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ABSTRACT

XRCC1 is a critical scaffold protein that orches-
trates efficient single-strand break repair (SSBR).
Recent data has found an association of XRCC1
with proteins causally linked to human spinocere-
bellar ataxias—aprataxin and tyrosyl-DNA phos-
phodiesterase 1—implicating SSBR in protection
against neuronal cell loss and neurodegenerative
disease. We demonstrate herein that shRNA
lentiviral-mediated XRCC1 knockdown in human
SH-SY5Y neuroblastoma cells results in a largely
selective increase in sensitivity of the nondividing
(i.e. terminally differentiated) cell population to the
redox-cycling agents, menadione and paraquat; this
reduced survival was accompanied by an accumula-
tion of DNA strand breaks. Using hypoxanthine-
xanthine oxidase as the oxidizing method, XRCC1
deficiency affected both dividing and nondividing
SH-SY5Y cells, with a greater effect on survival
seen in the former case, suggesting that the spec-
trum of oxidative DNA damage created dictates the
specific contribution of XRCC1 to cellular resis-
tance. Primary XRCC1 heterozygous mouse cere-
bellar granule cells exhibit increased strand break
accumulation and reduced survival due to increased
apoptosis following menadione treatment. More-
over, knockdown of XRCC1 in primary human fetal
brain neurons leads to enhanced sensitivity to
menadione, as indicated by increased levels of
DNA strand breaks relative to control cells. The
cumulative results implicate XRCC1, and more
broadly SSBR, in the protection of nondividing neu-
ronal cells from the genotoxic consequences of
oxidative stress.

INTRODUCTION

Base excision repair (BER) operates as the primary path-
way for resolving small base modifications, abasic sites
and several forms of DNA single-strand breaks (SSBs)
(1). Such damage arises upon oxidation or alkylation of
DNA, or by spontaneous hydrolytic decay (e.g. deamina-
tion of cytosine to uracil). BER is typically initiated by
removal of a target base by a specific DNA glycosylase,
which generates an abasic site product (AP site). The AP
site is then processed either by an AP endonuclease, which
incises the phosphodiester bond 5’ to the lesion to create a
SSB with an abnormal 5-deoxyribose phosphate (dRP)
residue and a conventional 3’ hydroxy (OH) terminus, or
by a bifunctional DNA glycosylase, which cleaves 3’ to the
abasic site to produce a SSB with a normal 5 phosphate
(P) group and an atypical 3’ o, unsaturated aldehyde or
3’ P fragment. The resulting termini are processed accord-
ingly to generate 3’ OH and 5" P ends to allow gap-filling
and nick ligation (2,3).

The polymerization step of BER involves either a short-
or long-patch synthetic mechanism (4). In short-patch
BER, DNA polymerase  (Pol B) adds a single nucleotide
to fill the gap and removes the 5-dRP group at the SSB
site. The nick is then sealed by DNA ligase IIla (LIG3) in
complex with the scaffold protein XRCC1 (X-ray cross-
complementing 1) to re-generate an intact strand. Long-
patch BER involves the synthesis of a patch of 2-10 nt and
the formation of a displaced 5'-flap structure. This path-
way engages the proliferating cell nuclear antigen (PCNA)-
dependent polymerases Pol /e, or Pol B, in conjunction
with the 5'-flap endonuclease (Fenl) and DNA ligase 1.

An important aspect of BER is the processing of
abnormal DNA 3’ or 5 terminal blocking groups. Such
lesions can arise by free radical attack of DNA, or as
products or intermediates of specific enzymatic reactions
(see for instance above) (3). In order for repair to be suc-
cessfully completed, abnormal SSB ends, which prevent
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polymerization and/or ligation, must be converted to 5 P
and 3’ OH groups. Often considered a subpathway of
BER, SSBR and its complement of proteins, has evolved
to remove abnormal DNA terminal ends. XRCCl is a key
component of SSBR, as cells defective in this nonenzy-
matic scaffold protein show reduced SSBR, enhanced sen-
sitivity to DNA-damaging agents that produce SSBs, and
increased sister chromatid exchange (5). Notably, XRCC1
has been shown to possess important and distinct roles in
SSBR in both the G1 and S phase of the cell cycle, pre-
sumably reflecting its contribution to global and replica-
tion-coupled repair, respectively (6,7). Mice devoid of
XRCCI die early in embryogenesis, indicating an essential
role for this protein in animal development (8).

XRCCI1 coordinates several key enzymatic factors at
sites of SSBs, including the DNA polynucleotide kinase—
phosphatase (PNKP), Polf3 and LIG3a, via direct physical
interactions (9). Recent evidence also indicates critical
associations of XRCC1 with two proteins, aprataxin and
tyrosyl-DNA phosphodiesterase 1 (TDP1), which are
defective in the recessive hereditary spinocerebellar atax-
ias, ataxia with oculomotor apraxia (AOA1) and spino-
cerebellar ataxia with axonal neuropathy (SCANI),
respectively (10-14). Aprataxin is responsible for remov-
ing obstructive 5 adenylate groups that arise as abortive
DNA ligation intermediates (10), as well as 3" phosphate
and 3’ phosphoglycolate groups that are products of free
radical attack of DNA (15). TDPI1 functions to excise
abortive 3’ topoisomerase 1 (Topl)-DNA intermediates,
which occur when Topl becomes irreversibly trapped on
DNA during its strand cleavage reaction, most frequently
at sites of nearby DNA damage (16,17).

As the above neurodegenerative disorders are character-
ized by cerebellar ataxia and peripheral axonal neuropa-
thy without nonneurological symptoms, such as cancer
predisposition (18,19), it has been proposed that SSBR
defects give rise to neurological dysfunction selectively
because nondividing cells, particularly neuronal cells
which are highly metabolically active, accumulate a large
number of SSBs that have the potential to block transcrip-
tion and induce apoptosis (20). Conversely, SSBR-defi-
cient dividing cells could potentially resolve SSBs
efficiently and accurately using alternative mechanisms,
such as replication-dependent homologous recombination
(HR). Synergism between HR and SSBR has recently been
demonstrated, as HR-deficient BRCA mutant cell lines
are inviable upon inhibition of the strand break response
protein, poly (ADP) ribose polymerase (PARP-1) (21-23).
These observations have prompted the hypothesis that
SSBR may have a more prominent role in nondividing
tissue. Using XRCCI1 as a representative of the global
SSBR response, we investigated herein the contribution
of this process to oxidative stress resistance in both divid-
ing and nondividing neural cell populations.

MATERIALS AND METHODS
Differentiation of SH-SYSY cells

Twenty to thirty percent confluent SH-SYSY cells in a
T-75 flask were treated with 10 uM retinoic acid (RA) in

high glucose DMEM media (Gibco/Invitrogen, Carlsbad,
California, USA) with 1% penicillin—streptomycin and
10% fetal bovine serum (FBS) for 5 days. The RA
media was replaced with serum free DMEM with 10ng/
ml brain derived neurotrophic factor (BDNF, Alamone
Labs, Jerusalem, Israel), and differentiation was allowed
to continue for another 5 days.

Preparation of lentivirus stock and infection of SH-SYS5Y cells

An XRCCl-specific TRC shRNA-pLKO.1 plasmid con-
struct (clone ID TRCNO0000007913; Open Biosystems,
Huntsville, Alabama, USA) or a negative control scram-
ble shRNA-pLKO.1 construct (plasmid #1864; Addgene,
Cambridge, Massachusetts, USA) was co-transfected with
the packaging plasmid pCMV-dr8.2 dvpr (plasmid #8455;
Addgene) and the envelop plasmid pCMV-VSV-G
(plasmid #8454; Addgene) into human embryonic kidney
293T cells maintained in the media above using lipofecta-
mine (Invitrogen) and Optimem (Gibco). Media was
replaced after 24h and virus-containing media was col-
lected at 48 and 72h posttransfection, and filtered using
a 0.45-micron PVDF membrane filter (Millipore, Billerica,
Massachusetts, USA).

A total of 1 ml or 0.5ml of the above filtered viral stock
was added per well of a 6-well plate to 70% confluent
SH-SYS5Y cells with 4pg/ml hexadimethrine bromide
(a.k.a. polybrene, Sigma, St. Louis, Missouri, USA).
After 24 h, viral media was removed and fresh high glu-
cose DMEM media with 1% penicillin—streptomycin and
10% FBS was added. SH-SYSY cells were selected after
another 24h in 2.1 pg/ml puromycin (Sigma). Resistant
colonies were periodically checked for XRCC1 expression
using standard western blotting procedures. Antibodies
used were XRCCI1 ab-1 or ab-3 (NeoMarkers-Thermo
Fisher Scientific Inc., Fremont, California, USA), and
B-actin or Lamin AC (Santa Cruz Biotechnology, Santa
Crugz, California, USA).

Survival assay for SH-SYSY cells

Fifty thousand cells/well in a 96-well plate were treated
with menadione (1 h), MMS (1h), arsenic trioxide (24 h),
methyl viologen dichloride or paraquat (24 h), or hypox-
anthine (at the indicated concentration, see Figures) plus
0.1 U/ml xanthine oxidase (15min) in standard DMEM
media for replicating SH-SYS5Y cells or in serum free-
BDNF media for the differentiated cells. Following treat-
ment, cells were incubated with 1:10 concentration of
WST-1 cell proliferation reagent (Roche, Pleasanton,
California, USA) in appropriate media for 4h at 37°C.
Viability was scored using a BioRad microplate spectro-
photometer, with the number of viable cells proportional
to the OD 450 nm reading. Percent survival for each dose
was calculated relative to the OD 450 nm for the untreated
samples, which was assumed to represent 100% viability.

SSB measurement

The TUNEL assay, which employs terminal transferase to
detect all strand breaks, was modified to use DNA
Polymerase 1 (Pol I) to detect mainly SSBs (24). Pol
I-mediated biotin-dUTP nick-end labeling (PUNEL) of



SSBs was carried out as outlined in the NeuroTACS™ 11
in situ apoptosis detection kit (Trevigen Inc.,
Gaithersburg, Maryland, USA). Briefly, differentiated
SH-SYSY cells, mouse cerebellar granule cells or human
fetal brain neuronal-glial cells were fixed in 3.7% formal-
dehyde or 4% paraformaldehyde, and permeablized for
10min at room temperature with neuropore solution
(Trevigen). Samples were incubated with Pol I (New
England Biolabs, Ipswich, Massachusetts, USA) and
dNTPs, including biotin-dUTP (Trevigen), for 1h at
37°C, followed by streptavidin—-HRP solution and diami-
nobenzidine (DAB) or streptavidin—fluor for detection of
DNA breaks. Slides were counterstained, dehydrated,
mounted in Permount and visualized by light microscopy.
Damage was estimated based on the intensity of DAB
staining, with increased intensity correlating with greater
damage. At least 100 cells were counted per treatment.

Extraction of primary cerebellar granule neurons from mice

Six- to eight-day-old pups from a timed mating between
an XRCC1 heterozygous male and a C57BL/6 wild-type
female mouse were sacrificed and the cerebellum isolated.
The cerebellum was then placed into Hibernate A medium
(Brain Bits LLC, Springfield, Illinois, USA) and minced
into fine pieces. The minced tissue was digested in Earle’s
balanced salt solution (EBBS) with 0.1% trypsin (Gibco),
4mg DNase (Sigma) and 3mM magnesium sulphate
(Sigma) for 15min at 37°C. Following digestion, the
tissue was triturated by passing multiple times through a
22.5G sterile needle until a fine suspension was obtained,
which was left at room temperature for 30 min to sedi-
ment. The supernatant, containing the single cell solution,
was spun at 1000 r.p.m. for Smin. The pellet was resus-
pended in neurobasal medium (Gibco) with 10% FBS,
10% horse serum, 0.5mM glutamine, 25mM potassium
chloride and 2% B-27 supplement. Cells were counted
using a Beckman Coulter Z1 Particle counter and plated
at 65000 cells per chamber of an 8-well poly-D-lysine
coated chamber slide (Becton Dickinson, Franklin
Lakes, New Jersey, USA), and incubated for 2h at 37°C
to allow cells to attach. The media was then changed to
serum-free neurobasal medium containing 25mM KCl,
0.5mM r-glutamine and 2% B27 supplement and cells
were maintained in culture as specified.

Neuronal cell viability

Differentiated mouse cerebellar granule cells in neurobasal
maintenance medium (see above) for 7 days were treated
with varying concentrations of menadione for 1h in
EBBS, and differentially stained with 15 pg/ml fluorescein
diacetate, 5pg/ml propidium iodide (PI) and 2pg/ml
Hoechst in maintenance media for 5Smin at 37°C.
The staining solution was washed off with PBS, and
cells were mounted in prolong gold antifade reagent
(Invitrogen), cured for 24 h in the dark at room tempera-
ture, and visualized using a Zeiss Axiovert microscope at
20—40x magnification. Blue Hoechst was used to detect all
cells in the frame. Cells with a green fluorescein staining
and without PI staining were counted as viable. Cells with
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red PI staining were counted as dead. Approximately
50 cells were analyzed per group.

Neuronal cell apoptosis

Differentiated mouse cerebellar granule cells were treated
with menadione as above and then incubated with a
carboxyfluorescein labeled fluormethyl ketone peptide
inhibitor of caspase (carboxyfluorescein FLICA apoptosis
detection kit, Immunochemistry Technologies LLC,
Bloomington, Minneapolis, USA) for 90min at 37°C.
Cells were washed for 30 min at 37°C and stained with
0.5% V/V Hoechst for 5min at 37°C. Slides were fixed
in 3.7% buffered formaldehyde, mounted in Permount
(Fisher Scientific, Pittsburgh, Pennsylvania, USA) and
visualized using fluorescence and light microscopy.
Activation of caspases in apoptotic cells results in the
binding of the inhibitor peptide and emission of green
fluorescence. Cells stained with both carboxyfluorescein
and Hoechst were scored as apoptotic, and cells stained
with Hoechst only were scored as nonapoptotic. At least
100 cells per pup, per dose were counted.

Culture of mixed human fetal brain neuronal—glial cultures

Human fetal neuronal-glial cultures were prepared as
described previously (25) from human fetal brain speci-
mens of 12-15 weeks gestational age, with consent from
women undergoing elective termination of pregnancy, as
approved by the Johns Hopkins University Institutional
Review Board. Isolated fetal neurons were resuspended in
Optimem with 5% heat inactivated FBS, 0.2x N-2 supple-
ment, penicillin G (100 units/ml), streptomycin (100 pg/ml)
and amphotericin B (0.25 pg/ml) added. Cells were main-
tained in tissue culture flasks for at least 4 weeks, then
plated into 6-well plates and 35mm glass bottom dishes
(MatTek Corp., Ashland, Massachusetts, USA).
Lentiviral infection was performed for 24h in a 6-well
plate essentially as above, except that polybrene was
omitted. Human fetal brain cells were maintained for
three additional days in regular maintenance medium
(Optimem plus supplements) and then fixed with 4% par-
aformaldehdye in PBS for 15 min at room temperature for
immunofluorescence detection of XRCCI1. One batch of
cells was treated with varying doses of menadione for 1h,
before fixation and used in a PUNEL assay for detection
of DNA damage (see above).

Immunocytochemistry of human fetal brain neuronal-glial
cultures

Paraformaldehyde fixed neurons were blocked in 5% goat
serum at room temperature for 30min and separately
incubated with either a primary XRCCI1 antibody
(clone 33-2-5; NeoMarkers-Thermo Fisher Scientific
Inc.) or a Tuj-1 (neuronal class III B-tubulin) antibody
(Sigma) at room temperature for 45min. Cells were
washed with PBS and incubated at room
temperature for an additional 45min with either an
Alexa fluor 488 goat-anti mouse secondary antibody
(Invitrogen) for detection of XRCCI1 or an Alexa fluor
goat anti-mouse 546 secondary antibody (Invitrogen) for
identification of neurons. Excess secondary antibody was



5114 Nucleic Acids Research, 2008, Vol. 36, No. 15

washed off with PBS, samples were mounted in prolong complete differentiation, as indicated by a sub-population
gold antifade reagent with DAPI (Invitrogen) and visua- of cells that continued to divide following several days of
lized at 20-40x magnification using a Zeiss Axiovert RA treatment (data not shown). A subsequent treatment
microscope with detection filters for DAPI, FITC and after RA with BDNF in serum free media [as reported in
Cy3 fluorescence. Samples stained with Tuj-1 were further (29)] was therefore adapted and yielded a population of

examined for strand breaks and apoptosis using the almost exclusively nondividing cells used for subsequent
TUNEL assay (Trevigen) as described above, except that studies (Figure 1A).

a streptavidin-fluor secondary antibody was used for Methods for down-regulation of XRCC1 were estab-
detection of damage and apoptosis. lished using an XRCCI1 specific TRC shRNA-pLKO.1

plasmid construct and a lentiviral package and delivery
system as described in Materials and Methods section.
RESULTS A scramble-shRNA (30) was used in the preparation of

The SH-SYSY cell line is a third generation subclone of a control virus for the simultaneous infection of a separate
the SK-N-SH line established from a bone marrow biopsy batch of SH-SYSY cells. Figure 1B shows the expression
of a neuroblastoma patient. The cells are neuronal in ~ of XRCCI protein in the control (scramble) and XRCCl-
origin, arising from the neural crest region of the sympa- ~ knockdown (XKD) shRNA replicating cells. Stable sup-
thetic nervous system with both dividing and nondividing ~ pression of the XRCCI protein was achieved using the
sub-populations. The dividing cells can be morphologi-  targeting shRNA system, while the scramble-shRNA
cally and functionally differentiated into a nondividing  infected cells retained XRCCI expression.

neuron-like state upon treatment with various reagents To determine the functional consequence of XRCCI
such as 12-O-tetradecanoyl-phorbol-13-acetate, RA or down-regulation, we evaluated methyl methanesulfonate
staurosporine (26,27). This feature makes this cell line (MMS) sensitivity. Figure 1C shows the results from a
especially suitable for studies on the differential role of WST-1 viability assay, in which XKD dividing cells were

specific pathways in dividing versus nondividing (a.k.a. hypersensitive to MMS, a phenotype that is characteristic
terminally differentiated) neural cell populations. of XRCCl-deficient mammalian cells (5). A 3- to 6-fold

Morphologically, differentiation is characterized by the hypersensitivity of the XKD cells to MMS when compar-
extension of neurites with motile terminal growth cones, ing LDsq values (i.e. the concentration of genotoxin to
which on contact with neighboring cells form an intricate induce 50% cell killing) was confirmed independently by
network or grid of connections. We initially chose RA to a colony survival assay (Figure 1D), and is consistent with
induce differentiation (28), but were unable to achieve previous siRNA targeting studies in human cells (13,31,32).
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Figure 1. Differentiation of SH-SYS5Y cells and generation of XKD cells. (A) Cellular differentiation of the SH-SYSY cells was established using a
combination of RA and BDNF (see Materials and methods section). Differentiated cells (right) stop dividing, are morphologically distinct in
appearance from undifferentiated dividing cells (left), and form distinct neurite processes (arrow) that create an intricate network of neuronal-
type connections. (B) Dividing SH-SYS5Y cells were infected with a lentivirus bearing an XRCClI-targeting shRNA sequence or a control scramble
sequence. Infected cells were selected on the basis of puromycin resistance and expression of XRCCI was analyzed regularly. Shown is a repre-
sentative western blot of XRCCI protein expression in dividing XKD and control cells. f-actin was used as a loading control. (C) Functional down-
regulation of SSBR was verified via a WST-1 survival assay following treatment of dividing SH-SY5Y cells with MMS at the indicated doses for 1 h
(see Materials and methods section). Percentage survival for XKD (open square) and control scramble (filled circle) cells was calculated as a
percentage of survival of untreated cells. Averages and SDs plotted are from two separate runs of three repeats each. (D) Down-regulation of
SSBR was independently verified using a colony formation assay. XKD (open square) or control (filled circle) SH-SY5Y dividing cells, which were
plated at 500 cells per well, were treated with the indicated doses of MMS for 1 h. Following treatment, cells were washed with 1X PBS and allowed
to form colonies under standard growth conditions for about 15 days. Percentage survival was calculated as a percentage of colonies formed relative
to the untreated sample. Averages and SDs plotted are from three repeats.



Growth, morphology and proliferation rates were also
monitored for control and XKD cells and found to be
similar (Kulkarni and Wilson, unpublished observation).
We point out that the nondividing XKD cells were down-
regulated significantly for XRCC]1 protein expression and
exhibited ~4-fold increase in sensitivity to MMS as well
(Figure 2). Finally, we note that Narciso et al. (33) recently
reported down-regulation of XRCCI in differentiated
human skeletal muscle cells; however, analysis of expres-
sional changes of several DNA damage response genes
following RA-BDNF differentiation of SH-SYS5Y neuro-
blastoma cells did not reveal down-regulation of XRCCl1
protein expression (Kulkarni and Wilson, unpublished
observations), suggesting a cell type-specific regulation of
this gene product.

Role of XRCCl1 in oxidative stress resistance in dividing
and nondividing cells

Following establishment of the above methods, we exam-
ined the contribution of XRCCI to oxidative stress resis-
tance in dividing and nondividing SH-SY5Y cells. We
chose oxidative stress as the damaging agent, since neuro-
nal cells, on account of their higher energy needs, are
likely to be subject to elevated oxidative tension in vivo
and hence increased oxidative DNA damage. Both divid-
ing and nondividing SH-SYS5Y cell populations were
initially tested with the oxidizing agent menadione, a
redox-cycling quinone that undergoes a two step reduction

A XKD Control
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B 100
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(% of control)
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Figure 2. MMS sensitivity of nondividing XKD SH-SYSY cells.
(A) Following establishment of undifferentiated dividing XKD
SH-SYSY cells, a population of these cells was differentiated with
RA and BDNF as described in Materials and methods section.
XRCCI1 knock-down was maintained in these nondividing cells as
shown by western blotting (XKD). The control represents the scramble
shRNA-lentivirus infected SH-SY5Y cells. Denoted is the position of
XRCCI protein and the Lamin AC loading control. (B) Differentiated,
nondividing XKD (open square) or control (filled circle) cells plated at
50000 cells/well in a 96-well plate were treated with the indicated doses
of MMS for 1h. Following treatment, cells were incubated with the
WST-1 reagent for 4h as described in Materials and methods section.
Viability at each dose was determined and calculated as a percent of the
reading obtained for untreated cells. Averages and SDs represent three
repeats of a representative experiment.
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that leads to the production of superoxide radicals (34).
As seen from Figure 3A (WST-1 assay), the dividing popu-
lation of XKD or control cells showed a similar survival
response following menadione challenge, suggesting that
XRCCI plays no observable role in oxidative stress resis-
tance in replicating SH-SYS5Y cells. On the other hand, the
nondividing XKD cells (LDsy of ~16 uM) showed about
6-fold greater sensitivity to menadione as compared to
the control cells with an LDs, value of over 100uM
(Figure 3A). This finding suggests that the lack of XRCCl1
and functional SSBR is selectively detrimental to the non-
dividing cell population, at least in the case of menadione.
We also note that, we observed a >2-fold increase in sensi-
tivity of nondividing, differentiated XKD cells following
menadione exposure when a 24-h recovery period was
incorporated as opposed to the immediate response mea-
sured in the assays above (Supplementary Figure 1).

To confirm that the above difference in sensitivity is
related to a SSBR defect, we examined the recovery of
XKD and control nondividing cell populations to DNA
damage introduced by menadione. In particular, cells were
allowed to recover following menadione treatment in
drug-free media for ~75min, at which time they were
stained for SSB accumulation using the adapted PUNEL
assay (see Materials and Methods section). These studies
showed little or no DAB staining (dark brown cells) in the
RA-BDNF differentiated control cells (Figure 3B), sug-
gesting efficient repair and nearly complete recovery
from any DNA damage incurred; this observation is con-
sistent with the near 100% viability observed for these
cells after menadione treatment (Figure 3A). The nondi-
viding XKD cells, on the other hand, stained intensely for
labeled SSBs, indicating persistent DNA damage and non-
functional repair (Figure 3B). Additionally, these cells
appeared rounded up, and in some cases shrunken or
shriveled, suggesting that they might be apoptotic or
necrotic. Quantification of the DAB-stained cells as a per-
cent of the total cells showed about a 4-fold increase in the
frequency of PUNEL positive cells (and by extension
SSBs) in the XKD nondividing cells relative to the control
cells at both menadione concentrations (Figure 3C).

We next tested the response of dividing and nondividing
control and XKD SH-SYS5Y cells to other generators of
ROS, namely paraquat, arsenic and a xanthine oxidase-
hypoxanthine (XOH) system. As in the case of menadione,
treatment with paraquat, another redox cycling agent that
generates primarily superoxide (35), led to a more pro-
nounced increase in sensitivity of the XKD nondividing
cells (~6-fold based on LDs), although elevated sensitiv-
ity of the dividing population was seen at the highest para-
quat concentration (Figure 4A). Arsenic treatment yielded
a similar response, whereby the nondividing XKD cells
were ~4-fold more sensitive than the control cells, with
no hypersensitivity, and perhaps a slight increased resis-
tance, for the dividing cells (Figure 4B). Interestingly,
XOH treatment showed a disparate pattern of response
in that both dividing and nondividing XKD cells were
more sensitive to oxidative stress, with the greatest sensi-
tivity seen in the former situation (Figure 4C). As gleaned
from the survival data, it is noteworthy that terminal dif-
ferentiation (and perhaps the nondividing status) led to a
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Figure 3. Role of XRCCI in stress resistance in dividing and nondividing cells. (A) Survival of XKD (open square) and control cells (filled circle) in
dividing (left) and nondividing (right) states, as estimated by a WST-1 survival assay following a 1 h exposure to menadione as described in Materials
and methods section. Averages and SDs plotted represent a composite of 6-12 repeats. (B) PUNEL assay carried out on nondividing cells after
treatment for 1'h with indicated doses of menadione and recovery in drug-free media for 7Smin. XKD and control cells were stained with DAB,
which produces a dark brown signal that is indicative of an accumulation of SSBs. (C) Percentage PUNEL positive XKD (black bar) or scramble
control (open bar) cells were estimated as a percent of total nondividing cells counted in each frame (B). Percentage PUNEL positive cells represent
the number of PUNEL positive cells relative to total cells counted. Averages and SDs plotted represent at least 50 cells scored per dose over three

repeats. *P = 0.007 and **P = 0.0004.

general increase in stress resistance (to menadione, arsenic
and XOH treatments), an observation that is consistent
with the reported improvement in resistance of RA treated
SH-SYS5Y cells to certain drugs and DNA damaging
agents (36,37).

Effect of XRCC1 deficiency on primary mouse and human
neuronal cell survival

To further investigate the role of XRCCI in oxidative
stress resistance in nondividing neuronal cells, we

examined the response of XRCCl-deficient primary cells
from both mouse and human in culture. First, we deter-
mined the effect of menadione exposure on relative survi-
val, DNA damage accumulation and apoptosis of primary
cerebellar granule neurons from wild type or XRCC1 het-
erozygous 6- to 8-day-old mice. Mouse cerebellar granule
neurons are primary cells that are nondividing by nature,
and after 7 days in culture, have a phenotype of fully
differentiated neurons with an intricate neurite network
and synaptic contacts. We examined independent cell
populations isolated from four wild-type and three
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Figure 4. Response of XKD SH-SYS5Y cells to other forms of oxidative stress. XKD (open square) and control (filled circle) cells in dividing
(left column) and nondividing (right column) states were treated with the indicated concentrations of paraquat-24h (B), arsenic-24h (B) and
hypoxanthine (for XOH system)-15min (C) and then examined for viability using the WST1 assay as described in Materials and methods section.
Viability for each dose was calculated as a percentage of the OD 450 nm reading relative to the untreated cells. Averages and SDs plotted represent a

composite of 4-6 repeats.

haploinsufficient littermates in the initial experiment. The
combined results indicate that XRCCI heterozygous neu-
rons are hypersensitive to menadione relative to their wild-
type counterparts (Figure SA). At higher doses, the differ-
ence in sensitivity of the heterozygous cells is most pro-
nounced, with ~5-fold hypersensitivity at 100 UM and a
30-fold increase in PI staining frequency at 300 uM mena-
dione. Using a separate set of experimental animals (one
wild-type and three haploinsufficient pups in this litter),
we also measured apoptosis and the accumulation of
DNA damage in isolated primary mouse granule neurons.
Consistent with the survival data, these studies revealed an
increase in both SSB accumulation (~1.6- to 1.9-fold,
comparing the average percentage of PUNEL positive

cells in the heterozygous animals to the wild-type counter-
part at 50 or 300 pM menadione; Figure 5B) and apoptosis
(~2.2- to 2.8-fold, derived as above using percentage of
caspase positive cells; Figure 5C) in the XRCCI1 hetero-
zygous cells challenged with menadione. We note that
untreated wild-type and heterozygous cells exhibited simi-
lar growth and cell viability for up to 4 weeks in culture at
20% oxygen (Kulkarni, McNeill and Wilson, unpublished
observation).

Second, we determined the effect of XRCCI1-deficiency
on the DNA damage response of primary human fetal
neuronal cells using the PUNEL assay after exposure to
menadione. Immunocytochemical analysis of a mixed
glial-neuronal cell population infected with the
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Figure 5. Role of XRCCl in stress resistance in wild type and hetero-
zygous mouse neuronal cells. (A) Primary mouse cerebellar granule cells
were treated with the oxidizing agent menadione for 1h at 37°C at the
indicated concentrations, and then differentially stained for living and
dead cells. XRCC1 heterozygous cells (open square) showed reduced
viability as compared to wild type (filled circle). Viability for each
treatment was calculated as the percentage of live cells scored per
total cells scored. Averages and SDs plotted represent data from
three heterozygous and four wild-type pups with at least 50 cells
scored per dose, per pup. (B) Mouse cerebellar granule cells were
tested for accumulation of SSBs using the PUNEL assay after exposure
to menadione. ‘% PUNEL positive cells’ was scored as a percentage of the
total cells visualized in each frame. Values plotted represent averages and
SDs from at least 100 cells counted over three repeats. P-values were
determined using the z-test function in Excel, comparing the percentage
PUNEL positive cells for the single wild-type animal to the combined
measurements of the three heterozygous mice. *P = 0.002 and

XRCCl-targeting shRNA lentivirus system (see above)
showed a significant knockdown of the XRCCI pro-
tein relative to the control virus (scramble-shRNA)
(Figure 6A). Neuronal cells were distinguished from
both glial cells and feeder layer astrocytes using a
neuron specific antibody probe (Figure 6B, ‘Tuj-1’
column). As seen in Figure 6B, at the lowest dose of mena-
dione tested (25 uM), XKD human neuronal cells, showed
~4-fold greater frequency of DNA damage staining rela-
tive to the control cells following a 75 min recovery period
in drug-free media (100 versus 27%, see Figure 6B). At
higher doses of 100 uM (data not shown) and 400 uM
(Figure 6B), the damage was found to be about equal
for the control and XKD cells, apparently reflecting a
near maximal level of DNA damage for both cell
populations.

DISCUSSION

XRCCI1 is a critical scaffold protein that promotes effi-
cient SSBR by coordinating the enzymatic processing of
nonconventional 3’ or 5 DNA termini and SSB gaps (5,9).
Recent evidence has indicated that a defect in SSBR gives
rise to the neurodegeneration associated with the heredi-
tary disorders AOA1 and SCANI (9,12,18,38-42). Using
XRCCI1 as a representative of global SSBR, we assessed
the role of this response in cellular protection against the
deleterious consequences of oxidative stress in both divid-
ing (undifferentiated) and nondividing (differentiated)
neural cell populations. Prior work had demonstrated
that XRCC1 deficient CHO cells are hypersensitive to
hydrogen peroxide (5), an observation that is consistent
with the sensitivity data herein using the XOH system
(Figure 4C, left), which creates a high level of extracellular
hydrogen peroxide as the toxic agent (35,43,44). The stu-
dies within are the first to determine the consequences of
an XRCC1 defect on cellular sensitivity to the oxidizing
agents menadione, paraquat and arsenic.

Using the SH-SY5Y neuroblastoma cell line, which can
exist in both a dividing and nondividing state, we exam-
ined the effects of lentiviral-mediated shRNA knockdown
of XRCCI1 on cellular sensitivity to oxidative stress
induced by menadione, paraquat, arsenic and XOH. In
the case of the first three agents, enhanced sensitivity
was seen primarily in the differentiated, nondividing cell
population, and was apparently related to a defect in
SSBR as evident from the inability of the menadione-
treated XKD cells to recover from induced DNA
damage (Figure 3B). The only exception to this ‘sensitivity
profile’ was the XOH treatment, which caused reduced
viability of both dividing and nondividing XKD cells rela-
tive to the comparable scramble shRNA controls

**P = 2.8E—05 at the indicated menadione concentration. (C) Mouse cer-
ebellar granule cells were tested for apoptosis following treatment with
menadione. Activated caspases were visualized using fluorescence micro-
scopy and ‘% caspase positive cells’ was calculated as percentage of total
cells scored. At least 100 cells were counted per treatment for the same
pups in panel B to arrive at the plotted averages and SDs. P-values were
determined as above, except comparing percentage caspase positive cells
of the single wild-type animal to the combined measurements of the three
heterozygous mice. *P = 7.2E—05 and **P = 0.0018 (B).
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Figure 6. Oxidative stress response in XKD human fetal brain neurons.
(A) Human fetal brain neuronal-glial cell populations were treated with
shRNA targeting XRCC1 or a scramble control shRNA via a lentivirus
delivery system (see Materials and methods section). Three days post-
infection, cells were fixed and stained with DAPI (left column, ‘total
cells’) and for XRCCI1 protein expression using an XRCCl-specific
antibody and a FITC-labeled secondary antibody (center column,
‘XRCCI’). Image shows decreased intensity of FITC staining in
XRCC1 shRNA targeted cells (lower panel), indicating significant
knockdown of XRCCI1. The merge of the DAPI and FITC signals is
shown to the right. (B) XKD or control human fetal brain neuronal—
glial cell populations were treated with the indicated concentrations of
menadione for 1h (left), allowed to recover in drug free media for
75min, fixed and then examined for DNA damage and apoptosis
using the PUNEL assay (see Materials and methods section). The
Tuj-1 neuronal marker, coupled with a cy3 detection system, was
used to identify neuronal cells (left column, ‘Tuj-1"). FITC fluorescence
indicates DNA damage accumulation and apoptotic cells (center
column). For untreated cells, out of 25 XKD cells counted nine were
PUNEL positive (36%) as compared to four of 27 (15%) scored for the
control cells (P = 0.172). At 25uM menadione, out of 25 XKD cells
counted, all were PUNEL positive (100%), as compared to seven of 26
(27%) scored for the control cells (P = 0.008). P-values were deter-
mined via chi-square contingency table analysis at http://www.physics.
csbsju.edu/stats/contingency NROW_NCOLUMN'_form.html.
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(Figure 4C). Nonetheless, the typically higher sensi-
tivity of nondividing XRCC1 deficient cells to oxidative
stress is consistent with such cells lacking the alter-
native mechanisms present in dividing cells to resolve
SSBs (20).

The disparate profile seen with the different agents
above could stem from a difference in the types of ROS
formed and thus the types of DNA lesions introduced.
Both menadione and paraquat are redox-cycling agents
that generate significant levels of intracellular superoxide
anions, as well as hydrogen peroxide and other radical
species, during their metabolism (34,35,44-46). Arsenic
induces the formation of primarily superoxide, singlet
oxygen, the peroxyl radical, nitric oxide, hydrogen perox-
ide, dimethylarsinic peroxyl radicals and the dimethylar-
sinic radical (47-49). For the XOH system, which
produces an extracellular flux of superoxide anion radical
and hydrogen peroxide, the molecule most likely respon-
sible for the induction of oxidative DNA damage is
the latter diffusible species and its intracellular decompo-
sition products, mainly the hydroxyl radical (35,50,51).
Significantly, it has been found that catalase, but not
superoxide dismutase, functions to suppress the chromo-
somal instability associated with XOH, whereas catalase
has no effect on, and superoxide dismutase increases, the
instability seen with paraquat (35,43,44-51). These find-
ings provide evidence that the differing array of ROS
(possibly superoxide versus hydrogen peroxide) can give
rise to a disparate spectrum of genotoxic damage, and that
the constellation of DNA lesions (base modifications,
sugar damage and SSBs), in combination with the plat-
form of active repair responses, will dictate the overall
response of XRCC1 deficient cells.

XRCCI1 deficiency in primary, nondividing mouse cer-
ebellar granule and fetal human neuronal cells resulted in
impaired SSBR and reduced viability under conditions of
oxidative stress. Behavioral studies (i.e. rotorod tests) car-
ried out with 19- to 20-month-old XRCCI heterozygous
mice have not, however, revealed spontaneous (i.e. non-
induced) motor incoordination relative to age-matched
wild-type animals (Paul Pistell, McNeill and Wilson,
unpublished data), consistent with the fact that untreated
mouse xrccl "/~ neurons display a normal basal level of
DNA damage (Figure 5B). Katyal et al. recently reported
that mice deleted for tdp1, which results in defective SSBR
in neurons, exhibit an age-dependent progressive cerebelar
atrophy, but lack the severe motor incoordination seen
with SCANI1 patients, suggesting dissimilarity in the
mouse and human responses. Additional behavioral
and histopathological studies using both XRCC1-deficient
and control mice following an external insult are nec-
essary to investigate further the contribution of XRCCI
and functional SSBR in the presentation or acceleration
of mammalian neurodegenerative disease. Notably,
human XKD fetal brain neurons showed a trend,
though not statistically significant, towards increased
DNA damage in the untreated samples relative to the
controls (see Figure 6B), suggesting that there could
exist a set of ataxia patients that arise from genetic defects
in XRCCI.
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