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Inferring evolutionary relationships among highly divergent pro-
tein sequences is a daunting task. In particular, when pairwise
sequence alignments between protein sequences fall <25% iden-
tity, the phylogenetic relationships among sequences cannot be
estimated with statistical certainty. Here, we show that phyloge-
netic profiles generated with the Gestalt Domain Detection
Algorithm–Basic Local Alignment Tool (GDDA-BLAST) are capable
of deriving, ab initio, phylogenetic relationships for highly diver-
gent proteins in a quantifiable and robust manner. Notably, the
results from our computational case study of the highly divergent
family of retroelements accord with previous estimates of their
evolutionary relationships. Taken together, these data demon-
strate that GDDA-BLAST provides an independent and powerful
measure of evolutionary relationships that does not rely on po-
tentially subjective sequence alignment. We demonstrate that
evolutionary relationships can be measured with phylogenetic
profiles, and therefore propose that these measurements can
provide key insights into relationships among distantly related
and/or rapidly evolving proteins.

ab initio � retroelements � reverse transcriptase � GDDA-BLAST

The ‘‘protein problem’’ has remained unsolved despite de-
cades of research (1, 2). In principle, one expects that the

primary amino acid sequence of a protein determines its struc-
ture, function, and evolutionary (SF&E) characteristics. Yet,
there still is no reliable method for predicting the native state
structure of a protein and its function given only its sequence. In
addition, inferring the evolutionary relationships among highly
divergent protein and/or rapidly evolving sequences is a daunting
task. In general, when pairwise sequence alignments between
protein sequences fall below �25% identity (i.e., the ‘‘twilight
zone’’), the assignment of positional homology is so difficult that
it becomes impossible to safely estimate phylogenetic relation-
ships (1, 3, 4). However, a small number of conserved residues
(�8% identity) can coordinate the 3-D fold and/or function of
proteins (5–7). Conversely, two proteins that share 88% identity
can still retain independent structure and function (8).

The aforementioned studies point out that quantitatively
measuring data spaces in the protein world (i.e., the sequence,
structure, and functional space that proteins occupy) is a fun-
damental question facing evolutionary/computational biologists,
with further questions arising. Is there any equation that quan-
titatively connects these protein spaces to protein evolution?
Which residues within amino acid sequences best reflect the
evolutionary history of a given protein? Do proteins with similar
sequence and structure necessarily share a common ancestor?
Furthermore, if sequence and structure similarity suggest an
evolutionary history, can weak similarities be strengthened by
functional connections? All of these questions are essentially
connected to the protein data space; however, to date they have
not been clearly solved either experimentally or theoretically.

Common computer alignment programs such as BLAST and
FASTA (9, 10) often fail to detect distant protein relationships
with sufficient statistical significance (3). This has spurred a
Herculean effort from many researchers to develop strategies for
detection of statistically significant similarities between distantly
related proteins. For example, Blake and Cohen (11) built new
amino acid substitution matrices for improving the accuracy of
sequence alignment. More recently, advanced sequence com-
parison methods have been developed on the basis of shared
features of sets of related sequences such as protein families.
Examples of such approaches are templates (12, 13), profiles
(14–16), hidden Markov models [HMMs; (17, 18)], and PSI-
BLAST [position-specific iterated BLAST (19)]. In addition,
threading algorithms are also intended to improve detection of
homologous pairs from the sequence space in the twilight zone.
Most of them were reported to show higher quality detection of
evolutionary relationships of proteins compared with previous
methods. In particular, Park et al. (3) reported that the SAM-T98
and PSI-BLAST (sequence profile-based algorithm) show three-
fold higher performance to detect the homologous relation-
ships—between the sequences with �30% sequence identity—
compared with the ordinary pairwise methods of FASTA and
gapped BLAST (19). They determined that comparison of query
sequences with models of clustered multiple sequence informa-
tion can be more sensitive than using a single sequence alone.
This is also true of LEK clustering, which performs and all-
against-all comparison of sequences within a dataset (20), and
has been successfully used to determine divergent evolutionary
relationships (21).

What unites all of these methods is their exploitation of
information encoded in multiple sequences. The recent explo-
sion in the availability of knowledge bases and computational
techniques for the analysis of complex data has created an
unprecedented opportunity for teasing out invaluable informa-
tion from protein sequences. Starting with a basic premise that
protein sequence encodes information about SF&E, we pro-
posed that phylogenetic profiles provide a unified framework for
inferring SF&E from sequence information (22). Herein we
demonstrate that the gestalt domain detection algorithm–basic
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local alignment tool (GDDA-BLAST) generates phylogenetic
profiles that have the capacity to derive phylogenetic relation-
ships for highly divergent proteins in a quantifiable manner,
entirely independent of multiple sequence alignment (MSA).
Results from our computational case study on a benchmark set
of the highly divergent family of retroelements generally accord
with those previously reported, and demonstrate that GDDA-
BLAST measurements can be treated as ‘‘fingerprints’’ that can
be used to derive distance estimates, and thus phylogenetic
relationships, without prior information.

Results
Retroelements Are a Benchmark Set for the Twilight Zone of Sequence
Similarity. Self-replicating genetic elements such as retrotrans-
posons use reverse transcriptase (RT, an RNA-dependent DNA
polymerase) to multiply via an RNA intermediate copied into
DNA (23). These highly diverse and likely ancient proteins are
extremely effective to replicate and, along with other transpos-
able elements, make up �50% of eukaryotic genomes by weight
(23, 24). The first RT was discovered as a retroviral encoded
enzyme (25). Subsequently, multiple genetic elements from
diverse organisms have been shown to encode proteins that share
sequence similarity to the retroviral RT, including cellular
telomerase (23). Given (a) the �20 years of research/literature
on this protein family, (b) the extreme nature of divergence
within the known family members, and (c) its implications for the
early evolution of life on earth and major infectious diseases of
humans (26), retroelements are an excellent and rigorous bench-
mark set to test whether phylogenetic profiles can measure
evolutionary distances.

The RT domain is the only known region in common to all
classes of retroelements and therefore is often used for com-
parative analysis (23, 27, 28). Within the highly divergent RT
domain, seven conserved motifs in the catalytic region of the
enzyme have been identified that enable phylogenetic inferences
of retrotransposons (23, 27, 29, 30). However, limiting the
alignment space to these motifs requires potentially subjective
manual editing, generating few phylogenetically informative
sites. Thus, deep phylogenetic relationships are often ambiguous
at best. Indeed, even these seven conserved motif are as diver-
gent as their functional constraints will allow (23, 31). As a
consequence, the precise phylogenetic relationship of the ret-
roelements is still a subject of debate.

We curated 88 RT-containing sequences representing 11
groups of retroelements [see supporting information (SI) Table
S1 for complete description and ref. 23 for excellent review]. The
individual groups are from a broad range of taxa and comprise
(i) long-terminal-repeat RTs (LTR: containing Ty1/Copia, Ty3/
Gypsy, and BEL/Pao subgroups); (ii) retroviruses (e.g., HIV);
(iii) pararetroviruses (RT-containing DNA viruses), including
hepadnaviruses of animals (e.g., hepatitis B) and caulimoviruses
of plants (e.g., caulif lower mosaic virus), (iv) tyrosine recombi-
nase RTs (e.g., DIRS-1 elements); (v) non-LTR retrotrans-
posons; (vi) Penelope-like elements (PLE); (vii) telomerases
(TERT); (viii) group II introns (i.e., retrointrons); (ix) Mt
Plasmids (i.e., retroplasmids); (x) Ms DNAs (i.e., retrons); and
(xi) diversity-generating retroelements (DGR) (23, 24, 32–34).

Quantitative analysis of within-group and between-group
variations in sequence similarity was performed by using global
pairwise alignments on the RT domain (see Materials and
Methods, Table S2, and Fig. S1). Overall, the average percentage
identity between 88 RT sequences was 17.7% (� 6.0% s.d.).
Specifically, 3,644 pairs (95.2%) among 3,828 possible pairs of
these 88 sequences have �25% sequence identity. Within our
dataset, the group with the highest sequence identity is the Mt
plasmid group (mean 61.2% identity � 41.8% s.d.), and the
group with the smallest sequence identity is the telomerase

group (mean 17.9% identity � 4.4% s.d.). As a whole, RT
sequences reside in the twilight zone of sequence similarity,
underscoring the reason why deducing evolutionary relation-
ships within the RT family is extremely challenging. We sought
a method independent of multiple sequence alignment for
inferring homology in this key protein family, based on our
central hypothesis that profile-sequence alignments below sta-
tistical thresholds are not necessarily random, can retain bio-
logically relevant information that is not reflected by chance
similarity, and can be encoded into an informative phylogenetic
profile matrix.

Phylogenetic Profiles and GDDA-BLAST Concept. A phylogenetic
profile of a protein is a vector, where each entry quantifies the
existence of the protein in a different genome (35–37) (Fig. 1A
Left). This approach has been shown to be applicable to whole
molecule (single profile method), to an isolated domain (mul-
tiple profile method), and to individual amino acids. Further,
information obtained from phylogenetic profiles allows for the
generation of hypotheses about their specific functions (e.g.,
interaction partners), many of which are supported by existing
biochemical studies. Importantly, GDDA-BLAST matrices are a
variation of phylogenetic profiles. In our case, a protein is a
vector where each entry quantifies the existence of alignments
with a protein domain profile (Fig. 1 A Right).
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Fig. 1. GDDA-BLAST concept. (A) An example illustrating binary phyloge-
netic profiles. Red and black circles indicate presence and absence, respec-
tively, of a protein in a genome, or in the case of GDDA-BLAST the presence
or absence of a protein alignment with a domain profile. Two methods are
depicted: (i) multiple-profile method, in which individual domains in Protein
1 are individually encoded and (ii) single-profile method, in which both
domains in Protein 1 are encoded together. (B) The work flow of GDDA-BLAST
(see Materials and Methods). (i and ii) The algorithm begins with a modifica-
tion of the query amino acid sequence at each amino acid position via the
insertion of a seed sequence from the profile of interest. These seeds are
obtained from the profile consensus sequences from National Center for
Biotechnology Information’s Conserved Domain Database (CDD). (iii–v) Sig-
nals are collected from optimal alignments between the ‘‘seeded’’ sequences
and profiles by using rps-BLAST and are incorporated as a composite score into
an N � M data matrix. (vi and vii) This data space can be analyzed to generate
trees based on Euclidean distance measures and Pearson correlation measures
(data not shown) of GDDA-BLAST signals, respectively.

Chang et al. PNAS � September 9, 2008 � vol. 105 � no. 36 � 13475

EV
O

LU
TI

O
N

http://www.pnas.org/content/vol0/issue2008/images/data/0803860105/DCSupplemental/SD1.xls
http://www.pnas.org/content/vol0/issue2008/images/data/0803860105/DCSupplemental/SD1.xls
http://www.pnas.org/content/vol0/issue2008/images/data/0803860105/DCSupplemental/SD2.xls
http://www.pnas.org/cgi/data/0803860105/DCSupplemental/Supplemental_PDF#nameddest=SF1


The basic idea underlying GDDA-BLAST is to begin by
compiling a set of sequence profiles with which the query
sequence is compared (Fig. 1Bi) (22). These profiles can be
obtained from any protein-sequence knowledge base source
[e.g., Protein Data Bank, Pfam, SMART, National Center for
Biotechnology Information Conserved Domain Database
(CDD)] (18, 38, 39). We employ reverse specific position BLAST
(rps-BLAST) (19) to detect protein domains in each query using
their position specific scoring matrices (PSSMs) (39), and have
introduced multiple innovations in GDDA-BLAST. We use a
single domain profile database for pairwise comparisons. Then
we record and quantify all alignments between an unmodified
(control), and modified query sequence. To demarcate the N-
and C-terminal RT domain boundaries, we used overlapping
control alignments with 16 RT-specific profiles to define the
regions of GDDA-BLAST measurements (see Materials and
Methods and Table S2). Modified query sequences are produced
by adding a standard sequence length from a profile, creating a
consistent initiation site (see Materials and Methods and ref. 22).
This consistent initiation site allows rps-BLAST to extend an
alignment even between highly divergent sequences (22, 40–43).
This strategy is designed to amplify and encode the alignments
possible for any given query sequence. Moreover, it is also a way
of resampling the query sequence space; instead of a sliding
window, we use a sliding ‘‘seed.’’

Seeds are generated from profiles by taking a portion (e.g.,
3%–50%) of the profile sequence (e.g., from the N terminus,
from the middle, or C terminus) (Fig. 1Bii). The variable seed
length is designed to capture partial domain alignments from
either direction. These seeds are inserted at each position of the
query sequence. For example, a query sequence of 100 amino
acids yields 100 distinct test sequences for each seed (Fig. 1Bii).
A pairwise alignment for each of these modified query sequences
is then measured against the parent profile by rps-BLAST (39)
(Fig. 1Biii). Next, we filter our results from rps-BLAST using
thresholds of number of hits, and/or percentage identity and
coverage (i.e., alignment length as a function of profile length)
(Fig. 1Biv). The output of these comparisons is a composite
(product) score of either zero (when there is no significant
match) or a positive value (which measures the degree of
successful matching of the protein sequence to each of the
profiles). This procedure can be readily adapted to make an
unbiased comparison between a series of query sequences by
subjecting them to the same screening analysis with the same set
of profile sequences as those of the seeds. Thus, each query
sequence is represented in a vector of nonnegative numbers in
M dimensions (M � number of domain profiles tested) (Fig.
1Bv). This data can then be used to create a tree of relationships
based on standard statistical techniques such as Euclidian dis-
tance between each query sequence (22) (Fig. 1Bvi–vii).

Quantitative Statistics of GDDA-BLAST Measurements. Using
GDDA-BLAST, we aligned each of the unmodified 88 RT-
containing sequences with all available profiles from National
Center for Biotechnology Information’s CDD (39). Next, we
used a representative set of 43 RT sequences and 8 different seed
sizes. We determined that the average number of positive
profiles increases as a function of seed size, yet saturates as the
seed size increases �15% (logistic fit R2 � 0.98405, data not
shown). Therefore, we modified each sequence with a 10% seed
size of an N- and C-terminal seed from each profile and
performed high-throughput sequence alignment with the parent
profile using rps-BLAST. Fig. 2 depicts quantitative statistics for
all control alignments in the RT domain of 88 RT sequences. The
distributions of mean percentage identity (28.46 � 5.40 s.d.) and
mean percentage coverage (77.69 � 14.95 s.d.) are plotted as a
function of normalized hits (i.e., ratio of the total number of
alignments to the modified query number, scaled between 0 and

100), and the query sequence length (Fig. 2 A). Importantly, we
determined that alignments from the control, unmodified query
do not always appear in the resampled seeded query space.
These data also demonstrate that using a 60% coverage thresh-
old removes the majority of alignments which do not improve
with resampling. Therefore, resampling by seeding is one way to
differentially weight alignments that can often be in similar
identity/coverage ranges. Fig. 2B depicts the frequency of the 16
RT-specific profiles aligning with our dataset in control and
resampled conditions. We observe that resampling increases the
frequency of coverage in 14/16 cases, demonstrating that resa-
mpling can improve alignments with homologous RT profiles.

Performance Test of Ab Initio Evolutionary Measurements. GDDA-
BLAST. To test our hypothesis that phylogenetic profiles can
derive information on genetic distance (and hence phyloge-
netic relationships), we quantified the Euclidean distance for
each pairwise comparison in the array of 88 RT sequences
from 24,280 points. Based on this measurement, an 88 � 88
distance matrix was obtained for the RT sequences and an
unrooted tree was derived using the distance-based minimum
evolution method available in MEGA (Fig. 3A) (44). In data
not shown, we tried several different types of scoring methods
(e.g., on/off binary-type score, total alignment score, compos-
ite score, weighted hit number score) and methods of phylo-
genetic inference [e.g., neighbor-joining, minimum evolution,
Unweighted Pair Group Method with Arithmetic mean
(UPGMA)]. Previously reported phylogenetic trees (23, 27, 28,
31, 45) have shown that most, if not all, of the RT groups are
monophyletic. At our current settings, the tree with the highest
degree of monophyly is obtained when the composite (prod-
uct) score is used with the minimum evolution method. In this

2000 2500

Query sequence length

0 20 40 60 80 100

20
40

60
80

Normalized hit number

%
Id

en
tit

y

0 20 40 60 80 100

0
20

40
60

80
10

0

Normalized hit number

%
C

ov
er

ag
e

500 1000 1500

0
20

40
60

80
10

0

N
or

m
al

iz
e

h d
i

n t
um

be
r 1 2

0

0%

20%

40%

60%

80%

100%

cd
00

30
4

cd
01

64
6

cd
01

64
8

pf
am

00
07

8

cd
03

71
4

cd
01

65
0

cd
01

65
1

cd
03

48
7

cd
0 1

6 4
7

cd
01

64
5

cd
01

6 4
4

cd
03

71
5

pf
a m

06
8 1

7

C
O

G
33

44

pf
a m

07
7 2

7

cd
0 1

70
9

Fr
eq

( .
o 

%
t f
ot

a
8 l

8) Control
Modified

                 A

B

Fig. 2. Analysis of GDDA-BLAST measurements in 88 retroelements. (A)
Quantitative statistics for all control alignments in 88 RT sequences over the RT
domain boundary. In these plots, we are comparing profile alignments from
the control unmodified query (black) to those same profiles in the resampled
seeded query (red). The distributions of query sequence length, percentage
identity and percentage coverage are plotted (left to right) as a function of
normalized hits (i.e., ratio of the total number of alignments to the modified
query number, scaled between 0 and 100). The results indicate that resam-
pling by seeding is one way to differentially weight alignments that can often
be in similar identity/coverage ranges. (B) Bar graph depicting the frequency
(% of total, n � 88) of the 16 RT-specific profiles aligning with our dataset in
control (gray) and resampled (blue) conditions. The results indicate that
resampling by seeding increases the frequency in 14/16 cases. This demon-
strates that the consistent initiation site allows rps-BLAST to extend an align-
ment even between highly divergent sequences.
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tree, nearly all of the 88 RT sequence display monophyly [from
random considerations the probability of clustering these
sequences � (1/14)88]. Importantly, we observe multiple with-
in-group and between-group clades in our tree that are

corroborated by multiple independent studies. These relation-
ships include (i) a clear segregation of the LTR and prokary-
otic clades, (ii) telomerases and PLE occurring as sister groups,
and (iii) the overall topology of the LTR clade.

 ZP 00236429-Group II
 YP 473386-Group II

 NP 436278-Group II
 EAV71426-Group II

 YP 724165-Group II
 ZP 00784712-Group II

 AAR97672-DGR
 BAB76713-DGR
 ZP 00111381-DGR
 BAB75196-DGR

 AAN12336-DGR
 P23070-Ms DNA

 NP 617021-Ms DNA
 P23071-Ms DNA

 AAA23403-Ms DNA
 P23072-Ms DNA

 NP 638972-Ms DNA
 AAL47180-NonLTR

 P21328-NonLTR
 EAK91063-NonLTR

 BAC82595-NonLTR
 S58380-NonLTR

 AAA97394-NonLTR
 P16425-NonLTR

 AAZ15238-NonLTR
 AAU25926-Mt plasmid
 NP 041729-Mt plasmid
 AAU25927-Mt plasmid

 CAA40486-Mt plasmid
 AAK58879-PLE

 AAX11377-PLE
 XP 001195436-PLE

 AAT48673-PLE
 AAL14979-PLE
 DAA00890-PLE

 ABC95023-TERT
 AAF26732-TERT

 XP 829083-TERT
 AAF82404-TERT

 NP 013422-TERT
 CAC01849-TERT

 NP 033380-TERT
 AAK35007-TERT
 AAB03640-BEL

 KAMIKAZE BM-BEL
 BELPADRE I-BEL

 BEL1 Cis I-BEL
 S33901-BEL

 BEL-1-I NV-BEL
 Copia-1-I NV-Ty1

 COPIA2I DM-Ty1
 P10978-Ty1

 copia-2-I AN-Ty1
 ANGELA6 TM I-Ty1

 CAB79135-Ty1
 Copia1-I XT-Ty1

 AAP97422-Hepadnavirus
 NP 043864-Hepadnavirus
 AAF33121-Hepadnavirus

 NP 046799-Hepadnavirus
 CAD29590-Hepadnavirus
 YP 031695-Hepadnavirus

 XP 687309-DIRS
 AAL35360-DIRS

 AAA33195-DIRS
 DIRS-1 CB DIRS

 ACB38666-DIRS
 AAM94957-DIRS
 CAA43185-DIRS

 AAO84275-Retrovirus
 NP 040563-Retrovirus

 BAA22090-Retrovirus
 AAD39689-Retrovirus

 NP 955579-Retrovirus
 NP 044738-Retrovirus

 AAC58531-Retrovirus
 NP 054716-Retrovirus

 NP 056728-Caulimovirus
 NP 612577-Caulimovirus

 NP 395469-Caulimovirus
 ABW80581-Caulimovirus
 NP 619548-Caulimovirus

 NP 042513-Caulimovirus
 Gypsy-10-I NV-Ty3
 1510387A-Ty3
 P10401-Ty3
 AFLAV I-Ty3
 AAA35339-Ty3

100000

90/65
85/57

82/48
88/60

96/84

-/-

99/90
100/100

30/20

79/61
52/29

-/-
-/-

77/42

42/36

67/-

-/-
31/-

-/-

-/-

-/-

-/-

48/26

-/-

80/62
100/100

14/-

-/-
-/-

74/44
72/35

-/--/-

-/- 70/49

63/47

78/56
-/-

-/-69/42

-/-

-/-

61/32
-/-

79/52

-/-
81/58

-/-

65/42
62/30
62/-
89/-

-/-

-/-

80/47
-/-

-/-

100/100

79/54
78/100

-/-
78/-
-/51

-/24

79/58

45/-
99/91

78/52

84/55

86/60
79/60

100/97
100/18

62/37
-/-

-/-

-/-
-/-

-/-

60/40

76/26

-/23

67/33

-/-

-/-

68/-

G
II

D
G
R

M
sD

N
o
n
L
T
R

M
tP

P
L
E

T
E
R
T

B
E
L

T
y1

H
ep

D
IR
S

R
etro

C
au
lim
o

T
y3

0.5

 YP 473386-Group II
 EAV71426-Group II
 ZP 00236429-Group II

 ZP 00784712-Group II
 YP 724165-Group II

 NP 436278-Group II
 AAN12336-DGR
 AAR97672-DGR

 BAB75196-DGR
 BAB76713-DGR

 ZP 00111381 -DGR
 CAA40486-Mt plasmid

 NP 041729-Mt plasmid
 AAU25927-Mt plasmid
 AAU25926-Mt plasmid

 NP 638972-Ms DNA
 P23071-Ms DNA
 P23072-Ms DNA

 NP 617021-Ms DNA
 P23070-Ms DNA

 AAA23403-Ms DNA
 AAL47180-NonLTR

 S58380-NonLTR
 EAK91063-NonLTR

 BAC82595-NonLTR
 AAA97394-NonLTR

 P16425-NonLTR
 AAZ15238-NonLTR

 P21328-NonLTR
 XP 001195436-PLE

 AAK58879-PLE
 DAA00890-PLE

 AAL14979-PLE
 AAT48673-PLE

 AAX11377-PLE
 NP 013422-TERT

 AAF26732-TERT
 ABC95023-TERT

 AAF82404-TERT
 AAK35007-TERT

 CAC01849-TERT
 NP 033380-TERT

 XP 829083-TERT

60
100

78
96

46

99

84

47
72

37

98

98

57
90

95

89
60

86

66

82

78

63
69

71

53

37

50

68

67

64

62

50

38
38

23

19

23

44

30

36

33

49

 copia-2-I AN-Ty1
 Copia1-I XT-Ty1
 Copia-1-I NV-Ty1

 P10978-Ty1
 CAB79135-Ty1

 COPIA2I DM-Ty1
 ANGELA6 TM I-Ty1

 NP 046799-Hepadnavirus
 AAF33121-Hepadnavirus

 NP 043864-Hepadnavirus
 AAP97422-Hepadnavirus
 YP 031695-Hepadnavirus
 CAD29590-Hepadnavirus

 S33901-BEL
 BEL1 Cis I-BEL

 BELPADRE I-BEL
 BEL-1-I NV-BEL

 KAMIKAZE BM-BEL
 AAB03640-BEL

 CAA43185-DIRS
 DIRS-1 CB DIRS

 AAM94957-DIRS
 ACB38666-DIRS

 AAL35360-DIRS
 XP 687309-DIRS

 AAA33195-DIRS
 NP 040563-Retrovirus
 AAO84275-Retrovirus

 BAA22090-Retrovirus
 AAD39689-Retrovirus

 NP 044738-Retrovirus
 NP 955579-Retrovirus
 NP 054716-Retrovirus
 AAC58531-Retrovirus

 NP 619548-Caulimovirus
 NP 612577-Caulimovirus

 ABW80581-Caulimovirus
 NP 056728-Caulimovirus

 NP 042513-Caulimovirus
 NP 395469-Caulimovirus

 Gypsy-10-I NV-Ty3
 P10401-Ty3

 AAA35339-Ty3
 AFLAV I-Ty3

 1510387A-Ty3

100

100

37

35
20
37

48
99

84

81
97

99

99

97

96

52
43
92

94

79
88

63
82

92

50
83

85

91

80

71
67

45

52
58

35
31

61
64

33

43

32

73
100

G
II

D
G
R

M
tP

M
sD

N
o
n
L
T
R

P
L
E

T
E
R
T

T
y1

H
ep

B
E
L

D
IR
S

R
etro

C
au
lim
o

T
y3

A B-
-

-

-
-

-

-

-

-

-

-

-

-

-

-

-

-
-

-
-

-
-

-
-

-
-

-

-
-
-

-

-

-

-

-

-

-

-
-

-

-

-

-

-

-

-
-
-

-
-

-
-
-

-

-

-

-
-

-

-
-

-

-
-

-

-

-

-

-

-

-

-
-

-
-

-
-
-

-
-

Fig. 3. Phylogeny of 88 retroelements with statistical support values. (A) Unrooted phylogenetic tree of the RT domain region within 88 RT sequences derived
through the estimation of evolutionary distances using GDDA-BLAST. The pairwise distances among them were acquired based on Euclidean distance
measurement in the 88 � 24,280 data matrix, and an unrooted phylogenetic tree was derived from the 88 � 88 distance matrix by using a minimum evolution
method. This distance measure was automatically computed without manual correction. The tree is drawn to scale, with branch lengths in the same units as those
of the Euclidean distances calculated from the data matrix. Two kinds of statistical estimation for tree branching were performed and are displayed on each
branch of the unrooted tree. These values are listed in the order of jackknife value and bootstrap value. The blank marked ‘‘�’’ in the statistical support indicates
that the clustering of the branching connection cannot be measured in a standardized fashion by the given resampling method (see Materials and Methods).
Bootstrap and jackknife values were obtained from 1,000 replicates and are reported as percentages. (B) Unrooted phylogenetic tree of the RT domain region
within 88 RT sequences produced by multiple sequence alignment with the Dialign algorithm (default settings) and the estimation of their evolutionary distances
by minimum evolution method (pairwise deletion of gaps, amino: Poisson correction, � parameter � 1). Bootstrap values were obtained from 1,000 replicates
and are reported as percentages. For both A and B, the individual groups are labeled with a bracket. The major differences between these two trees lie in the
statistical support values and the placement of the Mt plasmids, hepadnaviruses, and LTR BEL subgroup.
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We tested the robustness of the GDDA-BLAST phylogeny by
two types of resampling methods: bootstrap and jackknife, each
with 1,000 replicates. These statistical support values are dis-
played in order of jackknife and bootstrap in our tree (Fig. 3A).
Despite no measurable statistical support at some nodes, several
noticeable features are found in the statistical values to support
reliable branching patterns.
Multiple sequence alignment. As comparison we performed mul-
tiple sequence alignment of 88 RT domains (as defined by
GDDA-BLAST) with various established algorithms that mea-
sure evolutionary distance [e.g., ClustalW (46), MUSCLE (47,
48), K-align (4, 49), and Dialign (50)]. From each of the
resulting alignments we inferred a minimum evolution tree
(see Materials and Methods and Fig. S2) that includes no
manual editing. When trees are constructed by using complete
deletion of gaps, none of these methods provide a monophy-
letic tree (data not shown). When we perform our analyses
with pairwise deletion of gaps, both ClustalW and Dialign
obtain a monophyletic tree. The tree generated with Dialign
obtains the best statistical support of all methods tested and is
very similar to the one generated by GDDA-BLAST in both
monophyly and topology.

Discussion
Our case study using a benchmark phylogeny in the twilight zone
of sequence similarity demonstrates that phylogenetic profiles
are capable of inferring deep evolutionary relationships. Thus,
we conclude that phylogenetic profiles generated using profile-
sequence alignments below statistical thresholds are not neces-
sarily random and can retain biologically relevant information
that is not reflected by chance similarity.

It is important to compare the independent results obtained
by GDDA-BLAST and Dialign with results in the literature
obtained by manual editing of retroelement sequences. Based on
random considerations, obtaining similar results for the 14
clades of retroelements tested with GDDA-BLAST and Dialign
is grossly improbable. For example, non-LTR and LTR elements
are clearly distinct, as has been suggested previously (27, 33).
Telomerases and PLEs also form a sister clade as reported by
Arkhipova and Doulatov (28, 33). In large part, both phylogenies
also recapitulate the results of Goodwin and Poulter for the
topology of the LTR group, including retroviruses and pararet-
roviruses (32). With the exception of Mt plasmids, the topology
for the prokaryotic group is the same in both analyses, which
accord with previous studies (23, 28, 33). All MSA methods
tested here and manually edited trees in the literature place the
Mt plasmids in the prokaryotic group. Conversely, GDDA-
BLAST places Mt plasmids with the telomerases and PLEs,
although this position has no statistical support. Nevertheless, it
has been demonstrated that Mt plasmids have 3� terminal
repeats similar to those of chromosomal telomeres, making them
the potential precursor of telomerase (51). Another key differ-
ence between the Dialign and GDDA-BLAST results is the
placement of the hepadnaviruses. Dialign places the hepadna-
viruses between the Bel/Ty1 clades, in contrast to the results
obtained with GDDA-BLAST and previous reports (32, 52).

Within the twilight zone of sequence similarity, statistical
support can help eliminate evolutionary ambiguities. Although
none of the ab initio methods tested here obtained robust
deep-branch statistical support, having an independent ap-
proach to estimate evolutionary relationships undoubtedly rep-
resent an important advance (Fig. 3). Determining the data
points collected by GDDA-BLAST that are informative for
SF&E annotation should enable us to optimize and refine our
approach. Evidence for this idea is shown in Fig. S3. In these
analyses, we limited our measurements to the profiles in the
control preparation that are ‘‘active’’ (defined by having a
normalized hit ratio �25). When we generated trees from both

the unmodified and modified sequences for these profiles, we
observed that even this limited subset of profiles have significant
informational content. When we further limited this tree to only
the most frequently occurring alignments, we obtained the 16 RT
domain-containing profiles present in the CDD. Intriguingly, we
still observe significant monophyly that is well above random.
Based on these results, it is reasonable to consider that expand-
ing only the informative profiles within our knowledge base will
improve the robustness of GDDA-BLAST measurements, in
addition to improving computational performance.

Despite efforts by multiple investigators over 20 years, there
still is no commonly accepted phylogenetic history of the
retroelements. This is due, in large part, to the extreme
divergence between the sequences in question, which compro-
mises both multiple sequence alignment and phylogenetic
analyses. GDDA-BLAST uses knowledge-based screens of
SF&E domain profiles. Therefore, these independent mea-
surements derive additional information toward characterizing
the evolutionary history of proteins that cannot be easily
obtained from multiple sequence alignment methods. Even in
its nascent stage, GDDA-BLAST provides measurements that
give independent support for phylogenetic studies and key
insight into evolutionary relationships among distantly related
and/or rapidly evolving proteins.

Materials and Methods
Sequence Collection. A total of 88 RT sequences were collected from GenBank
and the Genetic Information Research Institute Repbase (http://www.girinst.
org), representing a sample of the known diversity of RT-containing organ-
isms (see Table S1; those curated from Repbase are denoted as TRACE).

Defining RT Domain Boundaries. We performed quantitative statistics of the
overlapping alignments for 16 RT-specific profiles (extracted from CDD) in
each of the 88 unmodified RT sequences. The start and end position were
defined from the start of the most N-terminal alignment and the end of the
most C-terminal alignment. Statistics for these alignments are reported in
Table S2 and include (i) position of the alignments; (ii) the percentage identity
and coverage of each alignment; (iii) the frequency (% of total) of each
domain profile aligning in the total dataset of 88 RT sequences; and (iv) a list
of the 16 RT profiles along with their identifier, length, and description.

GDDA-BLAST Phylogenetic Trees. Each RT was screened in GDDA-BLAST with
24,280 profiles at 10% seed size. For each profile scoring above threshold (60%
coverage, 10% identity), a composite score was generated (%coverage �
%identity � normalized hit number), creating an N (queries) � M (profile)
matrix. Next, the Euclidian distance for the product scores of each query
sequence was calculated, creating an N (queries) � N (Euclidian distance)
matrix. These distances matrices can then be used to infer phylogenetic trees
using an appropriate method (minimum evolution, neighbor joining, UPGMA,
etc). See SI Materials and Methods for a complete description.

Statistical Estimation of Phylogenetic Trees. Two different statistical support
values are provided on the branches of our best phylogenetic tree, which we
obtained with 88 sequences and 24,280 domain profiles at 10% seed size. All
branches in the tree are not necessarily supported by all of the statistical tests
we performed. For each sample, we generated a minimum evolution tree and
obtained a consensus tree of the trees. Given the consensus tree, we provided
statistical support values on branches of our best phylogenetic tree if the
branches were shared between the original tree and the tree obtained from
the statistical test. See SI Materials and Methods for a complete description of
all methods used.

ACKNOWLEDGMENTS. We thank Jason Holmes at the Pennsylvania State
University CAC center for technical assistance; Drs. Jayanth Banavar and Peter
Hudson for useful discussion and continued support; and Jim White, Richard
Wilhelm, M. Yahu, J.L. Children, C. Diddy, and Barbara VanRossum for creative
dialogue. This work was supported by the Searle Young Investigators Award
and start-up monies from Pennsylvania State University (R.L.P.), NCSA Grant
TG-MCB070027N to R.L.P. and D.V.R., Pittsburgh Supercomputing Center
Grant BIO060003P to R.L.P., and a grant from the Pennsylvania Department of
Health using Tobacco Settlement Funds to D.V.R. The Pennsylvania Depart-
ment of Health specifically disclaims responsibility for any analyses, interpre-
tations, or conclusions.

13478 � www.pnas.org�cgi�doi�10.1073�pnas.0803860105 Chang et al.

http://www.pnas.org/cgi/data/0803860105/DCSupplemental/Supplemental_PDF#nameddest=SF2
http://www.pnas.org/cgi/data/0803860105/DCSupplemental/Supplemental_PDF#nameddest=SF3
http://www.pnas.org/content/vol0/issue2008/images/data/0803860105/DCSupplemental/SD1.xls
http://www.pnas.org/content/vol0/issue2008/images/data/0803860105/DCSupplemental/SD2.xls
http://www.pnas.org/cgi/data/0803860105/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0803860105/DCSupplemental/Supplemental_PDF#nameddest=STXT


1. Ponting CP, Russell RR (2002) The natural history of protein domains. Annu Rev Biophys
Biomol Struct 31:45–71.

2. Vogel C, Bashton M, Kerrison ND, Chothia C, Teichmann SA (2004) Structure, function
and evolution of multidomain proteins. Curr Opin Struct Biol 14:208–216.

3. Park J, et al. (1998) Sequence comparisons using multiple sequences detect three times
as many remote homologues as pairwise methods. J Mol Biol 284:1201–1210.

4. Lassmann T, Sonnhammer EL (2005) Kalign–an accurate and fast multiple sequence
alignment algorithm. BMC Bioinformatics 6:298.

5. Suel GM, Lockless SW, Wall MA, Ranganathan R (2003) Evolutionarily conserved
networks of residues mediate allosteric communication in proteins. Nat Struct Biol
10:59–69.

6. Russ WP, Lowery DM, Mishra P, Yaffe MB, Ranganathan R (2005) Natural-like function
in artificial WW domains. Nature 437:579–583.

7. Socolich M, et al. (2005) Evolutionary information for specifying a protein fold. Nature
437:512–518.

8. Alexander PA, He Y, Chen Y, Orban J, Bryan PN (2007) The design and characterization
of two proteins with 88% sequence identity but different structure and function. Proc
Natl Acad Sci USA 104:11963–11968.

9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search
tool. J Mol Biol 215:403–410.

10. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison.
Proc Natl Acad Sci USA 85:2444–2448.

11. Blake JD, Cohen FE (2001) Pairwise sequence alignment below the twilight zone. J Mol
Biol 307:721–735.

12. Taylor WR (1986) Identification of protein sequence homology by consensus template
alignment. J Mol Biol 188:233–258.

13. Yi TM, Lander ES (1994) Recognition of related proteins by iterative template refine-
ment (ITR). Protein Sci 3:1315–1328.

14. Gribskov M, McLachlan AD, Eisenberg D (1987) Profile analysis: Detection of distantly
related proteins. Proc Natl Acad Sci USA 84:4355–4358.

15. Luthy R, Xenarios I, Bucher P (1994) Improving the sensitivity of the sequence profile
method. Protein Sci 3:139–146.

16. Elofsson A, Fischer D, Rice DW, Le Grand SM, Eisenberg D (1996) A study of combined
structure/sequence profiles. Fold Des 1:451–461.

17. Baldi P, Chauvin Y, Hunkapiller T, McClure MA (1994) Hidden Markov models of
biological primary sequence information. Proc Natl Acad Sci USA 91:1059–1063.

18. Sonnhammer EL, Eddy SR, Durbin R (1997) Pfam: A comprehensive database of protein
domain families based on seed alignments. Proteins 28:405–420.

19. Altschul SF, et al. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Res 25:3389–3402.

20. Schneidman E, Berry MJ, Segev R, Bialek W (2006) Weak pairwise correlations imply
strongly correlated network states in a neural population. Nature 440:1007–1012.

21. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of
genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868.

22. Ko KD, et al. (2008) Phylogenetic profiles as a unified framework for measuring protein
structure, function and evolution. Phys Arch arXiv:0806.239, q-bio.Q.

23. Eickbush TH, Jamburuthugoda VK (2008) The diversity of retrotransposons and the
properties of their reverse transcriptases. Virus Res 134:221–234.

24. Boeke JD (2003) The unusual phylogenetic distribution of retrotransposons: A hypoth-
esis. Genome Res 13:1975–1983.

25. Baltimore D (1970) RNA-dependent DNA polymerase in virions of RNA tumour viruses.
Nature 226:1209–1211.

26. Darnell JE, Doolittle WF (1986) Speculations on the early course of evolution. Proc Natl
Acad Sci USA 83:1271–1275.

27. Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their
reverse transcriptase sequences. EMBO J 9:3353–3362.

28. Arkhipova IR, Pyatkov KI, Meselson M, Evgen’ev MB (2003) Retroelements containing
introns in diverse invertebrate taxa. Nat Genet 33:123–124.

29. Poch O, Sauvaget I, Delarue M, Tordo N (1989) Identification of four conserved motifs
among the RNA-dependent polymerase encoding elements. EMBO J 8:3867–3874.

30. Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Crystal structure at 3.5
A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science
256:1783–1790.

31. Malik HS, Eickbush TH (2001) Phylogenetic analysis of ribonuclease H domains suggests
a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res
11:1187–1197.

32. Goodwin TJ, Poulter RT (2000) Multiple LTR-retrotransposon families in the asexual
yeast Candida albicans. Genome Res 10:174–191.

33. Doulatov S, et al. (2004) Tropism switching in Bordetella bacteriophage defines a
family of diversity-generating retroelements. Nature 431:476–481.

34. Medhekar B, Miller JF (2007) Diversity-generating retroelements. Curr Opin Microbiol
10:388–395.

35. Kim Y, Subramaniam S (2006) Locally defined protein phylogenetic profiles reveal
previously missed protein interactions and functional relationships. Proteins 62:1115–
1124.

36. Ranea JA, Yeats C, Grant A, Orengo CA (2007) Predicting protein function with
hierarchical phylogenetic profiles: The Gene3D Phylo-Tuner method applied to eu-
karyotic genomes. PLoS Comput Biol 3:e237.

37. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning
protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc
Natl Acad Sci USA 96:4285–4288.

38. Letunic I, et al. (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res
32:D142–D144.

39. Marchler-Bauer A, et al. (2005) CDD: A conserved domain database for protein
classification. Nucleic Acids Res 33:D192–D196.

40. van Rossum DB, et al. (2005) Phospholipase Cgamma1 controls surface expression of
TRPC3 through an intermolecular PH domain. Nature 434:99–104.

41. Caraveo G, van Rossum DB, Patterson RL, Snyder SH, Desiderio S (2006) Action of TFII-I
outside the nucleus as an inhibitor of agonist-induced calcium entry. Science 314:122–
125.

42. Nikolaidis N, et al. (2007) Ancient origin of the new developmental superfamily
DANGER. PLoS ONE 2:e204.

43. Chakraborty A, et al. (2008) HSP90 regulates cell survival via inositol hexakisphosphate
kinase-2. Proc Natl Acad Sci USA 105:1134–1139.

44. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics
Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599.

45. Nakamura TM, et al. (1997) Telomerase catalytic subunit homologs from fission yeast
and human. Science 277:955–959.

46. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL�X
windows interface: Flexible strategies for multiple sequence alignment aided by
quality analysis tools. Nucleic Acids Res 25:4876–4882.

47. Edgar RC (2004) MUSCLE: A multiple sequence alignment method with reduced time
and space complexity. BMC Bioinformatics 5:113.

48. Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res 32:1792–1797.

49. Lassmann T, Sonnhammer EL (2006) Kalign, Kalignvu and Mumsa: Web servers for
multiple sequence alignment. Nucleic Acids Res 34:W596–W599.

50. Morgenstern B (2004) DIALIGN: Multiple DNA and protein sequence alignment at
BiBiServ. Nucleic Acids Res 32(Web Server issue):W33–6.

51. Walther TC, Kennell JC (1999) Linear mitochondrial plasmids of F. oxysporum are novel,
telomere-like retroelements. Mol Cell 4:229–238.

52. Plant EP, Goodwin TJ, Poulter RT (2000) Tca5, a Ty5-like retrotransposon from Candida
albicans. Yeast 16:1509–1518.

Chang et al. PNAS � September 9, 2008 � vol. 105 � no. 36 � 13479

EV
O

LU
TI

O
N


