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ABSTRACT

The alternative splicing code that controls and coor-
dinates the transcriptome in complex multicellular
organisms remains poorly understood. It has long
been argued that regulation of alternative splicing
relies on combinatorial interactions between multi-
ple proteins, and that tissue-specific splicing deci-
sions most likely result from differences in the
concentration and/or activity of these proteins.
However, large-scale data to systematically address
this issue have just recently started to become
available. Here we show that splicing factor gene
expression signatures can be identified that reflect
cell type and tissue-specific patterns of alternative
splicing. We used a computational approach to ana-
lyze microarray-based gene expression profiles of
splicing factors from mouse, chimpanzee and
human tissues. Our results show that brain and
testis, the two tissues with highest levels of alter-
native splicing events, have the largest number of
splicing factor genes that are most highly differen-
tially expressed. We further identified SR protein
kinases and small nuclear ribonucleoprotein particle
(snRNP) proteins among the splicing factor genes
that are most highly differentially expressed in a par-
ticular tissue. These results indicate the power of
generating signature-based predictions as an initial
computational approach into a global view of tissue-
specific alternative splicing regulation.

INTRODUCTION

Alternative splicing generates multiple mRNA products
from a single gene, thereby increasing transcriptome and
proteome complexity. In contrast to the prokaryotic rule of

‘one gene-one polypeptide’, alternative splicing expands
the protein coding potential of eukaryotic genomes by
allowing a single gene to produce proteins with different
properties and distinct functions. Several studies based on
large-scale expressed sequence tag (EST) analysis estimated
that>60% of human genes undergo alternative splicing,
and this number more recently increased to>80% when
microarray data became available (1,2). Alternative spli-
cing is regulated in response to signaling pathways, and is
specific to a developmental stage and tissue type.
The removal of introns from precursor mRNAs

requires accurate recognition of splice sites by the spliceo-
some, an assembly of uridine-rich small nuclear RNAs
packaged as ribonucleoprotein particles (snRNPs) that
function in conjunction with numerous non-snRNP pro-
teins (3,4). The selection between different splice sites on
a particular pre-mRNA substrate relies on an intricate
interplay involving the cooperative binding of trans-
acting splicing proteins to cis-acting sequence elements
in the pre-mRNA. In mammals, these cis-elements include
short and highly degenerate 50 and 30 splice signals, addi-
tional regulatory sequences termed splicing enhancers and
silencers located in either exons or introns, the sizes of the
exons and introns and secondary structures of the pre-
mRNA. The trans-acting factors are commonly classified
as splicing activators or repressors depending on whether
they facilitate or suppress the assembly of snRNPs onto
splice sites. However, many of these factors are also essen-
tial for ‘constitutive’ splicing, making it unrealistic to dis-
tinguish between proteins required for the operation and
regulation of the splicing reaction (5,6). Contrasting with
the multitude of sequence-specific DNA-binding proteins
that control transcription, there are very few known reg-
ulatory proteins that selectively control the splicing of
specific genes. Although such factors exist and a good
example is the brain-specific NOVA1 protein in mammals
(7), in the vast majority of cases splicing factors are ubi-
quitously expressed and modulate splicing of several genes
in distinct cell types. Indeed, specificity of splicing

*To whom correspondence should be addressed. Tel: +351 21 79 99 411; Fax: +351 21 79 99 412; Email: carmo.fonseca@fm.ul.pt

� 2008 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



regulation is largely achieved with non-specific RNA-
binding proteins (8).
According to the current view, regulation of alternative

splicing uses combinatorial interactions of many positively
and negatively acting proteins. Tissue-specific splicing
decisions could therefore result from differences in the
concentration and/or activity of these proteins (2,6,8).
An immediate prediction from this model is that the rela-
tive abundance of multiple splicing proteins should differ
in a tissue-specific manner. To explore this idea, we per-
formed a large-scale computational analysis of mRNA
expression data obtained from DNA microarray studies
of different cell types and tissues derived from human,
chimpanzee and mouse. Our results show for the first
time that splicing factor gene expression signatures can
be identified that correlate with tissue-specific patterns of
alternative splicing.

MATERIALS AND METHODS

Selection of splicing-related genes

A list of 254 human splicing-related genes and several
murine orthologues was previously described (9). The
remaining mouse genes were identified in Ensembl (10)
(http://www.ensembl.org), through the Family classifica-
tion and BLAST (11) search, and by searching SwissProt
(12) (http://us.expasy.org/sprot/) with appropriate
keywords.
‘Perl’ scripts, relying on Bioperl (13) (http://www.bio

perl.org) and modules from the Ensembl PERL API (14)
were used for consistent annotation of genes and subse-
quent cross-linking with the Affymetrix probe set annota-
tion. Annotation for the selected probe sets was validated
with a Perl script. The first step of the pipeline consisted
in BLASTing (11) and/or BLATing (15) of each probe
against both the respective transcriptome [comprising
RefSeq (16), GenBank (17) and transcripts from the
UCSC Genome Browser database (18)] and genome
(Mouse mm8 and Human hg18, NCBI 36). The program
subsequently parsed the outcome and extracted the asso-
ciated transcriptomic and genomic annotations from
the tables in the UCSC genome annotation database (18).

Microarray data pre-processing

All the microarray data analysis was done using R and
several packages available from CRAN (19) and
Bioconductor (20). The raw data (CEL files) were normal-
ized and summarized with the Robust MultiArray
Average method from the ‘affy’ package (21). An initial
quality assessment was done to remove microarrays with
poor quality, using quality diagnostics with probe level
models and array quality control metrics for all arrays
(average background was <200, scale factors <6, percen-
tage of present calls, RNA degradation for GAPDH and
beta-actin - 30/50 ratio).

Cell culture and real-time quantitative PCR

C2 mouse myoblasts were cultured at 30% confluence
in DMEM supplemented with 20% FCS. For the

differentiation experiments the cells were grown in
DMEM containing 20% FCS until they reached 90% con-
fluency. At this stage the cells were changed to low serum
media (DMEM supplemented with 2% horse serum—
differentiation media) and allowed to differentiate for a
maximum period of 4 days.

Primary mouse erythroid progenitors were obtained
from fetal livers of E12.5 mouse embryos and were subject
to differentiation in stem-Pro-34 medium supplemented
with Epo and iron-saturated human transferrin as
described previously (22).

The C2 cell RNA samples used in the quantitative real-
time PCR (qRT-PCR) experiments were collected at days
�2 and �1 prior to differentiation and at days 0, 1, 2, 3
and 4 after changing to differentiation media. Primary
mouse erythroid RNA was collected at 0, 24, 36, 48 and
60 h after induction of differentiation. The RNA was
extracted using the RNeasy extraction kit according to
the manufacturer’s instructions (Qiagen, Germantown,
MD, USA) and treated with RNase-free DNaseI (Roche
Diagnostics, Indianapolis, IN, USA) to remove any pos-
sible genomic DNA contaminant. The concentration of
RNA was determined using the Nanodrop, Wilmington,
DE, USA (Nucliber) and RNA quality was assessed by gel
electrophoresis. Only samples yielding distinct 28S and
18S bands and A260/A280 ratios between 1.8 and 2.1
were used in this study. Production of cDNA was carried
out using Superscript II reverse transcriptase following the
manufacturer’s protocol (Invitrogen, Carlsbad, CA,
USA). About 0.6 mg of total RNA was used in a 20 ml
reaction volume. Isolated cDNA from brain, heart,
kidney, liver and testes was purchased from Ambion.
A total of 30 ng of cDNA was used for each SYBR
Green measurement.

The primers used in the qRT-PCR assay
(Supplementary Table 1) were designed with the Primer3
program (http://frodo.wi.mit.edu/cgi-bin/primer3/prim
er3_www.cgi). The cDNA was amplified in tubes cont-
aining 25 ml reaction volume with 50% of SYBR Green
PCR master mix (Applied Biosystems, Foster City, CA,
USA). Primers were added at a final concentration of
300 nM, which proved to be the best concentration
for all the sets of primers tested. All reactions were per-
formed in the ABI7000 Sequence Detector (Applied
Biosystems).

The relative quantification of mRNA levels at the
various C2 differentiation stages was calculated using
18S as an endogenous reference and the sample at day
0 as the calibrator. For the erythropoiesis experiments
we used Rnase Inhibitor as an endogenous reference
and the sample at 0 h as the calibrator. For the adult
tissues experiments, RNU6A was used as the
endogenous reference. The quantities obtained for each
gene were extracted from a standard curve of CT versus
quantity of mRNA obtained from a serial dilution
of either a mix of C2 cell cDNA extracts or a mix of
erythropoietic progenitors at the stages of differentiation
used for the analysis. For tissue samples, the standard
curve was obtained from serial dilutions of a mix of all
tissues.
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RESULTS

Splicing factor expression during cell differentiation

To study splicing factor expression during differentiation,
we first established a list of human and mouse genes asso-
ciated with splicing and next we compared the correspond-
ing expression profiles from data sets obtained from
microarray studies that analyzed cell differentiation. A
list containing 254 human genes associated with splicing
was previously reported by Barbosa-Morais et al. (9).
Here, we searched for the respective orthologues in the
mouse genome. Both human and mouse lists contain
genes that encode known splicing factors, spliceosome-
associated proteins and proteins with a domain structure
similar to bona fide splicing factors (9).

We selected transcript profiling studies performed with
myotube, adipocyte and erythroid cells differentiated
in vitro and whole mouse testis collected from birth to
adulthood. In total, we studied four distinct differentiation
processes and for each process we analyzed two indepen-
dent data sets covering a total of 126 arrays (Table 1 and
Supplementary Table 2). We identified 181 splicing-related
genes (SRGs) for which 240 probe sets are present in the
Affymetrix Murine Genome U74v2 platform that was
used in all selected microarray studies (Supplementary
Table 3).

All expression values were obtained from Gene
Expression Omnibus (23) (http://www.ncbi.nlm.nih.gov/
projects/geo). Data for myogenesis were obtained from
published studies using the in vitro model of C2C12 myo-
blasts undergoing differentiation induced by serum restric-
tion (24,25). Adipocyte differentiation in vitro was induced
by hormonal treatment on two distinct models: the 3T3-
L1 preadipocyte cell line (26), and NIH-3T3 fibroblasts
(27). Two distinct cell models were also used to analyze
erythroid differentiation in vitro. One model consisted of
G1E cells derived from GATA-1-null embryonic stem
cells; these cells proliferate in culture as immature erythro-
blasts and undergo terminal erythroid maturation when
GATA-1 function is restored (28). The other model con-
sisted of primary erythroid progenitors from mouse fetal
livers; these cells proliferate in serum-free medium under
the control of erythropoietin (Epo), stem cell factor (SCF)

and dexamethasone (Dex) and undergo terminal differen-
tiation when exposed to Epo in the absence of SCF and
Dex (22). Spermatogenesis was examined in vivo (29,30).
To test whether the two data sets corresponding to the

same differentiation process were temporally synchronized,
we performed a time–course analysis of the expression
level of the following differentiation marker genes: the
muscle-specific troponin C (Tnnc1) (31) and Ca2+ channel
ryanodine receptor 1 (Ryr1) (32); the adipogenic comple-
ment factor D–adipsin (Cfd) (33) and peroxisome
proliferator-activated receptor (Pparg) (27); the ery-
throid-specific markers glycophorin A (Gypa) (34) and
Slc4a1 (35); the male germ cell lineage markers lactate
dehydrogenase C (Ldhc) (36) and phosphoglycerate
kinase 2 (Pgk2) (37). For myogenesis, adipogenesis and
spermatogenesis the distinct data sets were approximately
synchronous and were directly used as biological replicates
(Supplementary Figure 1). For erythroid differentiation,
maturation of the cell type used in one study (G1E–ER4
cells) occurred significantly faster than that of primary fetal
liver progenitors used in the other study. This difference
was corrected considering that the last time points of
both experiments were biologically equivalent
(Supplementary Figure 1).
Next, for each differentiation process, we searched for

variation in expression of splicing-related genes along
time. For each splicing-related gene on each data set, we
estimated the Pearson correlation coefficient between
expression level and differentiation time point. Only
genes with absolute correlation values >0.75 [P-values
<0.05, corrected for multiple hypotheses testing using
the Benjamini and Hochberg method (38)] in both data
sets were selected for further analysis. The Pearson corre-
lation coefficients of this subset of genes were used to
cluster the microarray data sets (Figure 1). The hierarch-
ical clustering results revealed consistency between the two
data sets for each differentiation process indicating that
similar groups of genes were found up- or down-regulated
in the two independent experimental studies performed
with each cell type. The only exception was found for
adipogenesis data sets, where the different expression pat-
terns for some splicing-related genes can be due to the
distinct cell lines used in both experiments. As shown in

Table 1. Microarray data sets used to study mouse differentiation processes

Description Data set ID GEO Acc. number Reference Arrays number Time Times for fold-change

Range (h) Points T1 (h) T2 (h)

Myogenesis Myog1 GSE989 (24) 23 �24 to 240 8 24 48
Myog2 GSE1984 10 0 to 48 5 24 48

Adipogenesis Adip1 GSE2192 (27) 15 0 to 240 4 48 96
Adip2 (26) 13 0 to 96 7 48 96

Spermatogensis Sperm1 GSE640 (29) 12 24 to 1440 9 336 720
Sperm2 GSE926 (30) 19 0 to 1344 11 336 720

Erythropoiesis Ery1 GSE628 (28) 17 0 to 30 6 15 30
Ery2 Von Lindern,

unpublished data
17 0 to 60 5 30 60

The GEO accession number, references and number of arrays analyzed are indicated. The time range refers to the total differentiation period. The
number of time points studied for each differentiation process is also indicated. For our expression analysis, T1 and T2 correspond to the indicated
number of differentiation hours.
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Figure 1, during myotube and erythroid differentiation
most splicing-related genes presented a negative correla-
tion, meaning that the expression decreased along time. In
contrast, several splicing-related genes increased expres-
sion during adipocyte and sperm cell differentiation.

Identification of cell type specific variations in splicing
factor expression

To identify cell type specific variations in splicing factor
expression, we had to compare microarray data sets
derived from different biological systems and experimental
assays. To address this issue, we developed a new
approach that is based on regression modeling methods.
Polynomial models were fitted to the splicing factor
expression profiles along each differentiation process,
and the best model was selected by the Akaike’s
Information Theoretic Criterion in a Stepwise Algorithm
(39) as implemented in the ‘stats’ package (19). Since the
selected regression models were essentially linear or

quadratic (meaning that gene expression variations were
constant throughout differentiation or showed only one
inflexion point), for further analysis we reduced each dif-
ferentiation process to three time points, T0, T1 and T2
(Table 1). T0 corresponds to the time when cultured cells
were switched to differentiation medium or to the first day
postpartum for testis. T2 corresponds to terminally differ-
entiated cells or adult testis, and T1 corresponds to an
intermediate stage specific to each differentiation process.
During myogenesis, the proliferating mononucleate myo-
blasts withdraw from the cell cycle and subsequently fuse
to form multinucleate myotubes; we, therefore, considered
that T1 corresponds to the time when irreversible cell cycle
withdrawal occurs, �24 h after serum restriction (24).
Likewise, for adipogenesis T1 corresponds to the time
when cells withdraw permanently from the cell cycle at
�2 days after hormonal stimulation (26,27). In contrast,
during erythropoiesis cells undergo three to four rapid cell
divisions accompanied by a decrease in cell size and the
accumulation of hemoglobin; in this case, we considered
that T1 corresponds to the stage of proliferating capacity,
which occurs at �15 h in GE1 cells and at 30 h in fetal liver
erythroid progenitors (28). Based on the observation that
>99% of male germ cell-specific transcripts are first
expressed during or after the occurrence of meiosis (29),
we considered the onset of sperm cell meiosis (taking place
at �14 days after birth) as T1 for spermatogenesis.

For each differentiation process, the fitted models were
used to predict the splicing factor expression levels at time
points T0, T1 and T2. Then, to normalize the data, we
estimated the fold-changes observed at T1 and T2, relative
to T0. We also transformed the residual standard errors
from each fitted regression model and used as weights
(weights=exponential� residual standard error) to
include confidence levels of each prediction (biological
variability). Finally, the differentially expressed splicing-
related genes for each T1 and T2 differentiation stage
were selected using linear models and empirical Bayes
methods (40) as implemented in ‘limma’ package (41).
The B-statistics gives the log odds of differential expres-
sion and it requires an ‘a priori’ value for the estimated
proportion of differentially expressed genes. To determine
this value, we visually inspected the volcano plot, which
compares biological significance (represented by fold-
changes) with statistical significance (B-values) (42), find-
ing the value which enabled genes to be distinguished from
the majority (43). Additionally, we verified the P-values
corresponding to moderated F-statistics. Using the
Benjamini and Hochberg method (38), all genes selected
as differentially expressed had adjusted P-values <0.01.
To validate our approach we included in the analysis the
specific differentiation marker genes used for synchroniza-
tion. Up-regulation of each differentiation marker gene
was specifically detected in the respective differentiation
process (Figure 3).

Our analysis revealed that major variations in splicing
factor expression occurred at T2. The highest variation
was found in spermatogenesis: 47% of total splicing-
related genes were up- or down-regulated at T2 relative
to T0. The genes that were statistically selected as up- or
down-regulated in the different processes included

Figure 1. Variation in expression of splicing-related genes during cell
differentiation. Hierarchical clustering display of Pearson correlation
values between gene expression and time, for the splicing-related
genes with the absolute correlation values >0.75 in both data sets of
at least one differentiation process. The negative and positive correla-
tion values are represented by blue and red colors, respectively.
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members of the hnRNP and SR protein families, SR
protein kinases, DEAD-box RNA helicases, snRNP
proteins and several additional spliceosomal proteins
(Supplementary Table 4).

In order to validate the microarray data analysis
we determined mRNA expression levels using a more sen-
sitive method. RNA samples were obtained from C2 myo-
blasts and fetal liver erythroid progenitors and
analyzed by qRT-PCR. We started by selecting 12 genes
that the microarray data analysis identified as up- or
down-regulated during erythroid and myotube differentia-
tion. As shown in Figure 2 (closed circles), expression
changes were confirmed for nine genes (75%). Thus, we
obtained a validation rate of 75% among independent
biological samples for genes identified as differentially
expressed in our statistical analysis of microarray

fold-changes. We then selected 15 other genes that were
not identified as differentially expressed during myogenesis
or erythropoiesis. From these, we found four genes down-
regulated in myogenesis (Rod1, Hnrpa1, Sfrs10 and
Hnrpa2b1) and 10 genes down-regulated in erythropoiesis
(Cugbp1, Cugbp2, Ddx17, Snrpb2, U2af1, Sfrs2, Ptbp1,
Hnrpdl, Hnrpr and Wtap; open circles in Figure 2). This
reveals that the microarray analysis is missing several
genes the expression of which is less obviously altered.
We next asked whether robust differences could be found

that distinguish one differentiation process from the others.
To identify genes that are most highly differentially expres-
sed in a particular differentiation process we used linear
models and empirical Bayes methods (40) as described pre-
viously. Following the statistical analysis, a filter was
applied to eliminate genes that were similarly differentially

Figure 2. Validation of microarray data analysis by quantitative real-time PCR. The fold-changes in expression of 27 splicing factors at T1 and T2
relative to T0 are indicated. For qRT-PCR analysis, RNA samples were obtained from C2 myoblasts and fetal liver erythroid progenitors. Results
are presented as means for at least three independent experiments. Results from microarray data sets are presented as the fold-changes estimated
from the linear models. The dashed lines indicate the 1.5-fold-change values (in logarithm scale) for microarray data and qRT-PCR. The differen-
tially expressed genes selected by microarray data analysis for each differentiation stage are indicated with solid circles.
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expressed in more than one differentiation process. A gene
is considered to be part of a ‘signature’ when its expression
changes at least 1.5-fold (log2=0.58) more than in any
other process. As shown in Figure 3 and Supplementary
Table 5, we identified gene expression signatures
associated with three of the four differentiation processes.
The list of genes in each signature included members of the
several splicing-related protein families. The gene expres-
sion signature associated with spermatogenesis contained
the highest number of genes. The signature associated with
erythroid differentiation consisted of two genes (U2af1-rs1
and Prpf6), and the adipogenesis signature comprised three
genes (Hnrpab, Hnrpdl, Sfrs1). No signature was asso-
ciated with myotube differentiation, as the genes that
were differentially expressed during myogenesis were also
found differentially expressed in at least one of the other
processes analyzed. This may be related to the finding that
splicing factors in muscle are predominantly regulated at
the post-transcriptional level (44).

Tissue-specific differences in splicing factor expression

Having identified splicing factor signatures associated
with cell differentiation, we next explored variations in

splicing factor expression across tissues from human,
chimpanzee and mouse. Available mRNA expression
data were obtained from a microarray study covering
five different tissues in six humans and five chimpanzees
using a total of 48 hybridizations (45). This study used
the Affymetrix Human Genome hgu133plus2 platform
containing 738 probe sets for 208 human splicing-related
genes (Supplementary Table 3). Gene expression profiles
from adult mouse was obtained from a study that ana-
lyzed 24 brain regions and 10 body tissues using a total of
150 array hybridization measurements with the Affymetrix
Murine mgu74av2 platform (46) (Supplementary Table 6).

To compare the splicing-related gene expression profiles
from human, chimpanzee and mouse datasets, a linear
model (40) was fitted for each gene using the expression
values from all microarrays and with one regression coef-
ficient for each tissue. Thus, each regression coefficient
from the model represents the expression level of the
gene in a different tissue. The tissues relatedness was stud-
ied performing a hierarchical clustering analysis of the
tissues expression profiles using only the splicing-related
genes and the non-splicing related genes. We estimated the
Euclidean distance among the tissues and used hierarchi-
cal clustering with different agglomeration methods

Figure 3. Splicing-related gene expression signatures during cell differen-
tiation. Heatmap with the fold-changes (log2) observed for each gene that
is most highly differentially expressed during myotube (Myo), adipocyte
(Adip), sperm cell (Sperm) and erythrocyte (Ery) differentiation. The
genes and respective fold-changes are presented in detail in Supplementary
Table 5. The side colors represent the splicing-related genes (yellow) and
the specific differentiation marker genes for myogenesis (Ryr1, Tnnc1 in
blue), adipogenesis (Pparg and Cfd in red), spermatogenesis (Ldhc, Pgk2
in green) and erythropoiesis (Gypa and Slc4a1 in gray).

Figure 4. Tissue expression profiles of splicing-related genes are similar in
human, chimpanzee and mouse. Heatmap of adult mouse, chimpanzee
and human tissues using microarray-derived expression profiles of
splicing-related genes. The expression value for each gene is normalized
across the samples to zero mean and 1SD for visualization purposes.
Genes with expression levels greater than the mean are colored in red
and those below the mean are colored in blue. The expression values
for genes that are not present in one of the microarray platforms are
represented by white.
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(complete, single, average, centroid and ward) as imple-
mented in ‘stats’ package (19). The best hierarchical tree
was chosen using the cophenetic correlation value. The
results revealed very similar expression profiles of spli-
cing-related genes in human and chimpanzee tissues
(Figure 4). For these two organisms, the testis was clearly
an outlier, with low concordance in expression of splicing-
related genes relative to the other tissues examined.
Analysis of mouse tissues also indicated the testis as the
main out-group (Figure 4). Most of the 24 mouse brain
regions revealed high similarity in expression profiles and
were mostly grouped together for both splicing-related
genes and all remaining genes (Supplementary Figure 2).
Pituitary and retina appeared as an out-group of the brain
cluster, and corpus plexus of the fourth ventricle (Cp4v)
did not group with the remaining brain regions but rather
clustered with the body tissues. Hierarchical clustering of
splicing-related gene expression profiles in the 10 body
tissues revealed the testis, spleen and thymus as the main
out-group (Supplementary Figure 2).

From the human, chimpanzee and mouse microarray
data, we identified 154 genes that were differentially
expressed between brain, testis, heart, liver and kidney
(Supplementary Table 7 and Supplementary Figure 3).
From these, seven genes were selected and five of them
(71%) were found differentially expressed by qRT-PCR
(Supplementary Figure 4). Similarly to the results
observed during cell differentiation, the differentially
expressed genes code for hnRNP and SR proteins, SR
protein kinases, DEAD-box RNA helicases, snRNP pro-
teins and several other splicing-related proteins. From the
selected 154 genes, 104 showed tissue-specific expression
variation >1.5-fold in at least one of the three organisms
(Figure 5 and Supplementary Table 8). Analysis of all
mouse data sets further revealed 74 genes with highest
expression variation in the 24 brain regions and 10 body
tissues (Supplementary Table 9). As shown in Figure 5,
testis and brain contain the highest number of splicing-
related genes that are more than 1.5-fold differentially
expressed. From the human and chimpanzee microarray
data sets, we identified 43 genes included in the testis-
specific signature and 20 in the brain signature. From
the mouse studies our results reveal 49 genes in the testis
signature and 6 in the brain signature. Out of the 48 genes
included in the signature for spermatogenesis
(Supplementary Table 5), 27 appeared also in the adult
mouse testis signature (Supplementary Table 8 and
Supplementary Figure 5).

Concerning the brain-specific splicing factor gene
expression signature, the gene list includes the previously
reported brain-splicing regulators PTB1, NOVA1, A2bp1/
FOX1, and members of the CELF/BRUNOL and
ELAVL families. Additionally, we identified the non-SR
splicing regulator Y-box protein 1 (47) highly down-
regulated and the core snRNP protein SmN (48) highly
up-regulated. We detected many genes that were highly
differentially expressed in chimpanzee but not in human
brain, and we found two genes (TNRC4, encoding for the
CELF3/BRUNOL1 protein, and LSM8, encoding for U6
snRNA-associated Sm-like protein LSm8) that were,

respectively, highly up- and down-regulated in human
but not in chimpanzee brain.
The testis-specific signature included the splicing factor

3a subunit 2 (SF3A2) and the SR protein kinases 1 and 2
(SRPK1 and SRPK2). The genes that were common to the
testis-specific signatures from all three organisms (human,
chimpanzee and mouse) encode SF3A2, SRPK2, protein
phosphatase 1G (PPM1G), the RNA binding protein
RDBP and the heterogeneous nuclear ribonucleoprotein
HNRPLL. Remarkably, 10 (37%) of the mouse
genes included in the testis-signature corresponded to
up-regulated snRNPs (Lsm2, Lsm4, Sf3a3, Snrpa,
Snrpa1, Snrpc, Snrpd2, Snrpg, Usp39 and U5-40d).

DISCUSSION

In this study, we applied computational methods to iden-
tify tissue-specific splicing factor gene expression signa-
tures from published microarray data sets. By using this
approach we have identified over 100 splicing-related
genes that are most highly differentially expressed in a
particular tissue or differentiation process.
Recently, several microarray-based methods have been

reported for genome-wide monitoring of splicing events in
mammalian tissues (49,50). The increasing availability of

Figure 5. Tissue-specific splicing-related gene expression signatures.
Heatmap indicating the fold-changes (log2) observed for each gene
that is most highly differentially expressed in the five tissues examined.
The left bar highlights genes that are present in both human and mouse
Affymetrix platforms (green) or only in one of the two platforms
(yellow). The genes and respective fold-changes are presented in
detail in Supplementary Table 8.
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splicing-microarray data sets will make it possible to extend
our approach and systematically search for differential
expression of alternatively spliced isoforms of splicing reg-
ulators. Importantly, however, changes in splicing factor
mRNA levels may not necessarily reflect on protein expres-
sion due to post-transcriptional regulation (51,52).
Therefore, further experimental investigation on the candi-
date tissue-specific splicing regulators identified in this
study is required to determine whether specific changes in
the protein concentration and/or activity do occur.

Splicing factor signatures correlate with tissue-specific
alternative splicing patterns

By using a method that normalizes the number of
observed alternative splicing events to the EST coverage
in each tissue, Yeo and colleagues (53) found that the
brain has the highest proportion (>40%) of alternatively
spliced genes, followed by the liver and testis. The brain
and testis showed the highest levels of exon skipping, while
the liver had the highest frequency of alternative 30 and 50

splice site usage. Using a microarray platform with probes
that span exon–exon junctions, Pan et al. (54) detected the
largest number of tissue-dependent alternative splicing
events associated with brain. A more recent analysis
performed with human exon microarrays revealed that
testis and brain express the largest number of probe sets
that are not expressed in any other tissue (55). In that
study, tissue-specific probe sets may be from genes that
are only expressed in a single tissue, or individual exons
that are included in a tissue-specific manner via alternative
splicing (55).
Our analysis revealed that the highest number of highly

differentially expressed splicing-related genes occurred in
the testis and in the brain, whereas the liver showed higher
concordance in expression of splicing-related genes rela-
tive to other tissues, namely the kidney. Thus, our results
specifically distinguish the two tissues with highest abun-
dance of alternatively spliced mRNA isoforms that differ
by inclusion or exclusion of an exon, as those with a high-
est variation in splicing factor expression. Yeo and coau-
thors (53) have also analyzed microarray expression data
for 20 splicing factors of the SR, SR-related and hnRNP
protein families across several human tissues and identi-
fied liver as an outlier, suggesting an involvement of this
group of factors in regulation of liver-specific alternative
30 and 50 splice decisions. However, our analysis revealed
that variation in expression levels of these factors is not
unique to the liver.

SR protein kinases as tissue-specific signatures

According to a current model, small differences in concen-
tration or activity of SR proteins may influence the choice
of competing splice sites and therefore control alternative
splicing (6). SR proteins form multi-protein complexes
that bind to splicing enhancer sequences in the pre-
mRNA and stabilize the assembly of the spliceosome at
splice sites. One possible mechanism to affect SR protein
activity is differential phosphorylation. Indeed, the phos-
phorylation status of Ser residues within the RS domain of
SR proteins has been shown to alter protein–protein

interactions and splicing activity (56–58). Several SR-pro-
tein kinases have been identified, including SRPK and
CLK/STY (59,60). Here, we detected members of both
the SRPK and CLK gene families being differently
expressed in distinct cell types and tissues. In particular,
the SRPK1 and SRPK2 genes were highly up-regulated
during mouse spermatogenesis. Moreover, SRPK1 and
SRPK2 were included in the testis-specific signature for
chimpanzee and mouse (SRPK2 also found for human),
whereas SRPK3 was included in the heart signature for
human and chimpanzee. We therefore predict that SR
protein kinases are likely to play an important role in
tissue-specific alternative splicing.

Tissue-specific signatures include several snRNP proteins

It is generally assumed that splicing is regulated by non-
snRNP proteins that modulate the association of core com-
ponents of the spliceosome with the pre-mRNA. This view
was for the first time questioned by an RNAi screen in
Drosophila cells that unexpectedly detected changes in
alternative splicing of endogenous genes after reducing
the levels of core spliceosomal proteins (61). These included
components of the U1, U2 and U4/U6 snRNPs, and both
subunits of the U2 snRNP auxiliary factor, U2AF. More
recently, we used RNAi to down-regulate expression of the
small subunit of U2AF in human cells andwe also observed
changes in alternative splicing of transcripts derived from
both endogenous genes and exogenous reporter minigenes
(62,63). In another study, Massiello and coauthors (64)
reported that RNAi-mediated down-regulation of
SAP155 (a subunit of splicing factor SF3B, which associ-
ates with the U2 snRNP) affected alternative splicing of
Bcl-x transcripts. Although some of the effects on alterna-
tive splicing induced by RNAi may be indirect, it was also
shown that in Saccharomyces cerevisiae substrate selectiv-
ity can be modulated by altering the kinetics of spliceosome
rearrangement (65). Further support to the idea that fluc-
tuations in the concentration of core spliceosomal proteins
may contribute to regulate splicing is provided by the dif-
ferential cell type and tissue-specific expression profiles
presented in this study. Variations in expression of genes
that code for Lsm, Sm and snRNP-specific proteins were
detected in the course of myotube, erythroid and sperm cell
differentiation. Consistent with our results, down-
regulation of snRNP synthesis during myogenesis was pre-
viously demonstrated by pulse-labeling experiments (66).
A decrease in expression of genes that encode snRNP
proteins was not observed during adipogenesis, arguing
that the variations detected in myogenesis are not related
to the cell cycle arrest, which is common to both myotube
and adipocyte differentiation. In addition to core snRNP
proteins, the U2af1-rs1 gene, which encodes a protein with
a high degree of homology to the small subunit of U2AF
(67), was found specifically up-regulated during erythroid
differentiation. Another U2AF-related gene, U2af1-rs2,
was highly up-regulated in the mouse brain. SF3A2 was
further identified as part of the testis-signature for
human, chimpanzee and mouse, while the snRNP protein
SmN appeared in the brain-signature for the three organ-
isms. Clearly, a major task for the future will be to
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determine whether tissue-specific alternative splicing events
are regulated by the differential expression of these snRNP
and snSNP-related proteins.
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