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Purpose: Intracellular free calcium ions (Ca2+) are an important element in retinal ganglion cell response. Two major EF-
hand (E-helix-loop-F-helix-hand) calcium binding proteins in the retina, calretinin and calbindin-28 kDa, are important
buffers of intracellular free Ca2+ in neurons, and may also serve as Ca2+-dependent regulators of enzymes and ion channels.
Methods: This study used immunohistochemistry to investigate the subcellular expression patterns of calretinin and
calbindin-28 kDa, in the soma, dendrites, and the axonal compartment of rat retinal ganglion cells.
Results: Antibodies for calretinin and calbindin-28 kDa labeled different cell populations in the retinal ganglion cell layer.
In this layer, calretinin labeled a larger number of cells compared to calbindin-28 kDa, many, but not all, of which were
displaced amacrine cells. The calbindin-28 kDa immunopositive neurons were distinct in that their somata were
peripherally encircled by microtubule associated protein 1 (MAP-1) or neurofilament-200 kDa subunit (NF-200 kDa)
immunofluorescence. Although somata of retinal ganglion cells contained these calcium binding proteins, neither protein
was found in the dendrites or initial segments of the axons. However, both were expressed in the ganglion cell axons in
nerve fiber layer. Calretinin and calbindin-28 kDa staining overlapped in some fibers and not in others. Calretinin
immunofluorescence was concentrated in discrete axonal regions, which showed limited staining for calbindin-28 kDa or
for NF200 kDa, suggesting its close proximity to the plasma membrane.
Conclusions: There is a clear compartmentalization of calbindin-28 kDa and calretinin distribution in retinal ganglion
cells. This suggests that the two calcium binding proteins perform distinct functions in localized calcium signaling. It also
indicates that rather than freely diffusing through the cytoplasm to attain a homogeneous distribution, calbindin-28 kDa
and calretinin must be bound to cellular structures through interactions that are likely important for their functions.

Retinal ganglion cells (RGCs), the final output neurons
of the retina, gather visual information from bipolar cells and
amacrine cells by synaptic inputs from these neurons. They
encode visual signals into Na+-dependent action-potentials
that are transmitted along the optic nerve to higher visual
centers in the brain. Both low-threshold and high-threshold
Ca2+ channels present in RGCs contribute to their responses
(for a review, see [1]). Indirectly, Ca2+ via Ca2+-activated K+
channels present in RGCs [2,3] can contribute to K+-
dependent after-hyperpolarization following action
potentials, which in turn can control excitability and firing
patterns of neurons [4,5]. In the dendrites of RGCs, synaptic
currents have been found to activate T-type calcium channels
[6,7] which can augment and shape transient synaptic
responses [8]. Changes in intracellular Ca2+ can also modulate
ion channels, signaling cascades, and neurotransmitter
receptors locally [2,9-17]. Impaired regulation of Ca2+ by
calcium-binding proteins has been suggested to contribute to
neurodegenerative processes [18,19], and changes in
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intracellular Ca2+ in RGCs have been proposed to play a role
in excitatory neurotoxicity [20], inactivation of calpain [21]
and other proteases, and in apoptotic cell death [22,23].

Changes in intracellular Ca2+ are modulated by calcium
binding proteins (CBPs) that act as Ca2+ buffers, and these
buffers are the major determinants of the kinetics of
fluctuations in intracellular Ca2+ (for a review, see [24]).
Calretinin and calbindin-28 kDa belong to a family of low
molecular weight CBPs expressed in the retina and nervous
system of vertebrates [25-30]. These proteins share
approximately 59% sequence identity and 77% similarity
(Figure 1B). Each has six E-helix-loop-F-helix-hand (EF)-
hand motifs (Figure 1A), but only four are functional in
calbindin-28 kDa and only five are active in calretinin [31,
32].

Despite their similar amino-acid sequence, these two
proteins are different in many respects. Structurally, they have
disparate domain organizations of their EF-hand motifs [31],
and functionally, they interact with different partners in
various cells. For example, in calcium signaling pathways,
calbindin-28 kDa interacts with caspase-3 [33] whereas
calretinin interacts with cytoskeletal components [34] and
basic helix–loop–helix transcription factors [35]. Under
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pathological conditions, such as in response to ischemia and
reperfusion, their levels in RGCs are differentially altered
[36]. Their distinctive functions are highlighted by their
presence in distinct neuronal populations in the central
nervous system (for example [27,37-39]), where they may
serve unique roles.

The goal of the present study was to go beyond the
previous studies that investigated the distribution of calretinin
and calbindin-28 kDa in the rat retina [27,40] and to examine
the cellular and subcellular distributions of these proteins in

the ganglion cell layer. This study shows that calbindin-28
kDa and calretinin have distinct compartmentalization in
RGCs. This suggests that structurally certain intracellular
quantities of these two CBPS must be bound to cellular
structures. Functionally these bound proteins could influence
subcellular Ca2+ signaling and local Ca2+ dynamics.

METHODS
Animals for immunohistochemical studies: Studies were
performed using 16 1-1.5-year-old Brown Norway rats

Figure 1. Schematic representation of calretinin and calbindin-28 kDa proteins and their sequence identity. A: Shown is a schematic
representation of calretinin and calbindin-28 kDa proteins. The red blocks mark the E-helix-loop-F-helix-hand (EF) hand regions within each
molecule. B: Alignment of the amino acid sequences of rat calretinin and calbindin-28 kDa molecules is based on NCBI accession numbers
P47728 and P07171 respectively. Protein sequences were obtained from the NCBI protein database. C: Western blots for different calbindin-28
kDa (CB) and calretinin (CR) antibodies for rabbit (R) and mouse (M) are shown. Both calbindin-28 kDa and calretinin antibodies recognized
a single protein band close to 26 kDa. The blot on the far right used antibodies for both calretinin (AB148) and calbindin-28 kDa (300). The
arrow indicates the putative calbindin-28 kDa-positive band below the thicker calretinin positive band.
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(Rattus norvegicus; Charles River Laboratories, Wilmington,
MA) and two three-month-old Sprague-Dawley rats (Rattus
norvegicus; Charles River Laboratories, Wilmington, MA).
All animals were maintained on a 12 h:12 h light-dark cycle.
Food and water were available ad libitum. Animals were light-
adapted before euthanasia—in room light that was rod
saturating, at least 1 scot cd.m2. The Brown Norway rats were
initially anesthetized using an intramuscular injection of 86
mg/kg ketamine and 6.5 mg/kg xylazine (Both drugs were
from Vedco, St. Joseph, MO) and then euthanized by an
intramuscular injection of 150–200 mg/kg pentobarbital. The
two Sprague-Dawley rats were used for immunoblotting, and
were euthanized by CO2 inhalation. All animal procedures
and protocols conformed to the United States Public Health
Service and Institute for Laboratory Animal Research
guidelines and were approved by both the University of
Houston Institutional Animal Care and Use Committee as
well as the Baylor College of Medicine Institutional Animal
Care and Use Committee.

Tissue preparation for immunohistochemistry: Following
euthanasia, the eyes were rapidly excised from the orbit. A
portion of the superior rectus muscle was left to indicate the
superior pole of the globe. The corneas were slit with a razor
blade, the lens was removed, and eyes were immersed in 4%
paraformaldehyde in 0.1 M sodium cacodylate buffer (pH 7.4)
for 1 h at 4 °C. Following fixation, eyes were rinsed in
phosphate buffered saline (PBS; pH 7.4) and cryoprotected in
30% sucrose in 1X PBS overnight. The next day, the eyes were
embedded in Tissue-Tek OCT Compound (Tissue-Tek,
Hatfield, PA) and fast frozen in liquid nitrogen. Vertical
cryostat sections of 10–12 µm thickness were cut parallel to
a plane tangent to the corneal surface at the center of the pupil
and collected onto Superfrost/Plus microscope slides
(Fisherbrand; Fisher Scientific, Pittsburgh, PA). Sections
were stored at −20 °C until use.

For retinal whole-mounts, the eye was excised and the
cornea and lens were removed as described in the previous
section. Following removal of the sclera and the retinal
pigmented epithelium, the neural retina along with some
overlying vitreous was rapidly removed. The retina was rinsed
in cold Ames’ medium (Sigma-Aldrich, St. Louis, MO; 4 °C,
pH 7.4) and then immediately fixed in 4% paraformaldehyde
in 0.1 M cacodylate buffer (pH 7.4) for 5 min at 4 °C. The
vitreous humor was removed, and relaxing cuts were made in
the retinal margin to allow the retina to flatten. The retina was
rinsed in 1X PBS and subsequently incubated with the
antibodies diluted to their appropriate concentration (Table 1).
The details of the immunolabeling procedure has been
described in detail below.

Antibodies and antisera: The antibodies and antisera used are
detailed in Table 1. Binding of primary antibodies was
detected using fluorescent antisera. The secondary antisera
used were raised in goat and specific for either mouse or sheep

immunoglobulins and were conjugated to a 1:200 dilution for
AlexaFluor488 or AlexaFluor546 (Invitrogen Corporation,
Carlsbad, CA).

Immunoblotting: Antibody specificity was tested using
immunoblots of membrane homogenates. After the Sprague
Dawley rats were euthanized by CO2 inhalation, one retina
from each rat was rapidly extracted, rapidly frozen in dry ice,
and powdered with a pestle. Added to the retina was a
homogenization buffer composed of the following: 20 mM
HEPES, pH 7.0, 150 mM NaCl, 3 mM MgCl2, 1 mM CaCl2,
1 mM beta-mercaptoethanol, 0.01% NaN3, 1 mM EDTA, 1X
protease inhibitors, and solid phenylmethylsulphonyl fluoride
(PMSF). The tissue was sonicated and then centrifuged at
12,000x g for 10 min. Protein concentration of the retinal
homogenate was quantified using Bradford assay against a
known BSA standard [41]. Supernatant containing
approximately 70 µg of protein were loaded into each well of
12% SDS polyacrylamide gel. Molecular weight standards
(BenchMark™ Protein Ladder; Invitrogen) were run on
adjacent lanes. The gels were run at constant current to
separate proteins. Proteins were transferred to nitrocellulose
membranes and blocked with 5% fat-free milk in Tris-
buffered saline with Tween-20 (TBST) buffer with 0.02%
NaN3. Each membrane was then incubated with primary
antibody, which had been diluted in 5% fat-free milk in TBST
with 0.02% NaN3. A 1:1,000 dilution was used for all
antibodies. The nitrocellulose membrane was rinsed and

Figure 2. Calretinin and calbindin-28 kDa immunolabeling of a
vertical cryosection. A: Calretinin immunolabeling was present in
cell bodies and processes of amacrine cells at the inner nuclear layer
(INL)-inner plexiform layer (IPL) border. Calretinin labeling was
also present in cell bodies and processes (arrows) in the ganglion cell
layer (GCL). Calretinin labeling is also found in three distinct bands
in the IPL and retinal ganglion cell (RGC) axons in the nerve fiber
layer (NFL; arrowhead). B: Calbindin-28 kDa immunolabeling was
present in cell bodies and processes of horizontal cells at the outer
plexiform layer (OPL)-INL border. Calbindin-28 kDa also labeled
amacrine cells at the INL-IPL border. Some descending processes
were seen for some of these neurons (arrow). There are also diffuse
calbindin-28 kDa-positive punctate in the IPL. Calbindin-28 kDa
labeling is seen in few cells in the GCL as well as in the RGC axons
in the NFL (arrowhead). Scale bars represent 20 µm.
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incubated in secondary antibody conjugated to 1:10,000 HRP.
Protein bands were visualized by enhanced
chemiluminescence.
Immunolabeling: Immunofluorescent methods used in this
study for immunolabeling frozen sections and retinal whole-
mounts are described previously [42-45]. Frozen sections
were thawed, rinsed in deionized water, treated with 1%–2%
NaBH4 to reduce autofluorescence, rinsed in deionized water,
followed by 1X PBS. Nonspecific labeling was attenuated
with 10% normal goat serum, 5% BSA, 0.5%–1% fish
gelatin,and 0.1%–0.5% Triton X-100 in PBS (“blocker”).

After removal of excess blocker, the primary antibody
was incubated for 24–48 h at 4 °C in blocker. A combination
of primary antibodies was applied simultaneously for double
labeling experiments. Subsequently, sections were rinsed with

1X PBS, blocked for 30 min at room temperature, and
secondary antibody was applied for 1 h at room temperature
in blocker. An appropriate combination of secondary antisera
was applied simultaneously for double labeling experiments.
Sections were rinsed and coverslipped in a fade-retardant
mounting medium (Vectashield; Vector Labs or Prolong
Gold; Invitrogen) and examined with the microscope. As
anticipated, there was no labeling in sections processed
substituting normal rabbit serum for rabbit polyclonal primary
antisera, nonspecific mouse IgGs, or in the absence of primary
antibodies.

Rat retinal whole-mounts were immunolabeled free-
floating (i.e., were incubated with the appropriate antibodies
diluted in “blocker” in an eppendorpf tube, such that they were
capable of free movement within the tube). Whole-mounts

Figure 3. Calretinin and calbindin-28 kDa are differentially distributed in amacrine cells as seen in retinal whole-mounts. A-C: Double labeling
for calretinin (red) and calbindin-28 kDa (green) in the inner nuclear layer shows that labeling for each was present in a distinct set of amacrine
cells For the apparent region of overlap (arrowhead) in the overlay of this confocal plane, examination of different z-planes revealed that these
were disparate cells located at different depths. Arrows indicate calbindin-28 kDa-immunopositive cells. Scale bar represents 20 µm.
Abbreviations: bv is blood vessel.
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TABLE 1. PRIMARY ANTIBODIES AND ANTISERA

Antigen Host Dilution Source Reference
Calbindin-28kDa Mouse 1:1000-1:5000    SWANT, Bellinzona, Switzerland (Cat# 300) [37], [27]
Calbindin-28kDa Rabbit 1:1000-1:5000    SWANT, Bellinzona, Switzerland (Cat# CB38) [27]
Calretinin Rabbit 1:1000-1:5000    Chemicon International, Temecula, CA (Cat# AB148)             [60], [27]
Microtubule Associated
Protein-1 (MAP-1) Mouse 1:300             Sigma-Aldrich, St. Louis, MO (Cat# M4278; Clone HM-1)      [58], [59]

Neurofilament-200 kDa Mouse 1:1000 Chemicon International, Temecula, CA (Cat# MAB5266;
Clone N52)

[52], [59]
NaV α-subunit, pan-specific
(Pan-NaV) Mouse 1:500-1:1000   Sigma-Aldrich, St. Louis, MO (Cat# S8809; Clone K58/35)          [49]

NaV1.1 α-subunit Mouse 1:500-1:1000
G. Matthews (SUNY-Stony Brook), J. Trimmer (UC
Davis), Antibodies, Inc./NeuroMab, Davis, CA (Cat#
75-023; Clone K74/71)

[50]

NaV1.2 α-subunit Mouse 1:500-1:1000 J. Trimmer (UC Davis); Antibodies, Inc./NeuroMab, Davis,
CA (Cat# 75-024; Clone K69/3)

[51]

NaV1.6 α-subunit Mouse 1:500-1:1000 J. Trimmer (UC Davis), Antibodies, Inc./NeuroMab, Davis,
CA (Cat# 75-026; Clone K87A/10)

[48]

Specificity, host, dilution, and source information for the primary antibodies and antisera that were used in these studies.
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were treated with 1%–2% NaBH4 for 1–2 min, rinsed in
deionized water followed by 1X PBS and incubated in blocker
solution for 1 h at room temperature to block nonspecific
labeling. Retinas were incubated in primary antibody for 5
days at 4 °C. Retinas were rinsed in 1X PBS for 2 h at room
temperature and then incubated free-floating in secondary
antibody at room temperature for 1–2 h. Retinas were then

rinsed in 1X PBS for 2 h at room temperature, flattened onto
microscope slides with the ganglion cell side up, coverslipped
with a fade-retardant mounting medium (Prolong Gold;
Invitrogen) and examined in the confocal microscope. For
each antibody a minimum of three retinas from three different
animals were tested. The results of this study were consistent
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Figure 4. Calretinin and calbindin-28 kDa are distinctly distributed in the ganglion cell and nerve fiber layer as seen in retinal whole-mounts.
A-C: Double labeling for calretinin (red) and calbindin-28 kDa (green) in the ganglion cell layer (GCL)/nerve fiber layer (NFL) shows that
labeling for each was present in a distinct set of neurons. Calbindin-28 kDa positive cell bodies are indicated by arrowheads. Some calretinin-
positive neurons show processes (arrow) that ascend distally. Note the discontinuous staining pattern of calretinin in the NFL in contrast to a
smoother staining pattern for calbindin-28 kDa. D,E: A single confocal optical section distal to that of A-C shows that the calretinin positive
processes (arrow) are directed in the inner plexiform layer (IPL) distally toward a calretinin-immunopositive plexus, a characteristic of
displaced amacrine cells. G: Representative calretinin and calbindin-28 kDa double staining in the GCL/NFL is shown. Channel intensity
profiles for the red and green channels for straight lines along the long axis (lines a and b in G shown in H and I respectively) show different
intensity profiles for calretinin and calbindin-28kDa immunofluorescence. Scale bar represents 20 µm.
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for the antibody concentrations (Table 1) and detergent
concentrations of 0.1 to 0.5% Triton X-100 used.
Imaging: Images were acquired using a Leica TCS SP2
confocal microscope and LCS software (Leica Microsystems,
Exton, PA). Images were captured using 20x (NA, 0.7), 63x
oil (NA, 1.32), or 63x water immersion (NA, 1.2) objective
lenses. Stacks of serial optical sections spaced from 1.5 µm to
6 µm apart in the Z plane were collected. For assessment of
labeling in single optical planes, we used 63x objectives to
achieve a maximal Z-plane resolution. Images in each
fluorescent channel were collected sequentially with laser
power and detector sensitivity adjusted to prevent bleed-
through of signals between fluorescence channels. The
absence of bleed-through between channels was confirmed in
sections treated with a single primary antibody and a
combination of secondary antibodies imaged using identical
settings to verify that only the channel corresponding to the
primary antibody showed labeling.

Figures were prepared by importing images into Adobe
Photoshop 6.0 (Adobe Systems, Inc., Mountain View, CA)
and calibrating image scale. To estimate colocalization of
immunofluorescence from two different antibodies in the
nerve fiber layer, we plotted the channel intensity of each label
along its long axis by using the ImageJ software (W.S.
Rasband, NIH, Bethesda, MD) and its red-green-blue
(RGB)_Profiler plugin (Laummonerie and Mutterer, Institut
de Biologie Moléculaire des Plantes, Strasbourg, France). To
estimate cell soma size in the RGC layer, the outer border of
the cell membrane, stained for NaV, was traced manually from
confocal projection of the RGC layer. The area was then
measured using ImageJ software (W.S. Rasband, NIH,
Bethesda, MD).

RESULTS
Immunoblotting: Western blots using the different primary
antibodies against calbindin-28 kDa (300 and CB-38a) and
calretinin (AB148) each labeled a single protein-band close
to the molecular weight marker band of 26 kDa (Figure 1C),
indicating that the antibodies were specific for proteins of that
molecular weight. The mouse monoclonal antibody for
calbindin-28 kDa, 300, (Figure 1C) used together with the
rabbit polyclonal antibody for calretinin, AB148, revealed
that the two antibodies recognized specific proteins that had
different molecular weights. The single protein band labeled
by the calbindin-28 kDa rabbit polyclonal antibody (CB-38a)
was too broad to rule out cross-reactivity with calretinin.

Labeling for calretinin and calbindin-28 kDa: Staining for
calretinin and calbindin-28 kDa in vertical sections of the
retina was similar to previous results in rats (for example, see
[40]). The somata and descending processes of some amacrine
cells whose somata resided in the proximal inner nuclear layer
(INL) close to the inner plexiform layer (IPL) were brightly
stained by calretinin (Figure 2A). A large number of cell

bodies in the RGC layer (GCL) were also stained with
calretinin antibodies. The calretinin immunopositive cell
bodies in the GCL are known to include the displaced
amacrine cells in the rat retina [46]. Dendrites from some of
the calretinin-positive neurons in the INL and GCL projected
toward the narrow calretinin-positive bands in the IPL (arrows
in Figure 2A). These calretinin immunopositive dendrites
were found to originate from the displaced amacrine cells in
the ganglion cell layer in the rat retina [46]. The nerve fiber
layer (NFL), where the unmyelinated axons of the RGCs are
located, was also immunoreactive for calretinin.

Intense calbindin-28 kDa labeling was found in
horizontal cells and their processes in the outer plexiform
layer- inner nuclear layer (OPL-INL) border (Figure 2B) as
observed in previous studies [27]. There was no significant
staining for calbindin-28 kDa in the mid-INL where the cell
bodies of the bipolar cells are located. Amacrine cells at the
INL-IPL border showed staining for calbindin-28 kDa. Many
of these cells had a single, stout apical process descending into
the IPL. These cells did not have any calretinin labeling (see
next section). In the IPL, the mouse monoclonal calbindin-28
kDa antibody showed punctate labeling. Calbindin-28 kDa
labeling of somata in GCL with the mouse monoclonal
antibody was sparse but axons in the NFL were labeled. On
double-stained whole-mounts, calretinin and calbindin-28
kDa antibodies labeled different subsets of amacrine cells in
the proximal INL (Figure 3) with almost no overlap,
indicating that each antibody identified a specific amacrine
cell type.
Differential distribution of calretinin and calbindin-28 kDa in
GCL/NFL: Double labeling immunofluorescence with mouse
monoclonal anticalbindin-28 kDa and rabbit anticalretinin in
whole-mounts showed that the two calcium binding proteins
were present in the somata of random sets of the neurons in
the GCL (Figure 4). In the whole-mounts, processes
emanating from some of the calretinin immunopositive cells
in the GCL were also stained. When followed through
multiple optical sections, it was apparent that these processes
were directed away from the GCL and NFL, and toward the
IPL, where they merged with the proximal calretinin positive
plexus in the IPL (Figure 4 D-F) as was observed in the vertical
sections (see Figure 2A). Because this proximal calretinin
positive plexus in the IPL also corresponds with the
stratification of displaced amacrine cells it is evident that these
dendrites originated from the displaced amacrine cells in the
GCL and merged with the proximal cholinergic band in the
IPL [46]. Calbindin-28 kDa immunopositive somata in the
GCL were fewer in number and never showed any
colocalization with calretinin. None of the somata staining for
calbindin-28 kDa showed calbindin-28 kDa-immunopositive-
processes emanating directly from the cell body

Calretinin and calbindin-28 kDa antibodies both stained
the RGC axons in the NFL, but for the most part the staining
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Figure 5. Calretinin and calbindin-28 kDa immunofluorescence is not present in the distal dendritic compartment of retinal ganglion cells as
seen in retinal whole-mounts. A-C: Double labeling for calretinin (red) and microtubule-associated protein 1 (MAP-1; green) in the ganglion
cell layer (GCL)/nerve fiber layer (NFL) shows that MAP-1 positive dendrites are not colabeled with calretinin. Some large retinal ganglion
cells (RGCs) that are completely ringed by MAP-1 staining (arrowhead) are not positive for calretinin. RGCs with smaller somata partially
ringed with MAP-1 staining are immunopositive for calretinin (arrows). Other brightly stained somata not showing MAP-1
immunofluorescence are the displaced amacrine cells that also stained for calretinin. D-F: Confocal plane showing that the MAP-1 positive
(green) dendrites (arrow) do not merge with the calretinin-positive plexus (red) in the inner plexiform layer. G-I: Double labeling for
calbindin-28 kDa (red) and MAP-1 (green) in the GCL/NFL shows that some large RGCs that are completely ringed by MAP1 staining
(arrowhead) are positive for calbindin-28 kDa. Some RGCs with smaller somata that are incompletely ringed with MAP-1 are also calbindin-28
kDa positive while others are not (arrow). Some neurons incompletely ringed with MAP-1 are also not calbindin-28 kDa positive (arrow).
Scale bar represents 20 µm.
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Figure 6. Comparison of immunofluorescence for the calcium binding proteins, calretinin and calbindin-28 kDa, and voltage-gated sodium
channel antibodies in the ganglion cell layer (GCL)/nerve fiber layer (NFL) as seen in retinal whole-mounts. A-C: Calcium binding proteins
(CBP) in the NFL are extensively colocalized with Pan-NaV. Some Pan-NaV stained retinal ganglion cell (RGC) somata were also
immunopositive for CBPs (arrowhead) while others were not (double arrows). Initial segments of RGCs, (arrow) some of which can be seen
emerging from the RGC somata, were immunopositive for Pan-NaV but not colabeled with CBPs. D-F: NaV1.1-immunopositive (green) RGC
nerve fiber bundles in the nerve fiber layer (NFL) were colabeled with CBPs (red), but the axon initial segments (arrow) were not. G-I:
NaV1.2 immunopositive (green) RGC nerve fiber bundles in the NFL were colabeled with CBPs (red) but not the axon initial segments (arrow).
J-K: NaV1.6 immunopositive (green) axon initial segments (arrow) were not colabeled with CBPs (red). Scale bar equals 20 µm. Abbreviations:
bv is blood vessel.
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patterns did not overlap. In the axonal compartment, calretinin
antibodies showed punctuate staining at intermittent locations
along the axons, on a background of diffuse
immunofluorescence (Figure 4 A,G). The axons that were
immunopositive for calbindin-28 kDa were fairly uniformly
labeled along their length. The channel intensity profiles along
the long axes of two nerve fiber bundles show that relative
levels of staining for the two CBPs varied greatly from axon
to axon, (Figure 4G-I), indicating that these two proteins are
present in differing amounts in different axons. Sharp peaks
in the calretinin intensity profile demonstrated that calretinin
was concentrated at distinct locations in the axons unlike
calbindin-28 kDa (Figure 4H).
Dendritic compartments of retinal ganglion cells are devoid
of immunostaining for calretinin and calbindin-28kDa:
Calbindin-28 kDa did not label any processes that ascended
distally from the GCL. The processes labeled by calretinin that
ascended distally from the GCL were likely from displaced
amacrine cells in the GCL, as noted in the previous section..
To characterize further the morphology of the ganglion cells
whose somata were stained for calretinin and calbindin-28
kDa, double labeling for microtubule associated protein 1
(MAP-1) and calretinin or calbindin-28 kDa was performed
in whole-mounts. MAP-1 is known to label the dendrites of
RGCs in rats [47]. In the IPL/GCL MAP-1 labeled the
dendrites of RGCs (Figure 5) but for almost their entire length
these did not stain for either CBP. Calbindin was found to be
present at the very proximal portions of the RGCs but absent
more distally (Figure 5G-I). These results indicate that neither
calretinin nor calbindin-28 kDa was present in detectable
levels in the dendritic compartment of the RGCs.

MAP-1 immunopositive dendrites did not stratify
extensively with the calretinin-positive plexuses in the IPL
(Figure 5D-F). However, calretinin-positive dendrites

Figure 7. Size distributions of Calcium-binding protein (CBP)
immunopositive and immunonegative neurons are shown. The
histogram shows the surface area of projection of the somata of
neurons in the retinal ganglion cell (RGC) layer from retinal whole
mounts that were immunopositive for Pan-NaV only (n=40, red) or
Pan-NaV and calcium binding proteins (CBP; n=40, black). The
histogram is based on projections of all optical planes corresponding
to the RGC layer from five midperipheral retinal areas (256 μm ×
256 μm).

emanating from the displaced amacrine cells in the proximal
INL and GCL did stratify in the calretinin-positive bands in
IPL (Figure 4D-F).

MAP-1 completely encircled the periphery of the cell
body in some large RGCs (Figure 5A-C,G-I arrowhead).
These large RGCs somata were not calretinin positive (Figure
6A-C), but some were calbindin-28 kDa immunopositive
(Figure 5G-I). Yet, many smaller RGC somata that were
incompletely encircled by MAP-1 immunofluorescence were
found to be calretinin positive (arrows, Figure 5A-C) and
calbindin-28 kDa negative (arrow, Figure 5G-I). Displaced
amacrine cells in the GCL that were brightly stained for
calretinin did not have MAP-1 staining in their dendritic
processes.
Immunofluorescence for calretinin and calbindin-28 kDa are
absent in the RGC initial segments: RGC initial segments that
emanate from the RGC somata show clustering of specific
isoforms of voltage-gated sodium channels [48]. To label
these initial segments an antibody specific for all NaV1 α-
subunits (Pan-NaV) [49] and those for NaV1.1 [50], NaV1.2
[51], or NaV1.6 [48] α-subunits were used. NaV1.1 and NaV1.2
α-subunit antibodies are also known to label some processes
in the IPL, whereas, NaV1.6 α-subunit antibody does not
[50]. The initial segments in the GCL/NFL that were
immunopositive for Pan-NaV, NaV1.1, NaV1.2, or NaV1.6 α-
subunit antibodies did not show immunofluorescence for
either calretinin or calbindin-28 kDa, indicating their absence
in the initial segments of the RGCs. A combination of staining
for calretinin and calbindin-28 kDa is seen in the red channel
(Figure 6).

Some large neuronal somata were immunopositive for the
NaV α-subunits (for example, Figure 6A-C, double arrow);
these did not show immunofluorescence for calretinin or
calbindin-28 kDa. The Pan-NaV antibody delineated the cell
membrane, making it possible to trace the outer margin of the
cell soma and calculate its surface area of projection in whole-
mounts as an estimate of cell size. Of the cell counted, sizes
varied for CBP immunopositive and CBP immunonegative
neurons (Figure 7). The smaller sized somata most likely
included displaced amacrine cells. In addition, 15% of CBP
immunonegative neurons and 7.5% of CBP immunopositive
neurons showed somatic sizes that were greater than 300 µm2.
Based on somatic size both the CBP and non-CBP
immunopositive cells represented a heterogeneous population
of cells,
Distribution of calretinin and calbindin-28 kDa relative to
NF-200 kDa in the axonal compartment: NF-200 kDa [52]
was used together with the CBP antibodies to label the axons
of the RGCs. In Figure 8A-C, the discrete regions in the axons
where calretinin was concentrated showed limited
immunofluorescence for NF 200 kDa, indicating different
subcellular localization for these proteins. In contrast, patterns
of calbindin-28 kDa immunofluorescence colocalized with
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NF-200 kDa in several locations (Figure 8J), but showed
limited colocalization in other areas (Figure 8I). This
demonstrates that calbindin-28 kDa was present in significant
quantities in many but not all axons, where they were present

in close proximity to neurofilaments in the cytoplasm. No
CBP was visible in portions of axons immediately juxtaposed
to the cell body, again indicating their absence in the initial
segments of the axons. These results show that the differential

Figure 8. Calretinin, calbindin-28 kDa, and NF-200 kDa immunofluorescence in the ganglion cell layer (GCL)/nerve fiber layer (NFL) as
seen in retinal whole-mounts. A-C: Double labeling for calretinin (red) and NF-200 kDa (green) shows retinal ganglion cell (RGC) somata,
surrounded peripherally by light NF-200 kDa immunofluorescence (arrows), that were not immunopositive for calretinin. Calretinin
immunofluorescence was present at discrete locations intermittently along the long axis of the RGC nerve fiber, whereas the NF-200 kDa
immunofluorescence was uniform. Channel intensity profiles for the red and green channels along the long axis (lines a and b in C shown in
D and E respectively) revealed that for regions on the long axis where staining for calretinin was prominent, staining for NF-200 kDa was
less prominent (D) and vice versa (E). F-H: Double labeling for calbindin-28 kDa (red) and NF-200 kDa (green) showed that calbindin-28
kDa-positive immunofluorescence was smoothly distributed in the nerve fibers similar to NF-200 kDa. RGC somata that were surrounded
peripherally by light NF-200 kDa immunofluorescence (arrow) were also stained with calbindin-28 kDa while for others (arrowhead) staining
was less prominent. Channel intensity profiles for the red and green channels for straight lines along the long axis (lines d and e in H shown
in I and J respectively) presented some region where immunofluorescence for NF-200 kDa was prominent while that for calbindin-28 kDa
was less prominent (I) and others where the intensity profiles were similar (J). Scale bar represents 20 µm.Abbreviations: bv is blood vessel.
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distribution of calretinin and calbindin-28 kDa, noted in
Figure 4G, could be because of their different subcellular
locations in the RGC axons. High concentrations of
calbindin-28 kDa together with lower diffuse concentrations
of calretinin were most likely present in the cytoplasmic core
in close proximity to NF-200 kDa, whereas high
concentrations of calretinin were most likely present at
discrete locations on the RGC membrane.

Similar to MAP-1 immunofluorescence, NF-200 kDa
immunofluorescence was detected circumferentially around
the somata of some ganglion cells (Figure 8B,G). The somata
of these ganglion cells showed scant calretinin
immunofluorescence; however, some (arrow, Figure 8F-H),
but not others (arrowhead, Figure 8F-H), expressed
calbindin-28 kDa, indicating another morphological
difference between the RGCs that expressed calbindin-28 kDa
and those that expressed calretinin. Along the length of axons
in the NFL, relatively uniform neurofilament staining was
largely coincident with calbindin-28 kDa staining but
contrasted with the very punctate calretinin staining.

Antibody specificity: Although some cross reactivity of the
calbindin-28 kDa rabbit polyclonal antibody (CB-38a) with
calretinin cannot be ruled out by the immunoblotting results,
our interpretation that calbindin-28 kDa labeled a specific
subset of ganglion cells is straightforward; because the
calretinin antibody did not show cross-reactivity for
calbindin-28kDa as revealed by its failure to label the

calbindin-28 kDa immunopositive horizontal cells or the
calbindin-28 kDa-immunopositive amacrine cells (Figure 3).
In addition, the calbindin-28 kDa-immunolabeled RGCs have
morphology clearly distinct from those staining with
calretinin, as seen by colabeling with MAP-1 and NF-200 kDa
antibodies. Thus, under the conditions used for
immunostaining, the antibodies appear to be highly specific,
and clearly reveal distinct staining patterns in the RGC axons.

DISCUSSION
The major new finding reported here is that the subcellular
distribution of both calretinin and calbindin-28 kDa are non-
uniform in RGCs. In both cases, even in cells where they
brightly stain the soma, staining is excluded from the dendritic
arbors, with, in most cases, the CBP excluded even from the
dendritic trunks closest to the soma. Similarly, although
staining was found for both CBP on either side of the initial
segments of RGC axons—that is, in the somata and nerve
fibers—they were excluded from the initial segments. Thus
even though the cytoplasmic staining for these CBP seems
reasonably uniform, suggestive of freely diffusing soluble
proteins, there are clearly mechanisms, which must involve
either local binding sites or active transport, that exclude these
CBP from certain regions of the cell and concentrate them in
others. This phenomenon is particularly striking in the case of
calretinin staining of RGC axons, which reveals punctate
spots of high concentration superimposed on a diffuse
background of what we presume to be cytoplasmic staining.

Figure 9. Schematic summarizing the
subcellular distribution of calbindin-28
kDa and calretinin in the different
compartments of the retinal ganglion
cell. Labeling for calbindin-28 kDa or
calretinin was absent from the dendritic
compartment of the retinal ganglion
cells (white). Many, but not all, retinal
ganglion cell soma show labeling for
either calbindin-28 kDa or calretinin
(red). The initial segments of the retinal
ganglion cells where the voltage-gated
sodium channels (NaVs in blue) are
clustered are not labeled by either
calbindin-28 kDa or calretinin.
Calretinin immunolabeling is
concentrated at distinct locations on the
retinal ganglion cell axon (dashed red
line) where they are most likely
membrane bound. Calbindin-28 kDa
and calretinin are either diffusely
coexpressed or differentially expressed
in the axons (diffuse red dots), but are
both absent from the initial segments.
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These results have been summarized as a schematic in Figure
9.

The mechanisms by which these proteins are localized
are not known, but it seems likely that their localized
distributions are linked to their functions. Both proteins are
often regarded as contributing to shaping neuronal responses
largely by serving as Ca2+ buffers [24]. Such buffers can
determine the kinetics of changes in local Ca2+ concentrations;
in the case of transient fluxes of Ca2+ into the cytoplasm
through channels in the plasma membrane or endoplasmic
reticulum, buffers can govern the amplitudes of such changes,
as well as their time courses. The kinetics and buffering power
are determined both by the intrinsic Ca2+-binding properties
of the CBP (numbers of sites, kinetic and equilibrium
constants for Ca2+ binding), and by the local concentrations.
Calcium binding kinetics for calretinin have not been fully
elucidated [53,54] but are expected to resemble calbindin-
D28k for its relatively low-affinity buffering capacity and its
fast calcium-binding kinetics [55,56]. It is possible that
calretinin and calbindin-28 kDa may have different binding
properties to other proteins which enable it to be localized in
distinct loci in the RGCs to influence local fluxes of Ca2+. Thus
it seems likely that the RGC dendrites and axonal initial
segments either require lower Ca2+ buffering capacity than the
other regions of the cell, or that alternative CBPs serve to
replace calretinin and calbindin-28 kDa in these regions.
Clearly, the same must be true of those RGCs that do not
contain either of these proteins in detectable amounts. It is
important to note here that other calcium-binding proteins,
such as parvalbumin [57], are also known to be expressed in
rat RGC’s but these were not tested in this study.

In addition to simply buffering Ca2+, CBPs can be
involved in direct regulation of signaling pathways by binding
to and modifying the activities of cellular proteins in a Ca2+-
dependent way. Whether calretinin and calbindin-28 kDa play
such roles in RGCs is not known, but their irregular
distribution can only be explained in terms of relatively high
affinity binding to other proteins. It is possible that CBPs
regulate these proteins, rather than simply being localized by
them.
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