

NIH Public Access

Author Manuscript

JAm Chem Soc. Author manuscript; available in PMC 2008 September 4.

Published in final edited form as:

JAm Chem Soc. 2006 March 8; 128(9): 2796–2797. doi:10.1021/ja058692k.

Total Synthesis of Dolabelide D

Peter K. Park, Steven J. O'Malley, Darby R. Schmidt, and James L. Leighton^{*} Department of Chemistry, Columbia University, New York, New York 10027

In 1995 researchers reported the isolation and structural characterization of two new 22membered macrolides they termed dolabelides A and B from Japanese specimens of the sea hare *Dolabella auricularia*.¹ These compounds exhibited cytotoxic activity against HeLa-S₃ cells with IC₅₀s of 6.3 and 1.3 µg/mL, respectively. Two years later, two new members of this class of natural products, dolabelides C and D were reported.² These 24-membered macrolides are also cytotoxic against HeLa-S₃ cells with IC₅₀s of 1.9 and 1.5 µg/mL, respectively. This biological activity and the interesting stereostructure of these natural products have combined to elicit attention from synthetic chemists³ including our own group.⁴ Herein we describe our investigations that have led to the first total synthesis of dolabelide D, by way of the synthesis and coupling of fragments **2** and **3** by esterification and ring-closing metathesis (Scheme 1).

The synthesis of fragment 2^4 commenced with an application of our recently developed catalytic asymmetric silane alcoholysis⁵ with alcohol 4 and *t*-butyl-*cis*-crotylsilane to provide 5 as the major component of a 4:1 mixture of diastereomers in 95% yield (Scheme 2). Rhodiumcatalyzed tandem silylformylation-crotylsilylation⁶ proceeded stereospecifically to provide, after quenching with methyllithium, a 4:1 mixture of diastereomers favoring 1,5-syn-diol 6 in 56% yield. Selective protection of the less-hindered alcohol as its triethylsilyl (TES) ether led, after separation of the diastereomers, to the isolation of 7 in 74% yield. Treatment of alcohol 7 with *n*-BuLi and then CuBr•SMe₂ and DMPU initiated a Brook-like 1,4 carbon (sp²) to oxygen silane migration,⁷ and the resulting vinylcopper species was then alkylated with MeI to provide 8 in 92% yield. This sequence illustrates the power of the tandem silylformylation chemistry to provide access to different functionalities and substitution patterns in the 1,5-diol products. In addition, it is noteworthy that the *t*-butylsilane serves multiple purposes before being morphed into the desired t-butyldimethylsilyl (TBS) ether. A Wacker oxidation was optimized for concurrent removal of the TES ether, and the resulting alcohol 9 was acetylated to provide 10 in 78% overall yield (2 steps). Asymmetric aldol coupling⁸ with 5-hexenal then gave aldol 11 in 85% yield and with >10:1 diastereoselectivity. Anti-diastereoselective (>10:1 dr) β -hydroxyketone reduction⁹ then gave **12** in 91% yield. Protection of the diol as a cvclopentylidene ketal 10 gave 13 and TBS removal provided fragment 2 in 50% yield (2 steps from 12). The synthesis of 2 was thus achieved in 10 steps and 11% overall yield from 4.

Allylation of aldehyde **14** with our recently developed reagent 15^{11} proceeded smoothly to provide **16** in 80% yield and 98% ee (Scheme 3). Protection of the alcohol as its *p*-methoxybenzyl (PMB) ether gave **17** in 95% yield, and was followed by a Wacker oxidation to give ketone **18** in 81% yield. Crotylation of methacrolein with crotylsilane *ent*-**19**¹², followed by protection of the resultant alcohol as its PMB ether produced **20** in 53% yield (based on *ent*-**19**, 2 steps) and 88% ee. Hydroformylation in the presence of 2,2-dimethoxypropane proceeded smoothly and selectively to give acetal **21** in 72% yield. Still-Barrish hydroboration¹³ gave alcohol **22** with 13:1 *dr*. A 4 step oxidation-oxidation-protection-deprotection sequence then provided aldehyde **23** in 79% overall yield. 1,5-*Anti* selective aldol coupling¹⁴ of ketone **18** and aldehyde **23** proceeded smoothly to give aldol

E-mail: leighton@chem.columbia.edu.

24 in 79% yield as a 10:1 mixture of diastereomers. Protection of the alcohol as a triethylsilyl (TES) ether gave 25 in 94% yield and was followed by a diastereoselective (~5:1) ketone reduction with L-Selectride to give 26. Following acetylation, the diastereomers were separated and 27 was isolated in 51% yield. Finally, deprotection of the allyl ester gave the target acid 28 in 92% yield. The synthesis of 28 was carried out with a longest linear sequence of 13 steps from methacrolein in 9% overall yield.

Esterification of alcohol **2** with acid **28** proceeded smoothly to give **29** in 74% yield (Scheme 4). Methanolysis of the TES ether and cyclopentylidene ketal protecting groups was followed by oxidative cleavage of the PMB ether groups to provide pentaol **30** in 70% overall yield (2 steps). Initial attempts at macrocyclization by ring closing metathesis with the "second-generation" Grubbs catalyst **31** were plagued not only by (not unexpected) low stereoselectivity (~1.3:1 *E:Z*), but also by significant amounts of byproducts presumably derived from olefin isomerization pathways.¹⁵ Despite these setbacks, dolabelide D could be isolated in 31% yield. Although a sample of the natural product was unavailable, comparison (¹H and ¹³C NMR, IR, HRMS, $[\alpha]_D$) to published data confirmed the identity of our synthetic material.

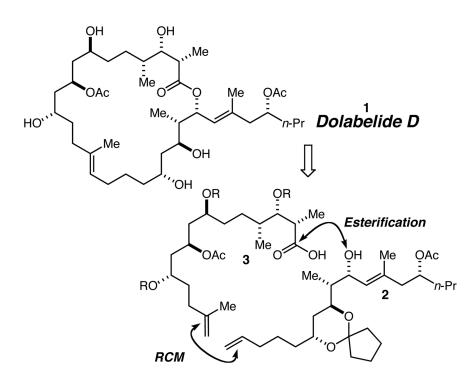
The first synthesis of dolabelide D (and of any of the dolabelides) has been achieved. Methodologically, the four step sequence that converts alcohol **4** into protected diol fragment **8** is especially noteworthy and serves as a demonstration of the power of the catalytic asymmetric silane alcoholysis and tandem silytformylation-crotylsilylation methods. That the pathway from alcohol **4** to dolabelide D comprises just 14 linear steps (the longest linear sequence is from methacrolein to dolabelide D in 17 steps) is testament to the efficiency of these methods.

Supplementary Material

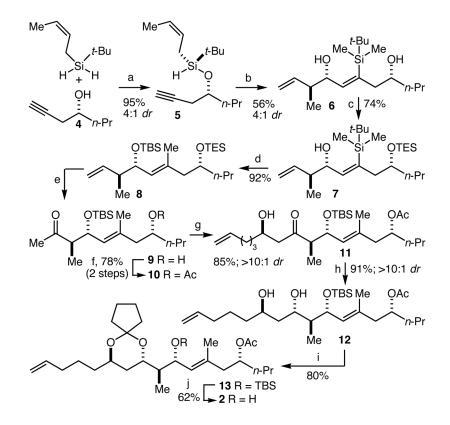
Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The NIH (NIGMS GM58133) is acknowledged for their generous support of this work, and for a postdoctoral fellowship to D.R.S. P.K.P. is supported by the NIH Medical Scientist Training Program. We thank Bristol-Myers Squibb for a graduate fellowship to S.J.O.

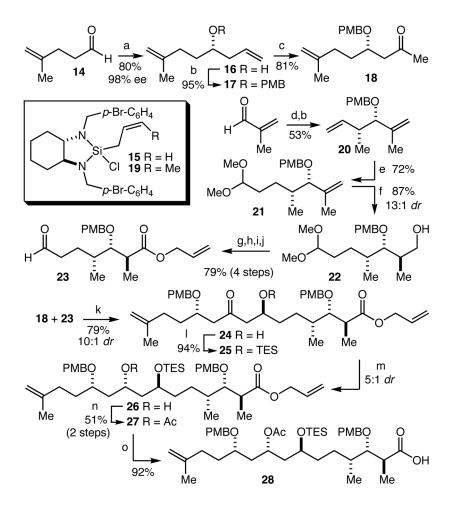

References

- 1. Ojika M, Nagoya T, Yamada K. Tetrahedron Lett 1995;36:7491.
- 2. Suenaga K, Nagoya T, Shibata T, Kigoshi H, Yamada K. J Nat Prod 1997;60:155.
- 3. (a) Grimaud L, de Mesmay R, Prunet J. Org Lett 2002;4:419. [PubMed: 11820894] (b) Desroy N, Le Roux R, Phansavath P, Chiummiento L, Bonini C, Genêt JP. Tetrahedron Lett 2003;44:1763. (c) Le Roux R, Desroy N, Phansavath P, Genêt JP. Synlett 2005:429. (d) Keck GE, McLaws MD. Tetrahedron Lett 2005;46:4911. [PubMed: 16909163]
- 4. Schmidt DR, Park PK, Leighton JL. Org Lett 2003;5:3535. [PubMed: 12967318]
- 5. Schmidt DR, O'Malley SJ, Leighton JL. J Am Chem Soc 2003;125:1190. [PubMed: 12553820]
- (a) Zacuto MJ, O'Malley SJ, Leighton JL. J Am Chem Soc 2002;124:7890. [PubMed: 12095319] (b) Zacuto MJ, O'Malley SJ, Leighton JL. Tetrahedron 2003;59:8889.
- 7. Taguchi H, Ghoroku K, Tadaki M, Tsubouchi A, Takeda T. Org Lett 2001;3:3811. [PubMed: 11700145]
- (a) Paterson I, Goodman JM, Lister MA, Schumann RC, McClure CK, Norcross RD. Tetrahedron 1990;46:4663. (b) Paterson I, Florence GJ, Gerlach K, Scott JP, Sereinig N. J Am Chem Soc 2001;123:9535. [PubMed: 11572673]
- 9. Evans DA, Chapman KT, Carreira EM. J Am Chem Soc 1988;110:3560.


JAm Chem Soc. Author manuscript; available in PMC 2008 September 4.

- For a discussion of the advantages of this diol protecting group, see: Evans DA, Connell BT. J Am Chem Soc 2003;125:10899. [PubMed: 12952470]
- 11. Kubota K, Leighton JL. Angew Chem Int Ed 2003;42:946.
- 12. Hackman BM, Lombardi PJ, Leighton JL. Org Lett 2004;6:4375. [PubMed: 15524487]
- 13. Still WC, Barrish JC. J Am Chem Soc 1983;105:2487.
- (a) Paterson I, Gibson KR, Oballa RM. Tetrahedron Lett 1996;37:8585. (b) Evans DA, Coleman PJ, Côté B. J Org Chem 1997;62:788.
- The recently reported method to suppress such pathways did not provide significant improvement in this case. See: Hong SH, Sanders DP, Lee CW, Grubbs RH. J Am Chem Soc 2005;127:17160. [PubMed: 16332044]

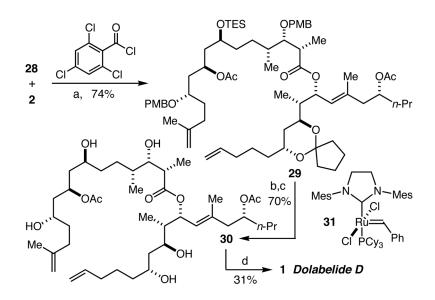
Park et al.


Scheme 1.

Scheme 2.

(a) 4 mol% CuCl, 4 mol% NaO-*t*-Bu, 4 mol% (*R*, *R*)-BDPP, PhH. (b) i. **2** mol% [Rh (acetone)₂-(P(OPh)₃)₂]BF₄, CO, PhH, 60 °C; ii. MeLi, Et₂O -78 to 23 °C. (c) TESCl, Et₃N, CH₂Cl₂, -20 °C. (d) *n*-BuLi, THF, -78 °C; CuBr•Me₂S, DMPU, 23 °C; MeI, -78 to 23 °C. (e) 25 mol% PdCl₂, CuCl, DMF, THF, H₂O, O₂. (f) Ac₂O, pyridine, DMAP, CH₂Cl₂. (g) (+)-(*ipc*)₂BCl, Et₃N, 5-hexenal, Et₂O -78 to 23 °C. (h) Me₄NBH(OAc)₃, AcOH, CH₃CN, THF, -40 to -20 °C. (i) 1,1-dimethoxycyclopentane, PPTS, CH₂Cl₂. (j) *n*-Bu₄NF, THF.

Park et al.



Scheme 3.

(a) **15**, CH₂Cl₂, -20 °C. (b) NaH, PMBBr, THF, reflux, (c) 25 mol% PdCl₂, CuCl, DMF, H₂O, O₂. (d) *ent*-**19**, CH₂Cl₂. (e) 2 mol% Rh(acac)(CO)₂, 10 mol% PPh₃, H₂/CO, 2,2-dimethoxypropane, PPTS, 60 °C. (f) 9-BBN, THF, -78 to 23 °C; H₂O₂, NaOH. (g) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C. (h) NaClO₂, NaH₂PO₄,2-methyl-2-butene, *t*-BuOH, H₂O. (i) K₂CO₃, CH₂=CHCH₂Br, acetone, reflux, (j) PPTS, acetone, H₂O, reflux, (k) n-Bu₂BOTf, *i*-Pr₂NEt, Et₂O, -110 °C. (1) TESCl, imidazole, CH₂Cl₂. (m) L-Selectride, CH₂Cl₂, -78 °C. (n) Ac₂O, pyridine, DMAP, CH₂Cl₂. (o) 10 mol% Pd(PPh₃)₄, morpholine, THF.

J Am Chem Soc. Author manuscript; available in PMC 2008 September 4.

Park et al.

Scheme 4.

(a) Et₃N, DMAP, toluene, -78 to 0 °C. (b) PPTS, MeOH. (c) DDQ, CH₂Cl₂, pH 7 buffer, (d) 25 mol% **31**, CH₂Cl₂, reflux.

J Am Chem Soc. Author manuscript; available in PMC 2008 September 4.