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Abstract
Statistical tools enable unified analysis of data from multiple global proteomic experiments,
producing unbiased estimates of normalization terms despite the missing data problem inherent in
these studies. The modeling approach, implementation and useful visualization tools are
demonstrated via case study of complex biological samples assessed using the iTRAQ™ relative
labeling protocol.
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A. INTRODUCTION
The objective of global proteomics via mass spectrometry is to detect and quantify all proteins
present in a biological sample. Proteins that exhibit an increase/decrease in abundance between
two or more groups of interest, (e.g., diseased and non-diseased) are considered candidate
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biomarkers. However, experimental factors such as differences in sample collection, sample
characteristics such as cellular concentration, variations in sample processing and the
experimental process add variability to the observed abundances. Experimental variability
hinders the comparison of effects of interest, and if not accounted for during the design and
analysis stages, can lead the researcher down an erroneous path of discovery.

Several mass spectrometry (MS) techniques have been developed that allow greater control
over experimental factors that introduce variability and ultimately decrease the quality of the
data. Recently, focus has centered on the ability to assess multiple samples within a single MS
experiment. Binary sample labeling techniques such as 16O/18O(1), ICAT™(2), and
SILAC(3) were developed to evaluate paired samples whereas iTRAQ™(4) was developed to
simultaneously analyze four, and more recently, eight samples(5). The binary labeling
techniques add complexity to the acquired spectra and to their interpretation by introducing
additional peaks into the mass spectra. Furthermore, overlapping isotopic clusters require
further analytical techniques to deconvolute the resulting spectrum and the associated protein/
peptide abundances(4, 6, 7). The iTRAQ™ labeling system overcomes this to some extent since
the labeled species are isobaric and protein abundances are measured only in the resulting MS/
MS fragmentation spectra.

Although sample labeling techniques allow greater control over experimental variability within
an MS experiment, the analysis of multiple MS experiments remains difficult. Within an
experiment, it is important that equal amounts of total protein are labeled under each labeling
condition to ensure that the observed abundances are not influenced by total protein
concentration. Once the samples are labeled and mixed together for MS analysis, labeling
methods naturally control for instrument variability. The same principles apply when
performing multiple experiments; with the introduction of additional experiments, the sources
of experimental variability increase. Prakash et al. (8) evaluated data produced by multiple
laboratories and instruments and found definite systematic experiment-to-experiment effects,
even in well controlled experiments with technical replicates.

The adverse effects of experimental variability are well known and most vendor software
packages (e.g., ProQuant software for iTRAQ™) routinely correct for experimental error via
some form of normalization. For example, ProQuant applies a bias correction to ratios within
an experiment in order to correct for systematic within MS experiment variability(9). They
recommend not combining data across MS experiments unless the bias corrections are similar
across experiments since the software is unable to adjust for across experiment variability.
However, it is desirable to be able to analyze data across multiple MS experiments since it
allows studies to incorporate larger sample sizes, obtaining more accurate estimates of
biological effects and thus having more power to detect meaningful differences. The issues
associated with comparing relative measurements and the method for controlling for sources
of experimental variation (hereafter, referred to as external factors) date back to the early
1900s(10) in agricultural experiments and have been utilized extensively in the gene expression
microarray literature(11,12). In this issue, Hill et al.(13) discuss how classical analysis of variance
(ANOVA) methodology can be used to simultaneously correct for experimental variability and
how such a model may be built for iTRAQ™.

In addition to increased sources of variability in a study with multiple experiments, due to the
nature of current instrument technologies, overlap in protein and peptide identification between
experiments is less than ideal, leading to a large amount of missing data(14,15,16,17). The
abundance distribution of proteins is nearly geometric. This means that if n proteins are present
at abundance x, then 2n proteins are present at abundance x/2, and so forth. Identification of
the lower abundant peptides is problematic due to the data-dependent acquisition of the mass
analysis process. Thus, the probability of missing data for a protein is not random; it is related
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to abundance(14,15). This is a pervasive issue in global proteomic studies. Wang et al. (15)

performed replicate mass analysis experiments of two simple spike-in studies on consecutive
days and found that the total number of features identified in an experiment decreased over
time by 49%–73%. Liu et al. (14) conducted a controlled study with nine technical replicate
global proteomic experiments of yeast lysate. Of a total 1751 proteins identified in the entire
study, only 35.4% were found in every experiment and 24% were found in only one experiment.
Liu and colleagues developed a model to predict protein detection rates depending on sample
complexity and conclude that ten replicates are required to identify 95% of proteins present in
yeast lysate; more technical replicates would be required for human samples due to the greater
complexity of the human proteome. In marker discovery studies a common strategy is to
remove the most abundant proteins, i.e., those that would be detected in every experiment yet
are thought to be uninteresting from a biomarker point of view (e.g., albumin). In addition, due
to larger sample sizes, time and financial resources generally preclude the ability to perform
technical replicates of all biological replicates. Wang et al. (15) point out that with such severe
non-random missing data rates, most global normalization practices used for microarrays will
result in severe bias in global proteomic data.

Here, we extend the discussion of Hill et al.(13) by applying analysis of variance (ANOVA)
methodology to analyze iTRAQ™ data from complex biological samples across multiple MS
experiments. We discuss the model components that are necessary due to missing data and the
practical implementation due to the large size of global proteomic data sets. Particularly, we
discuss the importance of stage-wise and iterative regression to adequately normalize and
analyze large datasets from complex biological samples. Even though we focus on iTRAQ™
labeling, the principles discussed herein are applicable to any labeling or label-free platform.
Thus, we begin with a description of the cardiomyopathy study, the case study we utilize to
describe the methodologies, and follow with a discussion of how to apply ANOVA
methodology to complex samples using iterative regression.

For generality, throughout this paper we define an experiment to indicate all labeled specimens
that are mixed together and subjected to mass analysis simultaneously. We define a tag to
denote the label attached to a particular specimen for use in distinguishing it from other samples
within the same experiment. Lastly, we define study to indicate the collection of MS
experiments utilized together in addressing a particular research question.

B. MATERIALS AND METHODS
Sample Preparation

Highly abundant proteins were depleted using Biotech’s Seppro Microbead-conjugated avian
IgY antibodies to specifically remove human serum albumin, IgG, IgA, IgM, transferrin,
fibrinogen, apolipoprotein A-I, apolipoprotein A-II, haptoglobin, α-1 antitrypsin, α-1 acid
glycoprotein and α-2 macroglobulin (www.beckmancoulter.com). After washing, the bound
protein was eluted, and 100 μg protein was reduced, denatured, cysteine-blocked and digested
with trypsin. The sample was then labeled with one of the specific isobaric iTRAQ™ tags
(containing a reporter fragment of mass 114, 115, 116, or 117) (iTRAQ™ reagents; ABI). Four
samples (each differentially labeled with one of the four iTRAQ™ tags) were combined for
LC/MS/MS analysis.

MS Methods
Peptides were fractionated on a strong cation exchange column, and thirteen fractions were
then analyzed by capillary reverse-phase LC (Ultimate, LC packings)/MS/MS (Quadrupole-
Time of Flight; QSTAR, ABI). Independent data acquisition for each fraction was by Analyst
QS software (version 1.1; ABI). MS analysis consisted of 1 s survey scan from 400 to 1600
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m/z, and MS/MS of 2 s scan. After fragmentation of three most intense ions in survey scan,
they were excluded for 60 s.

Quantification
The ion exchange fractions were analyzed separately and then grouped using ProQuant (version
1.0; ABI). Quantification (relative contribution) of the four samples is determined from the
areas of the four iTRAQ™ signature ions in the MS/MS spectrum. For each MS/MS scan,
ProQuant identifies precursor m/z and charge in the TOF MS scan for that cycle. The program
checks the next ten cycles for precursor m/z and charge. Spectra that are matched for m/z and
charge are flagged as part of a merged set. The program finds the peaks in the spectrum (or
summed spectra) for the four signature ions derived from the iTRAQ™ reagents (114, 115,
116, 117). Peaks for the signature ions are integrated and reported as “Area 114,” etc. Areas
are adjusted according to the isotope correction factors for each lot of iTRAQ™ reagents.

Peptide/Protein identification
Results from the MS/MS are used to search the protein sequence database (KBMS human;
March 2005; Celera) with the Interrogator™ Algorithm in ProQuant(18). Interrogator compares
the fragment ion masses and precursor molecular weight to theoretical fragment ions in the
search database. The accession number(s) for the protein database entry(-ies) containing the
identified peptide is recorded along with peptide sequence and area counts (see above). Because
the KBMS sequence source database is a compilation of several databases (NCBI RefSeq;
SwissProt; Celera; EMBL, and others), identical sequences can be included under different
headers (each with a different accession number). A separate database record is generated for
each match of the peptide in the source database, including multiple entries for the same protein
species. Thus, the resulting database contains replicate records that differ only with respect to
the accession numbers.

C. CASE STUDY
The case study consists of six iTRAQ™ experiments that compared serum protein profiles in
patients across three histologic subtypes of acute cardiomyopathy. The histologic subtypes
were idiopathic dilated cardiomyopathy (DCM), giant cell myocarditis (GCM), and
lymphocytic myocarditis (LM). GCM is a rare and fulminant form of autoimmune myocarditis
with a greater than 90% rate of death or transplantation. Conversely, LM and DCM are more
common and less lethal disorders; however, LM and DCM can present similarly to the more
lethal GCM subtype. The objective of this study was to develop a non-invasive diagnostic test
for GCM as timely institution of appropriate immunosuppressive therapy for GCM
significantly increases heart transplantation-free survival. Currently, the gold standard for the
diagnosis of myocarditis requires an endomyocardial biopsy; however, endomyocardial biopsy
is severely limited by the risks of cardiac perforation and death. Thus, a non-invasive serum
diagnostic test is desirable. This study was approved by the Mayo Clinic Institutional Review
Board.

Experimental Design
The experimental design utilized for the case study is provided in Table 1. In addition to the
three histologic subtypes, nine normal control samples were pooled to obtain a single pooled
control sample giving four disease groups of interest in the cardiomyopathy study (Pooled
Control, DCM, GCM, and LM). Since the present discussion is meant to be a demonstration
of the utility of ANOVA rather than a definitive analysis of these data, the group identities are
masked. The letters A, B, C, and D in Table 1 denote the four disease groups of interest and
numbers 1, …, 6 denote the six independent specimens that were sampled from each of DCM,
GCM, LM and the six aliquots of the control pool.
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Data Characteristics
There were a total of 992 unique proteins and 2637 unique peptides identified across the six
experiments. Of the 992 proteins identified, 743 and 127 were observed in only one or two
experiments respectively and 16 proteins were observed in all six experiments. Similarly, of
the 2637 peptides identified, 1386 and 396 were observed in only one or two experiments
respectively and 172 peptides were observed in all six experiments. Thus, as found by other
authors (15,14,16,17), due to the data-dependent acquisition induced thresholding that generally
occurs during mass analysis for global proteomic studies, there is a large amount of missing
data. Figure 1 depicts the protein coverage across all six experiments. A protein present in all
six experiments would show as a black horizontal line across the entire plot in Figure 1.
Experiment 4 clearly has more black lines than the other five experiments indicating that the
samples used for the 4th experiment had much higher protein concentration than any of the
other five experiments.

D. Constructing the ANOVA Model
As discussed in Hill et al.(13) in this issue, an ANOVA model can be constructed that accounts
for the known sources of variation present in a study. In particular, Hill and colleagues discuss
the importance of accounting for variability due to differential iTRAQ™ tagging efficiencies,
experiment-to-experiment variability, and variability in total protein concentration. ANOVA
is a versatile tool that allows data from multiple experiments to be analyzed collectively and
has the capability to correctly account for the missing data that is inherent to proteomic data
from complex biological samples.

In constructing the ANOVA model for the cardiomyopathy data, we include both factors that
account for experimental variability, and thus serve as normalization terms, as well as factors
that assess the research questions of interest. The fact that researchers think in terms of fold
change (ratios) for this type of data reflects the belief that effects are multiplicative in nature
on the raw scale. Since ANOVA models operate in terms of additive effects, we transform the
data to the log scale. We use log base 2 where a value of 1.0 indicates a 2-fold change for ease
of interpretation. Thus, let y be an observed log2(abundance). Then we assume that the observed
value can be decomposed as

Following the notation of Hill et al.(13), we write this more formally for the cardiomyopathy
study as

(1)

For computational reasons that we discuss in detail in section E, we have arranged the terms
into three groups which we will refer to as I, II and III, set apart by parentheses. That is,
yi,j(i),c,q,s,l = (group I) + (group II) + (group III) + hi,j(i),c,q,s,l, where group I = (u + vq,l + bq),
etc. As in Hill et al.(13), u is the overall mean, bq describes the effect due to a given iTRAQ™
experiment, and vq,l describes the experimental effects of loading, mixing, and other sample
handling effects. If a given patient sample is used in only one experiment, then vq,l could be
considered the ‘patient’ effect, since all later effects of sample handling are indistinguishable
from a baseline difference in the patient’s total protein. Overall we can think of the terms in
group I as the ‘experimental’ effects; they are aspects of the experiment that would not exist
in an ideal world of perfectly reproducible hardware, procedures, and subjects. The second set
of terms, group II, are the differential effects of protein (pi) and peptide (fj(i)). It has been
observed that if a single purified protein is trypsinized and the results subjected to mass
spectrometry, the reported peptide abundances may differ by two-to-three orders of magnitude.
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The group III effects are those of actual interest, i.e., they describe why the experiment was
run; they answer the question “Which proteins and/or peptides are differentially expressed
across the conditions rc indicates the group effect, ri,c denotes the proteins differentially
expressed of interest?” Specifically, between groups, and gj(i),c denotes the peptides
differentially expressed between groups. Lastly, hi,j(i),c,q,s,l is the residual error for each
observation. We refer the reader to Hill et al.(13) in this issue for a more in depth discussion of
the rationale for including these effects in the model and for their interpretation.

In the analysis below we removed the gj(i),c term. That is, we fit a model that assumes that there
will be differential expression of certain proteins between the conditions of interest, but that
any increase in protein expression will affect all of the peptides for that protein equally. This
is done largely to simplify the presentation. Although one expects this to be the common case,
there are certainly biological conditions where a change to the levels of one or more peptides,
but not the protein as a whole, will occur; for example a post-translational modification that
involved a peptide substitution.

E. Practical Implementation of the ANOVA Model for Complex Samples
The effects in group I of model (1) are global effects. That is, the experimental effects (e.g.,
experiment, tag, etc.) are expected to be the same for all proteins and peptides observed. Thus,
it is desirable to use all observed data to obtain one overall estimate of these effects. For the
cardiomyopathy study, there were nearly 1000 identified proteins and over 2500 identified
peptides, making it difficult to estimate all of the parameters in model (1) simultaneously using
current software and computers. The threshold of what is “too large” for a computer changes
continuously, of course, but this is likely to remain an issue for proteomic analyses for quite
some time as the total amount of storage needed for the analysis is proportional to the number
of experiments times the number of peptides, and both of these dimensions are increasing
continuously. Thus, below we detail different strategies to confront this computationally
challenging problem, including subsetting, stagewise regression, and iterative regression.

Subsetting
One approach to estimating the parameters in model (1) is to subset the data and estimate the
parameters separately for each identified protein. Although this solves the memory issue, the
resulting fits are, unfortunately, incorrect. For example, model (1) accounts for possible
iTRAQ™ experimental effects; each experiment may have a larger or smaller total amount of
protein loaded due to imperfect pipetting, which would lead to all of the proteins for that
experiment having a larger (or smaller) intensity. When each protein is fit separately, then the
experimental effect is re-estimated multiple times (e.g. estimated separately for every protein),
giving an inconsistent solution that marks a given experiment as sometimes high, sometimes
low. Thus, estimating the experimental effects individually for each protein rather than globally
results in inefficient and incorrect normalization.

Stagewise Regression
In section D we arranged the model (1) terms into three groups I, II, and III, corresponding to
experimental, protein/peptide, and differential expression portions of the model. If one fits the
model to the entire data set in a stagewise fashion, i.e., first group I, then group II, then group
III, each of the individual fits may be simple enough to fit into memory. However, the choice
of partition is critical to obtaining valid parameter estimates. This is, in fact, exactly what is
done in most microarray experiments, where group II contains the differential binding effects
for each probe (Affymetrix) or region (spotted arrays), and groups I and III are again the
experimental and differential effects, respectively. Wolfinger et al. (12) for instance first fit
group I, and then groups II+III together. Ballman et al. (19) show that cyclic lowess

Oberg et al. Page 6

J Proteome Res. Author manuscript; available in PMC 2009 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



normalization is a stagewise fit of groups I+II, using an iterative algorithm, followed by group
III. The popular RMA(20) and GCRMA(21) algorithms first deal with groups I+II using a
quantile based method, and then group III using outlier resistant regression.

When the data is fit in two stages, the first stage is usually referred to as normalization where
global estimates of experimental effects are obtained, particularly in the gene-expression
microarray arena. For the stagewise approach to give correct answers, however, it is necessary
that the parameter estimates from the multiple stages are uncorrelated, or more technically,
that the portions of the linear model design matrix corresponding to the multiple stages be
orthogonal. It turns out that if the fraction of differentially expressed proteins is small, then
group III is nearly orthogonal to the group I and II model parts. Thus, estimating the differential
expression terms in group III separately from the terms in groups I and II is likely to be reliable
for most research studies, including the cardiomyopathy study shown here, but not for a
designed experiment such as in Hill et al.(13) where nearly all of the proteins are differentially
expressed.

For microarray data, where there are a fixed number of probes and each probe has a measured
value for each sample, the data are fully balanced. In such a case, groups I and II are orthogonal
and the stagewise algorithm is correct. This is not the case for proteomics data, unfortunately,
due to the imbalance (missing observations) in the data. Each global proteomic experiment
will have different sets of proteins detected as discussed previously, resulting in an unbalanced
data set for which the experimental and protein/peptide parameters are not uncorrelated. For a
very simple linear model with group I consisting only of an experiment effect, stagewise
estimation of group I is equivalent to globally normalizing the data by the mean peptide
intensity of each experiment. Wang et al.(15) show that for proteomics data the estimation bias
from this procedure can be extreme due to missing data and they provide a nice graphical
display (their figure 2) of exactly how the underlying imbalance leads to this problem.
Stagewise fits of model (1) are subject to the same concern. Wang et al.(15) proposed computing
the experiment and loading effects only on the balanced subset of peptides that appear in all
experiments as one approach to avoid this bias. We propose that using all of the data in an
ANOVA model is much more efficient. Due to the imbalance in the data across multiple
iTRAQ™ experiments, the group II effects must be estimated together with the group I effects
for correct estimation of group I terms. However, estimation of groups I and II simultaneously
is still too large for current computational resources.

Iterative Regression
An alternative approach to stagewise regression is a numerical procedure referred to as iterative
refinement. The Gauss-Siedel algorithm for instance, also known as backfitting, is one iterative
technique; for a good overview see Hastie and Tibshirani(23), who use backfitting to estimate
parameters for generalized additive models.

For the linear models problem here, the backfitting or Gauss-Seidel algorithm is closely related
to stagewise regression. The difference is that the algorithm cycles through the stages, so that
each stage is repeatedly re-fit given the solution to the previous stages. For the cardiomyopathy
data, a fixed effects model was too large for either R or SAS. Thus, we used backfitting to
iteratively solve for parameters in groups I and II, the experimental and protein/peptide terms.
The final result of this iterative fit is then used to normalize the data, before proceeding to
estimate the differential expression terms in group III. That is, the normalized data are
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the residuals from the fits of groups I and II with the systematic bias factors subtracted out.
These normalized values are used as inputs for estimating the effects in group III. With the
peptide effects included in the normalization stages of the model fitting, the group III
parameters are separable and can be estimated one protein at a time. Thus, as in Wolfinger et
al. (12), the normalized data are used as inputs to the differential expression model which was
fit separately for each of the 992 proteins. Thus, the normalization terms are estimated globally,
whereas the differential protein effects are not. Fitting group III parameters on a protein-by-
protein basis assumes that each protein has a different variance parameter, rather than a global
variance parameter. Jain et al.(22) give a nice discussion of the pros and cons of estimating a
variance for each protein and a summary of other approaches. We focus here on estimation of
the normalization terms.

Ideally, all data, including that for unidentified peptides could be used to estimate the group I
and II normalization effects. However, per the above, normalization needs to involve both the
group I and II terms, which means that the peptides must have been matched in some way, i.e.,
we know that peptide “x” in one sample is the same as peptide “x” in another. For this matching,
an identification is not needed, merely the knowledge of matching. However, if identification
and matching are the same process, as is the case for many iTRAQ™ data pipelines, the
matching information will not be available for the unidentified peptides. Thus, the list of
detected peptides is first subsetted to the set with identification information before proceeding
with data analysis.

Mixed Effects Models
An extension of the linear model approach outlined above (also called a fixed effects model)
is a mixed effects model which contains both fixed and random effects. Random effects are
an extension which align naturally with certain aspects of proteomics data and thus may be
preferred. Declaring an effect, e.g., peptide, in the model as random adds a constraint to that
effect in the form of an a priori Gaussian distribution with mean 0 and variance(s) τ. Fitting
the model involves estimation of both the fixed effect coefficients and the variance(s) τ.

Computationally, mixed and fixed effects models have similar issues. The best method is to
fit the entire model to all data simultaneously. This may be computationally challenging for
large data sets, however, due to computational restrictions. As described previously for fixed
effects models, fitting separate models for each protein remains an invalid approach with
respect to global terms; global estimates of both experimental effects and the variance
parameter(s) τ are needed. For models containing random effects in groups I or II, the stagewise
approach has exactly the same requirements for balance as described previously for the fixed
effects case. For balanced data, the approach in Wolfinger et al. (12), with stagewise fits of both
fixed and random group I effects followed by subset fits of both fixed and random group II
and III effects is valid; however, it would not estimate group I effects correctly in unbalanced
proteomic data. As with fixed effects models, the parameters from groups I and II must be
estimated together when imbalance is present in the data in order to correctly estimate the group
I effects. Unfortunately, the standard iterative regression methods available for fixed effects
models are not applicable to mixed effects models, and a solution remains an open problem.

For the cardiomyopathy data, we were able to perform a single global fit of group I and II terms
where group I effects were fixed effects and group II effects were random effects. This was
accomplished with the counsel of the fifth author (RDW), who is a principal architect of the
SAS mixed effects model software. Note that due to the abundance dependent nature of the
imbalance in these data, the peptide variance effect will be underestimated. As in Hill et
al.(13) the fixed versus mixed effects model had little impact on the normalization effects (data
not shown). In the microarray domain both mixed effects(12) and fixed effects
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approaches(20,21) have been proposed, but lacking case studies where the results are
substantially different the latter has become the dominant approach.

F. Results
For the cardiomyopathy study we used backfitting to estimate the group I and II parameters in
model (1). The parameter estimates for the experiment bq and loading vq,l decomposed into
tag and experiment by tag normalization effects are displayed in Figure 2A; the figure is helpful
for identifying peculiarities in the data at the experiment or specimen level. Note that there are
six parameter estimates associated with experiment (bq) since the cardiomyopathy study
contained six MS experiments. Likewise, the experiment-by-tag loading parameter (vq,l) can
be decomposed into four tag effects since iTRAQ™ technology has four tags and 24
experiment-by-tag effects, one for each experiment-by-tag combination. Recall that the data
were analyzed on the log base 2 scale, so a coefficient of 1.0 represents a 2-fold effect. The
experiment (bq) parameter estimates indicate the mean shift of each experiment from the overall
mean abundance. From Figure 2A it is clear that experiment 4 had abundance values that were
about 2.8-fold larger than the average. This phenomenon is also apparent in Figure 1 by the
presence of more bars for experiment 4; Figure 1 is a simple present/absent plot of detected
proteins in each experiment. The small amount of spread in the estimates of the tag effects in
Figure 2A indicates that there is only a minor tag effect in this study. Additionally, the sample
denoted by l (experiment 6, tag 115) in the experiment-by-tag effects stands out with an
abundance approximately 2.8 fold lower than the average. While the peptide term (fj(i)) in
model (1) does not represent an experimental effect, it is needed in the model in order to obtain
correct estimates of the experimental effects as discussed in Section E. This is due to the missing
values that are a direct result of thresholding. The peptide effects shown in Figure 2B have a
much larger range than the three experimental effects shown in Figure 2A; about 5% of the
peptides have coefficients less than −1.8, indicating that they are 6-fold less “abundant” than
the average.

Figure 3 shows the distribution of peptide abundance pre- and post normalization, i.e., before
and after subtracting the group I and II estimated effects shown in Figures 2A and 2B. Prior to
normalization, there is clear variability from tag-to-tag and experiment-to-experiment, which
is reduced by 56% after applying the normalization model. Interestingly, Table 2 shows the
estimated normalization constants of Figure 2 with and without concurrent adjustment for the
peptide and protein effects; the naïve estimates have zero digits of computational accuracy and
are biased towards zero by 19%–48%. The scatter plot in Figure 4 displays the normalized
values relative to the estimated mean abundances from the normalization portion of the model
for tag 114 and experiment 4. This plot is analogous to the MVA (minus versus average) plots
in the microarray literature. The smoother shows the moving average as a function of predicted
abundance; if the normalization has been successful, the data points should be clustered around
the y=0 line as is the case in Figure 4. Thus, we are reassured that the linear ANOVA model
adequately normalized the cardiomyopathy data. If abundance-dependent biases were evident
in Figure 4 via a non-linear smoother that is not parallel to the y=0 reference line, then the
adjustment for experimental factors would require a more complex model.

Of the 992 unique proteins identified in the cardiomyopathy study, a total of 562 proteins could
be assessed for differential expression. A test could not be constructed for the remaining 430
proteins because they were identified in only one MS experiment and by a single peptide. The
test statistics or the corresponding p-values can be used for ranking the proteins according to
statistical significance. Because of the large number of proteins being tested, the value of 0.05
should not be viewed as an absolute cut-off value for significance, but rather as a screening
threshold. There is a rich literature on multiple testing and the appropriate corrections(24) which
we will not go into here. Rather, we show some selected results.

Oberg et al. Page 9

J Proteome Res. Author manuscript; available in PMC 2009 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5, known as a volcano plot in the microarray literature, shows an overall view of the
differences between groups A and D. The volcano plot is useful for assessing significance
together with fold change for the entire study. The vertical axis corresponds to statistical
significance (−log base 10 (p value)) and the horizontal axis denotes average fold change
between disease groups. Data points in the top right and left rectangles correspond to proteins
with both small p-values and large fold changes. This information together with biological
information about each protein is useful for determining the proteins of most interest for further
investigation.

Normalized data for all peptides associated with one protein selected from the list of all proteins
with data across multiple experiments is shown in Figure 6 and is referred to as a dot plot. Each
point represents the normalized expression value of each peptide mapped to that protein within
that experiment and group where the horizontal line represents the overall group mean. Figure
6 is helpful in determining if patterns of expression are consistent across experiments and
subjects and whether the overall significance may be influenced by a set of potential outlying
peptide values. This protein was observed in three of the six experiments and these data indicate
that it is present at higher abundance in Group D in comparison to the other three groups. A
single outlying data point approximately 16-fold higher than the Group C average is apparent
in experiment 4. We refer the reader to Hill et al.(13) in this issue for further guidance in
computing point and interval estimates. The analyses and results presented here are not meant
to be definitive. Further work is needed to more fully understand potential sources of systematic
biases that may affect data produced by iTRAQ™ and other multi-labeling proteomic
platforms. Furthermore, we presented a protein level analysis, with focus on comparing mean
protein abundance levels between disease groups for all peptides mapped to a given protein.
It is possible to examine individual peptide abundance profiles within a protein as well.
Additionally, it may be desirable to ignore the mapping of peptides to proteins all together and
assess differences across disease groups separately for each individual peptide. This can be
done by deleting the effects containing protein from the ANOVA model and directly evaluating
the peptide effects.

G. Discussion
Global proteomic studies show great promise and are being exploited more frequently in the
search for biomarkers of disease status. As current MS technologies are pushed to the limits,
efficient and understandable analysis methods are needed for proper inference. Analysis
methods for data that are relative in nature, rather than absolute, have been studied since the
early 1900s and are well understood in the statistical community. Hill et al.(13) in this issue
discuss application of ANOVA to a simple sample. In this manuscript, we extend this and
demonstrate how ANOVA can be used to analyze data from multiple experiments on proteomic
platforms utilizing relative labeling procedures by presenting a case study analysis of an
iTRAQ™ study. ANOVA methods afford wide flexibility in experimental design, techniques
to declare significance of results, efficient use of the data (the smallest possible standard errors
of the results), and guidance in sample size calculations. ANOVA models can be used to
incorporate normalization and differential expression into a single unified model.

Researchers are accustomed to interpreting results from relative labeling platforms on the fold
change (ratio) scale. Results from an ANOVA analysis can be interpreted either on the fold
change scale or log scale. Using ANOVA tools on individual abundance data rather than strictly
fold change ratios from one experiment at a time has the added advantage of using all
information available as well as providing standard errors and statistical tests, an objective
measure of significance. ANOVA tools can easily accommodate any experimental design,
simple or complex. We note that most vendor software exports only protein level ratios for
proteins from one MS experiment. The individual abundance values may be obtained from
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some, but only with much effort. We appeal here to vendors to make the individual abundance
values more readily available for their users. This will enable more efficient analyses.

The size of global proteomic data sets resulting from studies involving even moderate numbers
of complex samples from biological replicates demands non-standard model fitting algorithms.
These algorithms generally partition the modeling process into a normalization portion and a
differential expression portion. Such techniques have been well worked out in the microarray
literature for balanced data. The severe imbalance due to missing observations in global
proteomic data sets(14,15,16,17) prevents the direct extension of these methods to global
proteomic studies(15). Thus, a peptide effect must be included in the normalization portion of
the model for proper estimation of the experimental effects.

The use of sound experimental design is the foundation of successful interpretation of study
results. Many designs are available, and the best choice for a particular study depends on the
particular objectives and resources available. When combining data across multiple MS
experiments, experimental design becomes even more important and deserves appropriate
consideration. In multi-channel platforms it is important that the allocation of subjects to
channels (tags in iTRAQ™) be made with care. The experimental design in Table 1 is referred
to as a complete block design. In a complete block design every treatment/disease group of
interest appears in each block; here, an MS experiment denotes a block. In the agricultural
studies that motivated ANOVA in the 1930s, “blocks” referred to plots of land, each of which
might have a unique influence on the outcomes; an experiment is the natural analog of this in
an iTRAQ™ study. Balancing the treatment/disease groups across blocks, as much as possible,
gives the greatest precision for treatment comparisons.

Due to feasibility, the number of treatment groups may be too large (e.g., >4 in an iTRAQ™
experiment) and only a subset of the treatments may be applied to each block leading to an
incomplete block design. In an incomplete block design, each block contains a subset of the
possible treatments. Another experimental design that is often utilized in high-dimensional
genomic and proteomic studies is the reference design. Here, a pooled reference sample is
allocated to every block using the same labeling tag and the treatments of interest are allocated
to the remaining tag(s). The motivation behind implementing a reference design is the ability
to create ratios relative to a common sample and to quantify and correct for experimental
variability across MS experiments. However, it has been shown in the gene-expression
microarray literature that block designs are typically more efficient(11,25). Ultimately, the
optimal experimental design, and therefore the particular ANOVA model used, depends on the
research question of interest and the constraints of the platform. However, it is typically
important to balance the design as much as possible, i.e., each treatment group should be
represented the same number of times and each pair of treatments should have the same number
of within-experiment pairings. For a more detailed discussion on experimental designs
see(26).

We acknowledge that improvements can be made to the analysis discussed here by more
appropriately handling the incomplete observations present in global proteomic data. Due to
the abundance-dependant nature of missing observations, fitting the ANOVA model described
in equation (1) using a censoring mechanism is a natural next step. We have performed initial
work in using censoring mechanisms to fit the model described here. It is clear that the
mechanism by which iTRAQ™ data are censored is not adequately captured by standard
censoring software causing severe biases in parameter estimates. We are currently pursuing
this further.
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Figure 1.
Protein coverage across all six iTRAQ™ experiments. The horizontal axis indicates
experiment run order. The vertical axis indicates proteins, where proteins are ordered by their
average abundance rank across each experiment. Each horizontal line represents the presence
of a protein within each experiment. The proteins at the top of the plot have highest average
abundance and those at the bottom of the plot have the lowest average abundance. A protein
present in all six experiments would show as a black horizontal line across the entire plot. Note
that many more proteins were detected in experiment 4 than in the other five experiments. Due
to thresholding which occurs during mass analysis, not all proteins will be observed in all
experiments.
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Figure 2.
Estimated parameter effects from the normalization section of the model. Figure 2A: Estimated
group I parameter effects of experiment bq, and loading effects vq,l decomposed into the tag
and experiment-by-tag effects. Since the data were analyzed on log base 2 scale, a coefficient
of 1.0 represents a 2-fold effect. Figure 2B: Histogram showing the distribution of the peptide
effects fj(i) relative to the average. These effects span a wide range, nearly 10-fold.
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Figure 3.
Box and whisker plots of peptide abundance on the log base 2 scale for each experiment-by-
tag combination pre-normalization (left 4 panels) and post-normalization (right 4 panels). The
vertical axis is the log base 2 abundance values. The horizontal axis corresponds to experiment
and tag combination. The sort order of the box plots are first by tag and then by experiment.
For example, the first six box plots are from tag 114 in experiments 1 through 6, the next six
are from tag 115 in experiments 1 through 6, etc. The top and bottom of the box represent the
75th and 25th percentiles of the distribution, respectively, and the line inside the box denotes
the median. The ‘whiskers’, or dashed lines and dots indicate data points on the extremes of
the distribution. Much of the variation between experiment-by-tag combinations was removed
via the normalization model.
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Figure 4.
Normalized abundance values vs. predicted abundance from the normalization portion of the
model for tag 114 in experiment 4. The horizontal line at y=0 represents the expected zero
mean of the normalized values. The scatter plot smoother represents the local average (relative
to the predicted abundance) of the normalized values. Data points would cluster about the y=0
line in the absence of systematic bias. The slight nonlinearity in the smoother indicates that
nonlinear biases are possible, but they are not severe in this data set.
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Figure 5.
Statistical significance versus fold change for groups A and D, is commonly called a volcano
plot in the gene expression microarray literature. The vertical axis denotes –log base 10 of the
p-value and the horizontal axis denotes average fold change on the log base 2 scale. The
horizontal reference line corresponds to a p-value cut-off of 0.0083, the Bonferroni adjusted
significance criteria. The two vertical lines correspond to a 2-fold change.
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Figure 6.
Normalized peptide abundance by disease group and experiment run order for one protein
selected from the list of all proteins with data across multiple experiments. The vertical axis
represents abundance on the log base 2 scale. The horizontal axis corresponds to experiment
number. The four panels indicate the four disease groups which are indicated along the top of
the plot. The horizontal lines indicate the estimated mean in the respective disease groups. This
protein appeared in only three experiments.
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Table 1
Experimental Design of Cardiomyopathy Study.

Experimental Run Order Tag
114 115 116 117

1 A1 B1 C1 D1
2 B2 D2 A2 C2
3 D3 C3 A3 B3
4 C4 A4 D4 B4
5 B5 A5 D5 C5
6 D6 B6 C6 A6

The letters A, B, C and D denote the four treatment groups under investigation. The numbers denote independent samples. For example, A1 is the first
sample in group A. The actual labels of the disease groups are masked for the purposes of this manuscript.
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