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Abstract

The gene hierarchy directing biogenesis of peritrichous flagella on the surface of Escherichia coli
and other enterobacteria is controlled by the heterotetrameric master transcriptional regulator
FIhD,C,. To assess the extent to which FIhD,C, directly activates promoters of a wider regulon, a
computational screen of the £. coli genome was used to search for gene-proximal DNA sequences
similar to the 42—44 bp inverted repeat FIhD,C, binding consensus. This identified the binding
sequences upstream of all eight flagella class Il operons, and also putative novel FIhD,C, binding
sites in the promoter regions of 39 non-flagellar genes. Nine representative non-flagellar promoter
regions were all bound /n vitro by active reconstituted FIhD,C, over the Kp range 38—-356 nM,
and of the nine corresponding chromosomal promoter—/acZ fusions, those of the four genes 61904,
b2446, wzzepe and glt/ showed up to 50-fold dependence on FIhD,C /in vivo. In comparison,
four representative flagella class Il promoters bound FIhD,C, in the Kp range 12-43 nM and were
upregulated /n vivo 30- to 990-fold. The FIhD,C»-binding sites of the four regulated non-flagellar
genes overlap by 1 or 2 bp the predicted —35 motif of the FInD,C,-activated o/ promoters, as is
the case with FIhD,C»-dependent class Il flagellar promoters. The data indicate a wider FIhD,C»
regulon, in which non-flagellar genes are bound and activated directly, albeit less strongly, by the
same mechanism as that regulating the flagella gene hierarchy.

INTRODUCTION

The motility of bacteria like Escherichia coli, Salmonella typhimuriumand Proteus mirabilis
is mediated by 15 wmm long peritrichous flagella: helical ‘propellers’ assembled on the cell
surface. More than 40 genes are specifically required for flagellar biogenesis (Macnab,
1996), and these are organized with those for chemotaxis in a transcriptional hierarchy that
underlies temporal and spatial control of the assembly process (Kutsukake et a/.,, 1990; Kalir
et al, 2001; Soutourina & Bertin, 2003). At the apex of this hierarchy is the flagellar master
operon fIhDC which assimilates environmental and physiological signals, and in £. coli and
related bacteria is tightly regulated at the transcriptional (Dufour et a/., 1998; Soutourina &
Bertin, 2003; Francez-Charlot ef a/,, 2003) and translational (Claret & Hughes, 2000g;
Tomoyasu et al., 2003) levels. This activates expression of the ‘early’ class 1l genes
encoding membrane components of the flagellar basal body, the cytosolic and membrane
proteins of the export machinery, and the sigma factor o8 that switches on class 111 genes
encoding chemotaxis proteins and the structural subunits of the flagellum (Chadsey et a/,
1998; Karlinsey et al., 2000; Soutourina et al., 1999). Activation of flagellar class 11
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promoters is determined by the heterotetrameric FIhD,C, complex, composed of the FIhD
(13-3 kDa) and FIhC (215 kDa) proteins, which are closely conserved among
enterobacterial species (Kutsukake et al,, 1990; Givskov et al., 1995; Furness et al., 1997,
Young et al., 1999; Givaudan & Lanois, 2000). While FIhC, dimers can bind to target class
Il promoters independently, FIhD, enhances the affinity, stability and specificity of the
interaction between class Il flagellar promoters and the FIhD,C, complex (Claret & Hughes,
2002).

In addition to its role in swimming motility, the 7/ADC operon is pivotal to multicellular
swarming migration (Allison & Hughes, 1991; Fraser et al., 2002), during which it is
strongly upregulated, and contributes to virulence-factor expression in several pathogens
(Allison et al,, 1994; Dufour et al., 1998; Young et al., 1999; Kim et al., 2003). In addition,
microarray comparisons of mMRNA levels from E£. coliwild-type and f/ADC mutant strains
have suggested that the flagellar master operon regulates several non-flagellar genes (Priiss
et al., 2001, 2003). These observations have encouraged the concept of a substantial #/ADC
transcriptional ‘regulon’, but it is not clear whether //ADC-dependent regulation is
determined directly by FIhD,C, binding to non-flagellar promoters or reflects indirect
pathways in which FIhD,C, acts by influencing other regulators.

DNase footprinting and primer extension analyses of class 11 flagellar promoter sequences
from P. mirabilis, E. coliand S. typhimurium (Kutsukake et al., 1990; Liu & Matsumura,
1996; Claret & Hughes, 2002) have generated a consensus FIhD,C5 binding sequence of a
42-44 bp imperfect inverted repeat in which two ‘FIhD,C, box’ arms, each AA(C/T)G(C/
G)No3sAAATA(A/G)CG, are separated by a non-conserved spacer of 10-12 nucleotides
(N1g-12) (Claret & Hughes, 2002). To assess the nature and extent of the proposed ‘ fIhDC
regulon’, we have used this consensus recognition sequence to identify putative target genes
in the £. coli genome. Putative target promoters identified were assayed by /n7 vitro binding
of reconstituted, transcriptionally active FIhD,C,, and by /n vivo FIhD,C,-dependent
transcription of the chromosomal genes.

Computer survey of the E. coli genome

The E. coliMG1655 genome (GenBank accession no. U0O0096) was surveyed for putative
FIhD,C, binding sites by a heterology index (HI) based computer program, details of which
can be obtained from Tomoo Ogi (t.ogi@sussex.ac.uk). Briefly, a scoring matrix was
compiled from the sequences of both FIhD,C, boxes (i.e. the arms of the inverted repeat) of
18 known class 11 flagellar promoters, including the 12 experimentally defined promoters
originally used by Claret & Hughes (2002). Only the length of the non-conserved N1g_12»
spacer was considered, not the base sequence. HI values were thus calculated for every one
of the ~4-64x106 possible 42—44 base sequences of the genome by adding the HI for
appropriately spaced (N1g_12) inverted FIhD,C, box arms. This allowed identification of
sites with a range of HI values from 6.1 upwards. A perfect consensus binding site would
have an HI value of 0, with HI values above 20 indicating weak potential for true FIhD,C,
binding, judging from their high frequency (~500), and previous experiments on other
regulons (Berg & VVon Hippel, 1988; Lewis ef a/., 1994; Fernandez de Henestrosa et af.,
2000).

Bacterial strains

E. coli strains were grown at 37 °C in LB broth or on LB agar. £. coli XL-1 Blue or XL10
Gold (Stratagene) transformants were selected by appropriate antibiotics (gentamicin, 5 g
ml~1; kanamycin and ampicillin, 50 g mi~1) plus 80 mg X-Gal mI~1 and 20 mM IPTG.
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Motile £. co/i MC1000 wild-type and the non-motile /4D : : km derivative containing a
polar Tn5 transposon insertion were obtained from B. Pruss (University of Illinois, Chicago,
USA). E. coliMC1000 strains fur: : km, fliA:: kmand /ns: : kmwere created by P1
phage transduction from MC4100 Ans: : km, MG1655 fliA : : kmand MC4100 fur: : km,
obtained from Simon Andrews (University of Reading, UK) and the University of
Wisconsin £. coli genome project (Kang et al., 2004).

In vitro DNA binding

The FIhD and FIhC proteins were expressed separately in £. co/i BL21 DE3 from plasmids
pET11-FIhD and pET15-FInC and recovered from insoluble pellets after cell lysis in a
French pressure cell, as previously described (Claret & Hughes, 2000a). The FIhD pellet
was resuspended in 6 M urea, 20 mM Tris/HCI (pH 8-0), and the protein purified by anion-
exchange chromotography; the FIhC pellet was resuspended in 6 M guanidine/HCI, pH 8.0,
and His-tagged FInC protein was affinity purified by Ni-NTA chromatography. The two
proteins were mixed, refolded and solubulized during dialysis against binding buffer (20
mM Tris/HCI, pH 8:0, 0-1 M NaCl, 0-1 mM EDTA, 1 mM DTT, 1 mM MgCl,, 100 mg
BSA ml~1, 15%, wiv, glycerol) according to Claret & Hughes (2000a) to form the
transcriptionally active FIhD,C, complex. The His-tagged FIhC is comparable to the native
FIhC in FInD,C, complex formation and DNA binding, and was able to complement the
non-motile phenotype of an #/#C mutant (not shown). The complex was pre-incubated in 20
ml binding buffer for 20 min at 25 °C, then incubated for 20 min with radiolabelled DNA
probes of 175-226 bp PCR amplified from the £. coli chromosome with Pfu Turbo
polymerase and oligonucleotide primers containing £coRl and BamHl sites. Each PCR
product was digested with £coR1 and dephosphorylated by calf intestinal alkaline
phosphatase (Roche) before 5" phosphorylation with [-32PJATP (Amersham) using phage
T4 polynucleotide kinase (NEB) and purification on a 5% (w/v) polyacrylamide gel
containing 1x TBE (100 mM Tris/borate, pH 8:3, 2 mM EDTA). The resulting end-labelled
probes were included at a concentration of 0-3 nM (i.e. providing a molar excess of protein
complex) with a 1000-fold excess of non-specific competitior poly(dldC). After
electrophoresis of DNA : protein complexes through 6% polyacrylamide (0-5% TBE), the
gels were dried and the relative intensities of the bound/unbound DNA were detected using
a cyclone phosphorimager and quantified by orriquant Software (Packard). Binding affinity
was expressed as Kp, the concentration of FIhD,C, complex required to achieve a ratio of
1: 1 for the free : bound DNA probe. All assays were performed at least twice and the mean
binding affinities (Kp) reported.

Construction of chromosomal transcriptional fusions

Plasmid pGPS123 was constructed by excision of the kanamycin resistance gene of pRS551
(Simons et al., 1987) using X#ol and Hinalll and replacement with the gentamicin
resistance cassette of p34SGm (Dennis & Zylstra, 1998). DNA sequences used as probes in
in vitro DNA-band shift assays were PCR amplified with Pfu Turbo polymerase from the £.
coli chromosome using specific oligonucleotide primers that each generated a 5” £coRl site
and a 3’ BamH| site. DNA fragments were cleaned using QIAspin columns (Qiagen),
digested with £coRIl and BamHI, and ligated with £coRI/ BamH| digested pGPS123. After
transformation into £. coli XL1 Blue or XL10, blue GmR colonies were selected, and inserts
verified by PCR and sequencing (Department of Genetics, University of Cambridge) using
vector-specific primers.

The f/hB-80 promoter fragment was obtained by first amplifying the FIhD,C5 binding site
plus 95 bp of 5" DNA using primers FInBFor
(TTGAATTCATGGTGGCGTGACCACCACGTCAT) and FIhBDCRev
(TAGCCGCGGTGATGCCAGAAAAAAACCCCGTCACGTTCAAGCTTAATGGTTGA
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GTAAGG), then the o’ promoter plus 57 bp of 3" DNA using primers FIhBRev
(CGGGATCCTTTTGTCGTCGCTCTCG) and FIhBs70
(TAGCCCGCGGTGATGCGCTTGATGGCCGAGTCTCCGATTACAAGCTTGAACGCT
TTGCGC). These two primers contain Sacll restriction sites (CCGCGG) at their 5” ends,
allowing ligation of the PCR products to form the 270 bp 7/48-80 fragment construct and its
cloning into pGPS123. The source of the intervening ‘extra’ sequence in primers
FIhBs70For and FInB-DCRev is the f/hA gene, which contains no transcriptional features.

MC1000 strains containing each pGPS123 transcriptional-fusion-bearing plasmid were
individually infected with phage ARS45, and lysates were used to produce blue GmR ApS
lysogen colonies (Simons ef a/., 1987). Fusion inserts in the chromosome were confirmed by
sequencing using vector- and insert-specific primers, and correct insertion into the Aattsite
was verified according to the method of Powell ef a/. (1994).

The fIhDC complementation plasmid p/ADC was constructed by amplification of the f/hDC
genes and flanking DNA containing the native promoter sequence, using the primers DC-
coliF (GGAATTCTGCGCAACATCCCATTTCG) and DC-coliR
(GGGAATTCCAGTTAAACAGCCTGTACTCT), restriction with £coRl, and ligation into
EcoRlI-restricted pAcTrc (provided by Dr Gillian Fraser, Department of Pathology,
University of Cambridge).

In vivo assay of transcription activity

RESULTS

Chromosomal transcriptional fusion expression was assessed as whole-cell g-galactosidase
activity (Miller, 1972). Triplicate overnight cultures were diluted to ODgp=0-001 in LB and
sampled hourly during batch culture. We performed the assays at 37 °C.

The E. coli MC1000 strain showed comparable motility at 37 °C and 30 °C (not shown), in
agreement with observations of constant swimming speeds between 24 °C and 37 °C, and
comparable FliC protein and transcript levels over a similar temperature range (Adler &
Templeton, 1967; Mizushima et al., 1994). Activities were recorded as means of at least
three cultures. In complementation experiments, #/ADC was provided /n trans by expression
without induction from the plasmid pf/ADC.

Computational identification of putative FIhD,C, regulon genes

To identify genes of the potential FIhD,C, regulon, the 4639 kb DNA of the £. coli
MG1655 genome sequence was surveyed by a statistical mechanics search program, as
previously described in the characterization of the cAMP receptor protein (CRP) and LexA
regulons (Berg & VVon Hippel, 1988; Lewis ef a/., 1994; Fernandez de Henestrosa et al,
2000). In the program, differences between a query DNA sequence and the protein binding
site consensus are assigned a penalty reflecting the frequency of each base at every position
in known target sequences, and this is used to calculate a heterology index (HI). Low HI
scores indicate closeness to the consensus.

The search identified 7834 genome sequences with an HI lower than 25, while 499 had an
HI below 20, and 145 an HI equal to or below 18. Of the 145 sequences, 99 were within
coding sequences and/or located more than 250 bp 5" of predicted start codons. These were
excluded, since the known FIhD,C, binding sequences of flagellar class Il promoters are all
between 74 bp and 160 bp 5” of their respective start codons. This left 47 putative FIhD,C»
binding sequences with an HI lower than our arbitrary cut-off of 18 or in non-coding
sequence close to genes putatively transcribed alone or in operons. These are listed in Table
1 with the known or indicated function of the gene immediately 3" of the promoter. This
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number is comparable with the 69 putative LexA regulon binding sites similarly identified
with an HI lower than 15 (Fernandez de Henestrosa et al., 2000). The 47 promoter regions
are estimated to control 86 of the 4287 predicted ORFs in the £. coli genome (http://
genolist.pasteur.fr/Colibri/help/current.html).

The search identified the binding sequences of all the seven known class Il flagellar operons
of E. coli, each with a low HI value: figAMN (HI 6.1), flgBCDEFGHIJ (HI 6-1), fIhnBAE
(H111-9), fliE (H1 12.2), fliFGHIJK (HI 12-2), fliIAZY (HI 13-1) and iLMNOPQR (HI
14-7). An FIhD,C, binding site was also identified 5" of the fliDST (HI 12-2) operon that
has not been previously reported in £. colibut is compatible with the presence of both class
I1 and 111 promoters for this operon in the closely related S. typhimurium (1de et al., 1999).
This reflects the direct activation of 35 flagella genes by FIhD,C»,. The remaining 39
putative FIhD,C, binding sequences are located in promoter regions which control
approximately 51 non-flagellar genes. Ten are 5” of single genes or operons with products
of known function, involved in global regulation (4upB and /ns histone-like proteins,
groES(L) protein folding, /cc (cpdA) cAMP catabolite repression), the secM protein
secretion regulator, polysaccharide synthesis (¢ppS) or modification (Wzzgepg,O-antigen
chain length control, prmrD LPS composition), and involvement in membrane transport
(ivKHGMF, leucine uptake, chaC putative calcium transporter, g/t/ glutamate transport). A
further 20 genes have putative functions predicted only from the presence of conserved
domains or motifs (http://www.tigr.org/), and eight only have a predicted cellular location
(assessed at http://psort.nibb.ac.jp/).

In vitro binding of FIhD,C> to target sites of the E. coli genome

The theoretical assumptions underlying this search approach have been validated by
experimental binding affinities of the CRP and LexA proteins for target promoters of their
regulons (Berg & Von Hippel, 1988; Lewis ef al., 1994; Fernandez De Henestrosa et al.,
2000). In our studies, DNA-band shift assays were used to assess recognition by the
FIhD,C, complex of 13 representative sequence targets with low HI chosen from the 47
listed in Table 1. Four were located 5’ of the flagellar operons flgB (HI 6-1), fIhB (HI 11-9),
fliA (H1 13-1) and #/iL (HI 14-7), representing a range of HI, to establish a positive control
dataset for the study. Nine were upstream of the putative non-flagella targets 67904 (HI
10.9), 62446 (HI 11.5), yefO (HI 13.7), gltl (HI 13-7), jcc (H1 14-1), yegH (HI 14-6), Ans (HI
14-7), wzZepe (HI 14-9) and AupB (HI 15-5). Two sequences with HI scores outside the 18
cut-off, resA (HI 18:-8) and argR (18:7), were assessed in parallel as negative controls. In
each case, a radiolabelled probe of 150-230 bp, containing the putative FIhD,C, binding
site near its centre, was made by PCR amplification of genomic DNA from £. co/i MC1000.
Each probe was incubated with increasing concentrations of transcriptionally active
heterotetrameric FIhD,C, complex reconstituted from purified FIhD and FIhC proteins
(Claret & Hughes, 2000b, 2002) in the presence of a large excess of the non-specific
competitor poly(dldC).

All 13 test probes, four flagellar and nine non-flagellar, were bound by FIhD,C,. This
resulted in each case in a shift of the DNA to a slower-migrating species during native
PAGE. Autoradiographs of three representative binding assays with sequences of differing
HI are shown in Fig. 1A. To quantify this assay, phosphoimage analysis of the migrating
band intensities allowed the ratio of bound : free DNA intensity to be plotted against protein
concentration. The plots in Fig. 1B (i), (ii) show a broad range of FIhD,C, affinities, with
binding to several putative non-flagellar targets, such as 67904, comparable to that of the
four class 11 flagella genes analysed.

From these plots, the apparent dissociation constant Kp was calculated for each binding site
as the protein concentration at which 50% of probe was bound, in other words, the ratio of
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bound : free DNA probe was 1. The class Il flagellar promoter regions of flgB, fihB, fliA
and f/iL displayed low Kp values of 12:5 nM, 21 nM, 25 nM and 43 nM, respectively, as did
those of genes 01904, b2446 and wzzepe: 38 M, 60 nM and 86 nM, respectively. The Kp
values for the non-flagellar promoter regions of yejO, gltl, icc, yegH, hnsand hupB were
substantially higher at 220 nM, 220 nM, 167 nM, 240 nM, 165 nM and 250 nM,
respectively. Although FIhD,C, bound to the control probe of rcsA, the Kp of 356 nM was
close to the limit of detection (450 nM), while no binding was observed to the argR
sequence.

In vivo FIhD,C»-dependent promoter transcription

To assess whether the /n vitro binding of FIhD,C, correlated with FIhD,C»-dependent /in
vivo promoter activity, single-copy chromosomal /acZtranscriptional fusions were
constructed to each of the promoter regions assessed in the DNA-band shift assay. Each of
the 15 DNA probe sequences was fused to the /acZreporter gene in the plasmid vector
pGPS123, and the resulting construct was transferred as a single-copy fusion to the
chromosome of both £. co/i MC1000 wild-type and the isogenic /ADC null mutant by the
phage ARS45 (Simons et al., 1987). The B-galactosidase activity of each transcriptional
fusion was compared in the two strains grown at 37 °C and also in the /ADC mutant
complemented /n trans by the pf/hDC plasmid, which expresses FIhD,C, from its native
promoter.

During batch growth in LB medium, peak expression of the four class Il flagella gene
promoter regions was substantially higher in the wild-type than the /ADC mutant (Table 2):
flgB, 136-fold; fIhB, 31-fold; f1iA, 990-fold; f/iL, 209-fold. Expression from the strongly
bound 61904 promoter region was comparably higher, 191-fold, in the wild-type, while the
b2446, wzzepe and glt/ promoter fusions were activated 11-, six- and twofold, respectively.
Expression of these four differentially activated non-flagellar gene fusions in the #hDC
mutant was enhanced by at least tenfold when FIhD,C, was provided by plasmid pf/ADC. In
addition, although expression from the ye/O promoter fusion was not different in the wild-
type and f/hDC strains, it was marginally complemented, 1-5- to twofold, by #/ADC in trans.
The promoters of yegH, hns, iccand hupB, with HI below 18 but weak FIhD,C> binding
(Kp 160-250 nM), were not activated, as was the case for the rcsA and argR control
sequences with Kp values of 356 and >450 nM.

Table 3 summarizes the findings for the 13 test promoter regions analysed experimentally:
similarity to the consensus binding sequence (HI), /n vitro FIhD,C, binding affinity and /n
vivo promoter activation by FIhD,C,. Low binding site HI correlates with low Kp, in other
words, strong binding, and in turn Kp correlates with activation. The data indicate a Kp
threshold of about 100-200 nM required for /in vivo activation by FIhD,C», but it seems that
the location of the binding site with respect to the o/% promoter is also critical. All seven of
the genes activated /n vivo, including g/t/, have putative FIhD,C, binding sites which
overlap by 1 or 2 bp the known or likely ¢’ =35 motif. Those promoter regions that bound,
but were nonetheless not activated, that is, those of yegH, hns, icc, resA and argR, do not
show this binding site overlap. The only apparent exception to this is the AupB promoter,
which was not activated in this assay.

To assess experimentally the influence of spacing between the FIhD,C5 binding site and the
0’0 -35 sequence (TTGACA), the binding site overlapping the strongly f7ADC-activated
flagellar class 11 fIhB promoter was moved 5” 80 bp away from its —35 motif (TTGAAC),
while keeping the o’° promoter and FIhD,C, binding sequence intact (Fig. 2A). The Kp for
in vitro binding of FIhD,C, to the resulting site /48-80 was 29 nM, comparable to the 21
nM of the wild-type binding site (Fig. 2B). However, assay of the respective chromosomal
lacZ fusions in the wild-type and f/#DC strains showed that the o’® promoter of the

Microbiology. Author manuscript; available in PMC 2008 September 03.



syduasnue|A Joyiny siapun4 JIAd adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Page 7

uncoupled site was no longer activated by FIhD,C, (Fig. 2C), and /n frans overexpression of
FInD,C, from pf/hDC failed to restore promoter activation.

DISCUSSION

We have set out to identify non-flagellar £. coli genes directly under the control of the
flagella master transcriptional regulator FIhD,C,, in other words to ascertain the nature of a
putative wider regulon. We identified possible FIhD,C, binding sites by comparing every
42-44 bp genomic sequence with the experimentally defined consensus FIhD,C, binding
site (Berg & Von Hippel, 1988; Lewis et al.,, 1994; Claret & Hughes, 2002). The
computational promoter search identified a pool of 47 sequences 5" of putative gene
promoters, with an HI below the arbitrary cut off of 18. These were located upstream of all
eight class Il flagellar promoters and 39 non-flagellar promoters, a figure comparable with
the 69 putative £. coli LexA regulon binding sites identified with an HI below 15 (Lewis et
al., 1994; Fernandez de Henestrosa et al., 2000). Nine non-flagellar sequences with HI
values ranging from 10-8 to 15-5 were analysed by /n vitrobinding of reconstituted active
FIhD,C, and comparison of in vivo promoter activity in wild-type and /ADC mutant E. coli.

All nine non-flagellar sequences were bound by FIhD,C,, with affinities (Kp 38-250 nM)
one- to 20-fold weaker than those of the four representative class Il flagella promoter
sequences tested (flgB, fIhB, fliA and fliL; HI 6-5-14-7; Kp 12-43 nM). No false positive
sites were identified, which contrasts with the LexA screen, in which the agjnJ/promoter of
HI1 7-1 was not bound /n vitro (Fernandez de Henestrosa et al., 2000). Like the four class Il
flagella promoters, four of the nine non-flagellar promoters tested were FIhD,C, regulated:
b1904 (HI 10-5) was bound strongly (Kp 38 nM) and activated more than 30 fold; 62446
(HI'11-5) and wzzgepe (HI 14-9) had Kp values of 60 nM and 86 nM and were activated
tenfold and sixfold, respectively. Activation of the weakly bound g/t/ promoter (HI 13.7, Kp
220 nM) was twofold higher in the wild-type than in the f/ADC null mutant, but as was the
case with 61904, b2446 and wzzepe, it was strongly activated by #hDC in trans.

The four FID,C, bound and regulated non-flagellar genes 61904, b2446, wzzepe and gltl
are not in the same operon. Gene 1904 is located at 42:81 min, adjacent to fzn (encoding
the iron storage protein ferritin) in the 10 kb region between the f/iAZY and flagellar ihDC
operons (43-09 and 42-59 min, respectively). It has no known function or significant
homologues, but does have a putative outer membrane lipoprotein cleavage signal (LGAC)
near the N-terminus of its deduced amino acid sequence. The product of the 62446 gene also
has no known function or homology and lies at 55-18 min in an as yet anonymous region of
the chromosome. It has a DNA-binding AT-hookmotif, present in many transcriptional
regulators (Bustin & Reeves, 1996; Cayuela et al,, 2003). The wzzepe gene (13-31 min) was
originally named fepE, putatively encoding part of the enterobactin uptake system in £. colj,
but its role in iron transport has not been established (Ozenberger et al., 1987; Murray et al.,
2003), and wzzepe has been shown to modulate O-antigen chain length in the
polysaccharide capsule of S. typhimurium (Murray et al., 2003). Polysaccharide is an
important factor in the swarming motility of S. typhimuriumand P. mirabilis (Gygi et al.,
1995; Toguchi et al., 2000), and a recent microarray study observed upregulation of the
WzZsepe gene during swarming of S. typhimurium (Wang et al., 2004). The fourth gene, g/t/,
encodes a periplasmic glutamate/aspartate binding protein (Urbanowski ef a/.,, 2000) lying at
14-79 min in, or 5 of, the g/tJKL operon responsible for glutamate uptake. It is possible that
FIhD,C, regulation of these genes may reflect connections to motility, but this is unknown.
We searched for FIhD,C, binding sites in the genomes of the uropathogenic (UPEC) E. coli
CFTO073 (accession no. NC_004431) and the enterohaemorrhagic (EHEC) E. coli 0157
(accession no. AE00517) to assess if there might be coregulation of flagellar and virulence
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genes. The findings (not shown) were very similar to those for £. coliK-12, and no putative
sites were identified in the pathogenicity islands of either organism.

In the four FIhD,C,-dependent non-flagellar promoters, the binding site overlaps the
putative o’0 —35 motif by 1-2 bp (Fig. 3). These four /0 =35 motifs have =50 % identity
with the consensus (TTGACA), and in each case TT nucleotides form the end of the right
hand (3") FInD,C, box. This overlap is also seen in all flagellar class Il gene promoters
from E. coli, S. typhimurium and P. mirabilis (Fig. 3) (Kutsukake et al., 1990; Liu et al.,
1995; Claret & Hughes, 2002). This identity strengthens the likelihood that FIhD,C,
activates flagellar and non-flagellar genes by the same mechanism, in other words, as a class
| transcription factor contacting the a-C-terminal domain of the RNA polymerase
holoenzyme during transcriptional initiation (Liu et a/., 1995; Claret & Hughes, 2002). The
significance of this proximity was emphasized by uncoupling FIhD,C5 binding and
promoter dependence following insertion of 80 bp of transcriptionally inert DNA between
the FIhD,C, binding site and the =35 motif. In the low-affinity non-regulated o’ promoter
regions of argR, rcsA, icc/cpdA and hins, the FIhD,C5, binding site does not overlap the —35
site: it is separated by 50 bp or more. The only possible exception to this is the weak
FIhD,C, binding site (HI 15:5, Kp 250 nM) of the AupB P3 promoter, which was not
regulated in the /n7 vivo assay. However, in this complex promoter region, the FIhD,C,
binding site overlaps high-affinity binding sites (Kp 5-10 nM) for the transcriptional
regulators CRP and FIS (factor for inversion stimulation), which may be dominant under the
conditions tested (Claret & Rouviere-Yaniv, 1996).

The range of Kp and activity values extends the possibility that FIhD,C, can influence the
expression of the hierarchy of flagellar and non-flagellar promoters via differential binding
(Claret & Hughes, 2002). If the concentration of FIhD,C5 in exponentially growing £. coli
is similar to the 35 nM estimated for vegetatively growing 2. mirabilis (Claret & Hughes,
2000b), then the Kp values for non-regulated sites are over four times higher than those for
any of the flagella genes tested here (maximum 43 nM), suggesting that they may be poorly
bound by FIhD,C, in vivo. The g/t/ promoter has the lowest affinity (Kp 220 nM) for
FIhD,C, binding and shows marginal activation /7 vivo, but taking all our data into account,
it seems that direct and strong regulation by FIhD,C, applies to promoters with a site that
has an HI below 15 determining a Kp below ~100 nM, and which overlaps by 1-2 bp the
o'0 -35 promoter motif.

While the differential affinity of FIhD,C, for the binding sites of its regulon promoters
seems important for the sequential activation of class Il gene expression, these promoters are
also subject to fine tuning by FIiA (%8) (Kalir & Alon, 2004). We assessed the influence of
FliA on the four novel FInD,C,-regulated genes (Wzzepg, 62446, b1904 and gltl) by
measuring the activity of the respective /acZ fusions in the MC1000 f7/A :: Km strain and
comparing to their activity in the wild-type strain: there was no difference except for a 50 %
reduction in transcription of the g/t/ promoter (data not shown). The DNA sequence 5" of
the g/t/ start codon contains a putative FIiA —10 motif, GACGATAA. This may explain the
difference in the regulation of the g/t/and yejO promoter fusions (twofold and non-
regulated), which have identical binding affinities (220 nM) and ¢° sequences.

Priiss and colleagues (Pruss et al., 2001) have postulated an extended FIhD,C, regulon in £.
coli, chiefly based on microarray studies in which the expression of several non-flagellar
genes was influenced by the #/ADC operon. However, their assay of corresponding
multicopy plasmid transcriptional fusions did not establish direct activation of these genes
by FIhD,C,. Similarly, we found no /in vitro binding of FIhD,C, to the promoter of mreB
(data not shown), a gene identified in these microarray comparisons. Further microarrays
have indicated regulation of genes encoding enzymes of the Entner—Doudoroff pathway by
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FIhD,C, via the aergene. This has a characteristic o2 (FliA)-dependent promoter sequence
(TAAA-N15-GCCGACAT) 5’ of its translational start site (Park et al,, 2001), but no
putative FIhD,C, binding sequence, suggesting that regulation proceeds indirectly from
FInD,C, to f/iA then aer.

Our data indicate that regulation of many other of these microarray-highlighted genes is
probably indirect, since we did not find any putative promoter FIhD,C, binding sequences
with an HI below 18, or indeed 22 (the lowest HI of these genes is that of napF. 22-9). The
microarray comparisons did not detect regulation of the FIhD,C, regulon genes established
in our study, 61904, b2446, wzzgepe and gltl. It is possible that their transcript signals are
below the detection level of the microarray technology, as was the case in microarray
comparisons in Yersinia enterocolitica (Kapatral et al., 2004), which failed to detect fiIhDC
regulation of the class Il and 111 genes f/AA, fleC and cheY, which RT-PCR analysis
confirmed were subject to two- to 12-fold regulation.

The main role for FIhD,C5 is the tight control of gene expression underlying flagella
biosynthesis. Our study indicates a wider FIhD,C5 regulon, in which direct activation of
non-flagellar promoters follows binding of the flagellar master regulator at the RNA
polymerase binding site, though less avidly than to class Il flagellar promoters.
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Fig. 1.

In vitrobinding of FIhD,C, to putative regulation promoters. (A) DNA-band shift.
Radiolabelled nucleotide probe fragments were incubated with increasing concentrations of
FIhD,C, complex (nM) in the presence of a 1000-fold excess of non-specific competitor
poly(dldC), and analysed on 6% native polyacrylamide. (B) Ratios of bound : free FIhD,C,
probes observed in DNA-band shifts (mean of three experiments, error<20%) plotted against
FIhD,C, protein concentration [(i) 0-70 nM; (ii) 0-175 nM].
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Fig. 2.

Uncoupling the FIhD,C5 binding site and promoter. (A) Representation of the f/hB-wild-
type promoter fusion region (/#B-WT) and the 7/4B-80 derivative in which an 80 bp
transcriptionally inactive DNA sequence was inserted between the 3” FIhD,C, box
(CCTTACTCAAACCATT) and the =35 sequence (TTGAAC). (B) DNA-band shift of f/h5-
WT and 7/hB-80 probes, performed as in Fig. 1. (C) Activity of /hB-WT and f/hB-80
chromosomal promoter fusions (as in Fig. 2). The means of triplicate experiments, error<10
%, are shown. WT, wild-type.
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E.coli -35 -10
flgA AtcGGCgGAAtaAaCG-N, -CGCTATTTaTGCCTTTGATGGTCATTGCGGACAGGTACAATT
flgB BACGGCAtAAATAGCG N, -CGETtaTTCcGCCgaTAACGCGCGCGTARAGGCATTTAAGCTG
b1504 AtgGcaAGAAATAGCG-N, -gtCTETTcCgGCCATTGTCGCAGCACTGTAACGCGTAAAATAG
b2446 AATGGCAaAAATAACG N,  -CatTtaTTggGggtTTtATGGAAGGCGAACTGATAGAAAACAAT
f1hB ARaGcCctARATCCCG-N, -CctTACcTcaaaCCATTGAACGCTTTGCGCTCTGGCATCATTCA
£1iD AgTcGCcGAAATActC N CctTATTcCcGCEATTAAAAAAAACAATTAAACGTAAACTTTG
fliE EATccgecAAtalaCe N - tGCTATTTagegCcTTTGTCTTATTGACTTACGGTAGGCTTTGCT
f1iF AAgGCcgctAAATAGCa N, -gGtTtaTTggcggATaGARAARAACGARAGCACARATAATGGG
flia TAaccCccAAATAACC N _-CaCTAaTcgTcCgATTAAAAACCCTGCAGAAACGGATAATCAT
yejo AATGcCttgAATcage N, -CGETECTTCgeCatTTCGCATCATCAAGCGACAGTTCGGCTTC
gltI BATGcCttgAATcage-N, -CGETteTTCgeCatTTCGCATCATCAAGCGACAGTTCGECTTC
f1iL ARcGECAGAggTAGCa N, -CGEetTTTCeeCgeTTTGTTGCGCTCARGACGCAGGATAATTA

WZZfepE AaaccCAtAAtLTAcaG N, , gGLTETTTaTEEtgETTGATTTATAGGTTTGATGAATATTTCTT

S.typhimurium

f1iE EATGcgctAARAACCG-N, -CGETATTTaacgCcTTTATCTTATTGACAAACTGGTAATCTCTG
f1iF AAGGCgt tAAATAACG N, -CGgTETTTagcgCATaGAAAAATTCGAAACCACAAATAATGAGACC
flga tATcGCcGgAATAaac-N,,-CGCTATTTaTtgCgTTGATGCTTGCTTCACACGGGTAGAATCCTG
flgB BAAcGCcaAtARATAGCG-N, -CGTTtaTTCcGgCgaTAACGCGCGCGTGAAGGCATTTAAGCTGTCG
£1iD AggcGgeGAAATAGCE N, -CaTTATTcCgegCATTATTTTTGCARAATTATCATTAAACTTTGCC
£1iL AACGcCAGAggTAgCa- N, -gtcTETTeCacgCtTTGTCETGGACAGGACACGGGATAATCAGCCA
f1hB AACGCcCAtAAACCCCG-N, -CGCTtacTCTGCCEATTGGCGTAAAGCGGTTCTGGCATCATTCTCT
flia cATaagtGAAATAaCe N, .-Cet TATTCCTECgATaGAACCCTCTGTAGAAACGGATAATCATGCG

P.mirabilis

flga gATECGACGAATAGGE N, -t CCTATTTaTECGE TTAAGC TATGTGAAGAGGATCTACACTATTT

f1gB ARacGCAtAAATAGCa N, -CcCTATTCCTCCaATCATCTTTTTTTTGAGCGTTTATTCTGTTA

£1ia CATaGgtGAAAaAGaG N, -CaCTgTTcagcCgATTGCTARCCACTATTTCGTCGGATAATGGTT

£1hB CATaGCcCAARaAGCeN,, CGaTtgTTCaagCCATCAATTTCTTCTGAATTTGTCATGCTAAG
Fig. 3.

Alignment of FIhD,C, bound promoter regions. FIhD,C, binding sequences are highlighted
in grey; known or putative —10 and —35 ¢’ sequences promoters are shown in bold. The
class Il promoters from £. coli (including the /A, fIhB and fliL promoters defined by Liu &
Matsumura, 1994) are aligned with the five FIhD,C, bound and regulated non-flagellar
promoters identified in this study, including the marginally regulated ygjO promoter. The
flagellar class Il promoters shown from S. typhimurium and P. mirabilis have been
experimentally defined by Kutsukake & lde (1995) and Claret & Hughes (2002),
respectively.
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Table 2

In vivo transcriptional activity of FIhD,C, bound promoters

Page 18

Values shown are peak B-galactosidase activity (x 102 Miller units) of single-copy /acZ fusions in E. coli

wild-type and f/ADC null mutant strains. Mean values from three experiments, error<15%, are shown.

Restoration to wild-type activity in the MC1000 /ADC mutant by f/ADC expressed in trans is denoted by ‘+’

1

or "—.

Gene Wild-type flhDC
flgB 750 06+
finB 19:0 1.5+
fliA 297 46+
b1904 72:4 0-4+
b2446 35 0-3+
yefo 0-1 0-1(+)
gltl 19 09+
icc 41.0 41.8-
yegH 270 290+
fliL 1256 9.5+
hns 50 6-5-
WZZtepE 4.0 0-6+
hupB 104  10-4-
argrR 1.3 1.1-
IcSA 0-3 0-4-
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Table 3
Characteristics of putative regulon promoters

Overlap of the FIhD,C, by 1-2 bp with a putative or confirmed /% -35 box is shown as “+’; another location
of the site between —12 and +190 bp is indicated by ‘=’. ?, Not known. The Kp (nM; the concentration

required to achieve 50% binding) was calculated from the plots in Fig. 1. Promoter activation is expressed as
the ratio of /n vivo facZ fusion activity in wild-type and f/ADC mutant strains, derived from Table 2.

Gene HI  -35site Kp  Activation
flgB 61 + 12 136
finB 119 + 21 31
fliA 131 + 25 990
b1904 108 + 38 191
b2446 115 + 60 11
yejo 137 + 220 1
i 137 + 220 2
icc 141 ? 167 1
yegH 146 ? 240

fliL 14.7 + 43 209
hns 14.7 - 165 1
WZZepe  14-9 + 86 6
hpB 155 + 250 1
argrR 187 - >450 1
IcSA 188 - 350 1
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