Skip to main content
Archives of Disease in Childhood. Fetal and Neonatal Edition logoLink to Archives of Disease in Childhood. Fetal and Neonatal Edition
. 1996 Jan;74(1):F63–F69. doi: 10.1136/fn.74.1.f63

Cerebral blood flow in the newborn infant.

O Pryds 1, A D Edwards 1
PMCID: PMC2528314  PMID: 8653440

Abstract

Studies of CBF have provided some insight into cerebrovascular physiology and pharmacology. However, the precise relation between CBF and cerebral damage remains elusive, and there is no definition of a threshold CBF below which ischaemic brain damage always occurs. Measurement of CBF thus does not currently provide a secure guide in the clinical management of sick infants. Further work, particularly using techniques like magnetic resonance imaging and NIRS, which provide data in addition to CBF measurements, may yet disclose strategies which manipulate CBF to reduce cerebral ischaemia. While cerebral injury remains a substantial problem in neonatal intensive care, such research is urgently needed.

Full text

PDF
F64

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman D. I., Perlman J. M., Volpe J. J., Powers W. J. Cerebral oxygen metabolism in newborns. Pediatrics. 1993 Jul;92(1):99–104. [PubMed] [Google Scholar]
  2. Aranda J. V., Beharry K., Sasyniuk B., Chemtob S. The role of prostanoids in neonatal cerebral blood flow autoregulation. J Lipid Mediat. 1993 Mar-Apr;6(1-3):493–501. [PubMed] [Google Scholar]
  3. Ashwal S., Schneider S., Thompson J. Xenon computed tomography measuring cerebral blood flow in the determination of brain death in children. Ann Neurol. 1989 Jun;25(6):539–546. doi: 10.1002/ana.410250603. [DOI] [PubMed] [Google Scholar]
  4. Baughman V. L., Hoffman W. E., Miletich D. J., Albrecht R. F. Effects of phenobarbital on cerebral blood flow and metabolism in young and aged rats. Anesthesiology. 1986 Nov;65(5):500–505. doi: 10.1097/00000542-198611000-00008. [DOI] [PubMed] [Google Scholar]
  5. Belliveau J. W., Kennedy D. N., Jr, McKinstry R. C., Buchbinder B. R., Weisskoff R. M., Cohen M. S., Vevea J. M., Brady T. J., Rosen B. R. Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 1991 Nov 1;254(5032):716–719. doi: 10.1126/science.1948051. [DOI] [PubMed] [Google Scholar]
  6. Bryan R. M., Jr, Pelligrino D. A. Cerebral blood flow during chronic hypoglycemia in the rat. Brain Res. 1988 Dec 20;475(2):397–400. doi: 10.1016/0006-8993(88)90634-8. [DOI] [PubMed] [Google Scholar]
  7. Burn J., Chapman P. D., Eastham E. J. Familial adenomatous polyposis. Arch Dis Child. 1994 Aug;71(2):103–105. doi: 10.1136/adc.71.2.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burnstock G. Local mechanisms of blood flow control by perivascular nerves and endothelium. J Hypertens Suppl. 1990 Dec;8(7):S95–106. [PubMed] [Google Scholar]
  9. Busija D. W., Leffler C. W. Hypothermia reduces cerebral metabolic rate and cerebral blood flow in newborn pigs. Am J Physiol. 1987 Oct;253(4 Pt 2):H869–H873. doi: 10.1152/ajpheart.1987.253.4.H869. [DOI] [PubMed] [Google Scholar]
  10. Chemtob S., Beharry K., Barna T., Varma D. R., Aranda J. V. Differences in the effects in the newborn piglet of various nonsteroidal antiinflammatory drugs on cerebral blood flow but not on cerebrovascular prostaglandins. Pediatr Res. 1991 Jul;30(1):106–111. doi: 10.1203/00006450-199107000-00021. [DOI] [PubMed] [Google Scholar]
  11. Edwards A. D., Wyatt J. S., Richardson C., Potter A., Cope M., Delpy D. T., Reynolds E. O. Effects of indomethacin on cerebral haemodynamics in very preterm infants. Lancet. 1990 Jun 23;335(8704):1491–1495. doi: 10.1016/0140-6736(90)93030-s. [DOI] [PubMed] [Google Scholar]
  12. Frewen T. C., Kissoon N., Kronick J., Fox M., Lee R., Bradwin N., Chance G. Cerebral blood flow, cross-brain oxygen extraction, and fontanelle pressure after hypoxic-ischemic injury in newborn infants. J Pediatr. 1991 Feb;118(2):265–271. doi: 10.1016/s0022-3476(05)80500-1. [DOI] [PubMed] [Google Scholar]
  13. Greisen G., Pryds O. Intravenous 133Xe clearance in preterm neonates with respiratory distress. Internal validation of CBF infinity as a measure of global cerebral blood flow. Scand J Clin Lab Invest. 1988 Nov;48(7):673–678. doi: 10.1080/00365518809085789. [DOI] [PubMed] [Google Scholar]
  14. Greisen G., Trojaborg W. Cerebral blood flow, PaCO2 changes, and visual evoked potentials in mechanically ventilated, preterm infants. Acta Paediatr Scand. 1987 May;76(3):394–400. doi: 10.1111/j.1651-2227.1987.tb10488.x. [DOI] [PubMed] [Google Scholar]
  15. Hernández M. J., Brennan R. W., Bowman G. S. Autoregulation of cerebral blood flow in the newborn dog. Brain Res. 1980 Feb 17;184(1):199–202. doi: 10.1016/0006-8993(80)90598-3. [DOI] [PubMed] [Google Scholar]
  16. Hudak M. L., Tang Y. L., Massik J., Koehler R. C., Traystman R. J., Jones M. D., Jr Base-line O2 extraction influences cerebral blood flow response to hematocrit. Am J Physiol. 1988 Jan;254(1 Pt 2):H156–H162. doi: 10.1152/ajpheart.1988.254.1.H156. [DOI] [PubMed] [Google Scholar]
  17. Häggendal E., Winsö I. The influence of arterial carbon dioxide tension on the cerebrovascular response to arterial hypoxia and to haemodilution. Acta Anaesthesiol Scand. 1975;19(2):134–145. doi: 10.1111/j.1399-6576.1975.tb05233.x. [DOI] [PubMed] [Google Scholar]
  18. Jones M. D., Jr, Traystman R. J., Simmons M. A., Molteni R. A. Effects of changes in arterial O2 content on cerebral blood flow in the lamb. Am J Physiol. 1981 Feb;240(2):H209–H215. doi: 10.1152/ajpheart.1981.240.2.H209. [DOI] [PubMed] [Google Scholar]
  19. Jöbsis F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977 Dec 23;198(4323):1264–1267. doi: 10.1126/science.929199. [DOI] [PubMed] [Google Scholar]
  20. LANGFITT T. W., WEINSTEIN J. D., KASSELL N. F. CEREBRAL VASOMOTOR PARALYSIS PRODUCED BY INTRACRANIAL HYPERTENSION. Neurology. 1965 Jul;15:622–641. doi: 10.1212/wnl.15.7.622. [DOI] [PubMed] [Google Scholar]
  21. Leffler C. W., Busija D. W. Arachidonic acid metabolites and perinatal cerebral hemodynamics. Semin Perinatol. 1987 Jan;11(1):31–42. [PubMed] [Google Scholar]
  22. Levasseur J. E., Wei E. P., Kontos H. A., Patterson J. L., Jr Responses of pial arterioles after prolonged hypercapnia and hypoxia in the awake rabbit. J Appl Physiol Respir Environ Exerc Physiol. 1979 Jan;46(1):89–95. doi: 10.1152/jappl.1979.46.1.89. [DOI] [PubMed] [Google Scholar]
  23. Lipp-Zwahlen A. E., Müller A., Tuchschmid P., Duc G. Oxygen affinity of haemoglobin modulates cerebral blood flow in premature infants. A study with the non-invasive xenon-133 method. Acta Paediatr Scand Suppl. 1989;360:26–32. doi: 10.1111/j.1651-2227.1989.tb11278.x. [DOI] [PubMed] [Google Scholar]
  24. Mujsce D. J., Christensen M. A., Vannucci R. C. Regional cerebral blood flow and glucose utilization during hypoglycemia in newborn dogs. Am J Physiol. 1989 Jun;256(6 Pt 2):H1659–H1666. doi: 10.1152/ajpheart.1989.256.6.H1659. [DOI] [PubMed] [Google Scholar]
  25. Niijima S., Shortland D. B., Levene M. I., Evans D. H. Transient hyperoxia and cerebral blood flow velocity in infants born prematurely and at full term. Arch Dis Child. 1988 Oct;63(10 Spec No):1126–1130. doi: 10.1136/adc.63.10_spec_no.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nilsson B., Agardh C. D., Ingvar M., Siesjö B. K. Cerebrovascular response during and following severe insulin-induced hypoglycemia: CO2-sensitivity, autoregulation, and influence of prostaglandin synthesis inhibition. Acta Physiol Scand. 1981 Apr;111(4):455–463. doi: 10.1111/j.1748-1716.1981.tb06763.x. [DOI] [PubMed] [Google Scholar]
  27. Ogawa S., Lee T. M., Nayak A. S., Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990 Apr;14(1):68–78. doi: 10.1002/mrm.1910140108. [DOI] [PubMed] [Google Scholar]
  28. Pasternak J. F., Groothuis D. R. Autoregulation of cerebral blood flow in the newborn beagle puppy. Biol Neonate. 1985;48(2):100–109. doi: 10.1159/000242160. [DOI] [PubMed] [Google Scholar]
  29. Patel J., Marks K. A., Roberts I., Azzopardi D., Edwards A. D. Ibuprofen treatment of patent ductus arteriosus. Lancet. 1995 Jul 22;346(8969):255–255. doi: 10.1016/s0140-6736(95)91304-1. [DOI] [PubMed] [Google Scholar]
  30. Pryds O., Andersen G. E., Friis-Hansen B. Cerebral blood flow reactivity in spontaneously breathing, preterm infants shortly after birth. Acta Paediatr Scand. 1990 Apr;79(4):391–396. doi: 10.1111/j.1651-2227.1990.tb11482.x. [DOI] [PubMed] [Google Scholar]
  31. Pryds O., Christensen N. J., Friis-Hansen B. Increased cerebral blood flow and plasma epinephrine in hypoglycemic, preterm neonates. Pediatrics. 1990 Feb;85(2):172–176. [PubMed] [Google Scholar]
  32. Pryds O., Greisen G., Friis-Hansen B. Compensatory increase of CBF in preterm infants during hypoglycaemia. Acta Paediatr Scand. 1988 Sep;77(5):632–637. doi: 10.1111/j.1651-2227.1988.tb10721.x. [DOI] [PubMed] [Google Scholar]
  33. Pryds O., Greisen G., Johansen K. H. Indomethacin and cerebral blood flow in premature infants treated for patent ductus arteriosus. Eur J Pediatr. 1988 Apr;147(3):315–316. doi: 10.1007/BF00442705. [DOI] [PubMed] [Google Scholar]
  34. Pryds O., Greisen G., Lou H., Friis-Hansen B. Heterogeneity of cerebral vasoreactivity in preterm infants supported by mechanical ventilation. J Pediatr. 1989 Oct;115(4):638–645. doi: 10.1016/s0022-3476(89)80301-4. [DOI] [PubMed] [Google Scholar]
  35. Pryds O., Greisen G., Lou H., Friis-Hansen B. Vasoparalysis associated with brain damage in asphyxiated term infants. J Pediatr. 1990 Jul;117(1 Pt 1):119–125. doi: 10.1016/s0022-3476(05)72459-8. [DOI] [PubMed] [Google Scholar]
  36. Pryds O., Greisen G. Preservation of single-flash visual evoked potentials at very low cerebral oxygen delivery in preterm infants. Pediatr Neurol. 1990 May-Jun;6(3):151–158. doi: 10.1016/0887-8994(90)90055-6. [DOI] [PubMed] [Google Scholar]
  37. Pryds O. Low neonatal cerebral oxygen delivery is associated with brain injury in preterm infants. Acta Paediatr. 1994 Dec;83(12):1233–1236. doi: 10.1111/j.1651-2227.1994.tb13002.x. [DOI] [PubMed] [Google Scholar]
  38. Pryds O., Schneider S. Aminophylline reduces cerebral blood flow in stable, preterm infants without affecting the visual evoked potential. Eur J Pediatr. 1991 Mar;150(5):366–369. doi: 10.1007/BF01955942. [DOI] [PubMed] [Google Scholar]
  39. Rennie J. M., Doyle J., Cooke R. W. Elevated levels of immunoreactive prostacyclin metabolite in babies who develop intraventricular haemorrhage. Acta Paediatr Scand. 1987 Jan;76(1):19–23. doi: 10.1111/j.1651-2227.1987.tb10408.x. [DOI] [PubMed] [Google Scholar]
  40. Reuter J. H., Disney T. A. Regional cerebral blood flow and cerebral metabolic rate of oxygen during hyperventilation in the newborn dog. Pediatr Res. 1986 Nov;20(11):1102–1106. doi: 10.1203/00006450-198611000-00008. [DOI] [PubMed] [Google Scholar]
  41. Settergren G., Lindblad B. S., Persson B. Cerebral blood flow and exchange of oxygen, glucose, ketone bodies, lactate, pyruvate and amino acids in infants. Acta Paediatr Scand. 1976 May;65(3):343–353. doi: 10.1111/j.1651-2227.1976.tb04896.x. [DOI] [PubMed] [Google Scholar]
  42. Skov L., Pryds O., Greisen G. Estimating cerebral blood flow in newborn infants: comparison of near infrared spectroscopy and 133Xe clearance. Pediatr Res. 1991 Dec;30(6):570–573. doi: 10.1203/00006450-199112000-00016. [DOI] [PubMed] [Google Scholar]
  43. Skov L., Pryds O., Greisen G., Lou H. Estimation of cerebral venous saturation in newborn infants by near infrared spectroscopy. Pediatr Res. 1993 Jan;33(1):52–55. doi: 10.1203/00006450-199301000-00011. [DOI] [PubMed] [Google Scholar]
  44. Smith M. A. The measurement and visualisation of vessel blood flow by magnetic resonance imaging. Clin Phys Physiol Meas. 1990 May;11(2):101–123. doi: 10.1088/0143-0815/11/2/001. [DOI] [PubMed] [Google Scholar]
  45. Takei Y., Edwards A. D., Lorek A., Peebles D. M., Belai A., Cope M., Delpy D. T., Reynolds E. O. Effects of N-omega-nitro-L-arginine methyl ester on the cerebral circulation of newborn piglets quantified in vivo by near-infrared spectroscopy. Pediatr Res. 1993 Sep;34(3):354–359. doi: 10.1203/00006450-199309000-00023. [DOI] [PubMed] [Google Scholar]
  46. Trautwein W., McDonald T. F. Current-voltage relations in ventricular muscle preparations from different species. Pflugers Arch. 1978 Apr 25;374(1):79–89. doi: 10.1007/BF00585700. [DOI] [PubMed] [Google Scholar]
  47. Wagerle L. C., Kurth C. D., Roth R. A. Sympathetic reactivity of cerebral arteries in developing fetal lamb and adult sheep. Am J Physiol. 1990 May;258(5 Pt 2):H1432–H1438. doi: 10.1152/ajpheart.1990.258.5.H1432. [DOI] [PubMed] [Google Scholar]
  48. Wang Q., Pelligrino D. A., Paulson O. B., Lassen N. A. Comparison of the effects of NG-nitro-L-arginine and indomethacin on the hypercapnic cerebral blood flow increase in rats. Brain Res. 1994 Apr 4;641(2):257–264. doi: 10.1016/0006-8993(94)90152-x. [DOI] [PubMed] [Google Scholar]
  49. van Bel F., Klautz R. J., Steendijk P., Schipper I. B., Teitel D. F., Baan J. The influence of indomethacin on the autoregulatory ability of the cerebral vascular bed in the newborn lamb. Pediatr Res. 1993 Aug;34(2):178–181. doi: 10.1203/00006450-199308000-00015. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood. Fetal and Neonatal Edition are provided here courtesy of BMJ Publishing Group

RESOURCES