation with selectable marker DNA (24), recov-
ered infectious virus, and applied the virus to NIH 3T3 cells.
The virus was replication competent and was able to direct
the formation of all three preintegrative DNA forms at
normal levels. To determine the structure of the circular
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forms in greater detail, we extracted low-molecular-weight
DNA (8), cleaved the DNAs with Hindlll, and prepared
clones in the lambda phage vector Charon 30A (18). Clones
containing viral DNA were identified by plaque hybridiza-
tion (1), and 75 of them were examined by gel electrophore-
sis and blot hybridization (22) to determine the size of the
retroviral insert. The majority of the inserts were derived
from viral DNAs that had suffered large deletions or from
full-length DNAs containing one LTR. Five clones con-
tained inserts approximately 8.8 kilobases in length, the size
of the larger viral circles, and were studied further. These
inserts were excised from the phage vector and transferred
to plasmid pBR322. Restriction enzyme mapping showed
that the DNA inserts were all full-length copies of the viral
genome containing two copies of the LTR.
A more detailed analysis of the full-length clones revealed

that one of the clones contained an insertion of extra
sequences at the junction between the two LTRs. The DNA
sequence in this region was determined by the procedure of
Maxam and Gilbert (12) (Fig. 1). Both LTRs were intact and
the silent substitution mutation was still present, but be-
tween the two LTRs was a new sequence of 61 base pairs
(Fig. 1). Comparison with known mammalian tRNAs (3)
revealed that the sequence was a nearly complete copy of
mammalian glycine tRNA (5). The 3'-proximal 52 base pairs
of the tRNA matched perfectly, the next 9 bases of the tRNA
sequence were missing, 7 of the next 9 bases matched, and
the last 4 bases were missing. No other tRNA was a possible
candidate, because the anticodon was present in the se-
quence. Analysis of the sequence at the normal primer-
binding site of the clone revealed that the sequence comple-
mentary to the wild-type proline tRNA primer was still
present (data not shown).
How did this new sequence appear in the clone? The fact

that the sequence was complementary to a tRNA and
appeared next to the edge of the LTR where DNA synthesis
is normally initiated by proline tRNA suggests that it arose
by reverse transcription of a misutilized glycine tRNA. We
propose a mechanism by which the observed structure could
have been generated (Fig. 2). First, we propose that a
glycine tRNA (rather than a proline tRNA [6, 17]) paired
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in594-2(8 8): , G G G G T C T T T C A TATA|TGGTGCAT
tRNAGIY:

S OHAC C AC G U A

TGGCCGGGAAACG AA CCC G G GCC
AC CG G C CC UU 'AG C kT G GGmC:C 5CGG

TCC CG C GTGGC AGG CG AGAATGG
AG G G CGMCAC C G U C C G C U C U UA -CU

AG A D G G U GA

A CC T CC AIAATGAAAG ACCCC3
U G G U G G U UmAC G0p,

FIG. 1. DNA sequence of the aberrant clone in the region between the two LTRs and comparison with the sequence of glycine tRNA. The
top bases show the sequence of the aberrant 8.8-kilobase clone of mutant in594-2, reading in the 5'-*3' direction. The boxed sequences are
within the LTRs. The top LTR contains the original mutation, terminating with the sequence TATA rather than the usual TT; the bottom LTR
is the wild-type sequence. The LTRs of the wild-type virus are normally joined to each other with no inserted bases (2, 21). The second row
of bases is the sequence of mammalian glycine tRNA (5) aligned for maximal pairing with the inserted sequence. The unusual bases are: 1 A,
1-methyladenine; ', pseudouridine; s C, 5-methylcytidine; D, dihydrouridine; Um, 2'-0-methyluridine.

with the genomic RNA at the normal primer-binding site,
making only 12 of the usual 18 base pairs. This step would
have required the assistance of the reverse transcriptase to
make the reaction thermodynamically possible; perhaps
sequences flanking the primer-binding site are recognized by
the enzyme. According to our model, this tRNA was then
extended to form minus-strand strong-stop DNA, and the
DNA was translocated to the 3' end of the viral RNA and
elongated as usual.

Next, plus-strand strong-stop DNA was made. The 3' site
of termination of this molecule is unclear but might be
altered by the presence of the aberrant tRNA; normally, a
part of the tRNA is copied during the synthesis of this
molecule (4, 13, 23). The next step is usually the pairing of
the 3' end of the plus-strand strong-stop DNA with the 3' end
of the minus strand to allow elongation. Normally, the
removal of the primer tRNA exposes a sequence comple-
mentary to the 3' end of the minus strand (15). As a key
difference from the normal situation, we propose that in this
aberrant event, the pairing and transfer occurred without
removal of the glycine tRNA. The result is that at the end of
synthesis of the full-length plus strand, the retained tRNA
was copied into DNA.
The final step to complete the molecule is the cyclization

of the linear DNA; normally, this is achieved by the blunt-
end ligation of the two termini. In the aberrant reaction, the
left end of the linear DNA would be completed as usual by
the extension of the minus strand to the end of its template,
forming a normal duplex blunt end. The right end of the
linear DNA, however, would contain an RNA-DNA duplex;
if the tRNA were removed at this time, it would contain a
long single-stranded tail. We propose that the DNA strand of
the RNA-DNA duplex or the single-stranded DNA tail was
ligated to the other, blunt, end. It may be significant that
bases of the tRNA sequence were missing at this terminus,
and it may be that these four bases were lost in the course of
this ligation reaction. After this ligation, completion of the
structure was simple; the 3' end of the minus strand was

extended and joined to the 5' end to form a covalently closed
circle. If the tRNA were not removed earlier, it could be
readily removed by displacement or RNase H action at this
time.

This aberrant clone has several implications for reverse
transcription of the retroviral genome. First, the structure of
the clone suggests that unusual tRNAs can serve at some
frequency to prime DNA synthesis, even though these
tRNAs are only poorly homologous to the tRNA primer-
binding site. It is likely that reverse transcriptase is respon-
sible and that the enzyme can bind and misutilize a variety of
tRNAs for priming. Our previous results showed that the
Moloney murine leukemia virus enzyme can utilize tRNAs
other than the wild-type proline tRNA, at least when the
primer-binding site is altered (2a); thus, it is not unreason-
able that the enzyme might occasionally misutilize a tRNA
other than proline tRNA, and it is possible that the mutation
could promote such errors. Glycine tRNA, in particular, is
used by several viruslike 30S (VL30) elements (9, 10, 14) and
so must be compatible with the proteins of at least some
murine viral genomes. Second, the retention of the tRNA
sequence in the clone suggests that the aberrant tRNA may
have been poorly removed from the minus strand. Prelimi-
nary screening of other clones of this mutant suggested that
retention of tRNA sequences is not infrequent (data not
shown). RNase H is normally responsible for the removal of
the tRNA while it is paired with the 3' end of plus-strand
strong-stop DNA (15). The poor removal could be accounted
for by either of two possibilities. If the minus strand did
serve as template for the formation of a plus-strand strong
stop, the structure near the 3' end may have been a poor
substrate; the mutant sequence of the DNA joined to the
tRNA or the altered tRNA itself may be poorly recognized
by the enzyme. A second alternative is that the aberrant
minus strand may not have served as the template for
plus-strand strong-stop DNA synthesis, but that tranfer in
trans from another minus-strand template was involved in
the formation of the plus strand. In this case, the aberrant
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7/ U 3 R
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Elongate minus strand DNA

R U5

7 , tRNAGIY
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Synthesize plus strand strong stop
U3 RU5 tRNAGIY

Second jump
Elongate p/lus str-and DNA

U3 ,R,U5 tRNAGIY

circularize
Complete minus strand

FIG. 2. Proposed model for the generation of the aberrant clone
bearing the glycine tRNA sequence. Thin lines, RNA; thick lines,
DNA. The U3, R, and U5 regions of the LTR are indicated; the
central portion of the genome has been shortened at the position of
the slashed lines. For a detailed explanation of the model, see the
text.

tRNA would not have been in RNA-DNA duplex form and
for this reason could not be removed by RNase action.

Finally, it is interesting that reverse transcriptase was able
to copy nearly all of a tRNA, including a number of modified
bases found in mature glycine tRNA. If the fully modified
tRNA was utilized, four 5-methylcytidine bases were copied
and paired with guanine; surprisingly, a 1-methyladenine and
a pseudouridine base in the TTC arm of the tRNA were

copied and in each case apparently paired with adenine
bases. These last two modified bases cannot form normal
Watson-Crick base pairs and should pose problems for
reverse transcriptase. It should be noted that the enzyme has
been shown to exhibit a preference for adenine incorporation
opposite apurinic and apyrimidinic sites (11, 19); thus, the
enzyme may insert adenines at any position which cannot

form a good base pair. Two other modified bases, 2'-O-
methyluridine and dihydrouridine, were located in the re-

gions of the tRNA that were not retained in the extra

sequences (Fig. 1). The fact that these bases were not

retained may reflect difficulties in copying them. Overall, the
results suggest that reverse transcriptase is surprisingly
versatile at copying aberrant modified bases in RNA. The
only alternative, which we consider unlikely, is that an

unmodified precursor form of the tRNA acted as the primer.
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