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Abstract

Manganese (Mn) is the second most prevalent transi-

tion metal in the Earth’s crust but its availability is

often limited due to rapid oxidation and low mobility of

the oxidized forms. Acclimation to low Mn availability

was studied in Arabidopsis seedlings subjected to Mn

deficiency. As reported here, Mn deficiency caused

a thorough change in the arrangement and character-

istics of the root epidermal cells. A proportion of the

extra hairs formed upon Mn deficiency were located in

atrichoblast positions, indicative of a post-embryonic

reprogramming of the cell fate acquired during em-

bryogenesis. When plants were grown under a light

intensity of >50 mmol m22 s21 in the presence of

manganese root hair elongation was substantially

inhibited, whereas Mn-deficient seedlings displayed

stimulated root hair development. GeneChip analysis

revealed several candidate genes with potential roles

in the reprogramming of rhizodermal cells. None of the

genes that function in epidermal cell fate specification

were affected by Mn deficiency, indicating that the

patterning mechanism which controls the differentia-

tion of rhizodermal cells during embryogenesis have

been bypassed under Mn-deficient conditions. This

assumption is supported by the partial rescue of the

hairless cpc mutant by Mn deficiency. Inductively

coupled plasma-optical emission spectroscopy (ICP-

OES) analysis revealed that, besides the anticipated

reduction in Mn concentration, Mn deficiency caused

an increase in iron concentration. This increase was

associated with a decreased transcript level of the iron

transporter IRT1, indicative of a more efficient trans-

port of iron in the absence of Mn.

Key words: Ion homeostasis, iron, light regulation,

manganese, root hairs, transcriptional profiling.

Introduction

Manganese (Mn) is an essential trace element for metabo-
lism in virtually all living organisms and is required as
a cofactor or as an activator for an array of enzymes, such as
manganese superoxide dismutase (MnSOD), RNA poly-
merases, malic enzyme, isocitrate dehydrogenase, and PEP
carboxykinase (Marschner, 1995). In plants, Mn is required
for the oxygen-evolving photosynthetic machinery, catalys-
ing the water-splitting reaction in PSII. The bio-availability
of manganese depends on its oxidation state. Only the
divalent cation Mn2+ can be readily taken up by plants, the
higher oxidation states Mn(III) and Mn(IV) are not
accessible. In sandy soils, soils high in organic matter, and
in dry well-aerated soils with high pH, the bio-availability
of Mn decreases far below the level that is required for
normal plant growth. Mn deficiency is a widespread plant
nutritional disorder in agriculture, which is difficult to
overcome because Mn2+ is rapidly oxidized when supple-
mented artificially in the form of fertilizers. Visual
symptoms of Mn deficiency include the interveinal chloro-
sis of younger leaves in dicotyledonous plants and grey
specks on the basal leaves in cereals (Marschner, 1995).
Photosynthetic autotrophs have evolved specific routes

for the entry of Mn2+ into the cell. A so-called ABC-type
permease has been reported to be responsible for the
uptake of Mn2+ in cyanobacteria (Bartsevich and Parasi,
1995). In the yeast Saccharomyces cerevisiae, the accu-
mulation of Mn2+ is mediated by the natural resistance-
associated macrophage protein (NRAMP) family trans-
porter SMF1 and by the high-affinity phosphate (Pi)
transporter PHO84 (Jensen et al., 2003). Similarly, in the
alga Chlamydomonas an NRAMP protein was identified
as the main component of a Mn2+-selective uptake
pathway (Allen et al., 2007). No Mn2+-specific transporter
has been identified in plants to date. An explanation for
this might be provided by the fact that, in plants, Mn2+
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shares the same entry route as iron (Fe). In Arabidopsis,
Fe is taken up by IRT1, a member of the ZIP transporter
family (Eide et al., 1996; Henriques et al., 2002; Varotto
et al., 2002; Vert et al., 2002). IRT1 has a relatively broad
substrate spectrum and is reportedly capable of trans-
porting other metal ions including Mn2+ (Korshunova
et al., 1999). Recently, a transporter of the cation
diffusion facilitator (CDF) family, MTP11, was shown to
be crucial for maintaining Mn homeostasis in plants
(Peiter et al., 2007; Delhaize et al., 2007). However,
MTP11 is not expressed in the root epidermis, nor is its
transcript level increased upon Mn starvation, indicating
that this protein functions in Mn tolerance rather than in
Mn acquisition from the soil (Peiter et al., 2007). This
assumption is supported by its localization to prevacuolar
compartments (Delhaize et al., 2007). A Golgi-localized
P2A-type ATPase, ECA3, was shown to be important for
Mn homeostasis under Mn-deplete conditions, probably
by mediating the loading of Mn into the Golgi (Mills
et al., 2008).
Similar to deficiencies in other immobile mineral

nutrients such as Fe and phosphate (Pi), it is the low bio-
availability of Mn rather than the concentration in the soil
that causes Mn shortage. An efficient means of improving
the acquisition of immobile nutrients is to enlarge the soil/
root interface. Root epidermal cells can differentiate into
root hairs, thereby substantially increasing the absorptive
surface of the root. In Arabidopsis, the decision of
epidermal cells to enter either the root hair cell fate or the
non-hair developmental pathway is controlled by posi-
tional information. Epidermal cells that lie over a periclinal
cortical cell wall (N position) differentiate into a non-hair
cell, whereas epidermal cells that are located over the clefs
of two cortical cells (anticlinal) walls (H position) develop
into a hair cell (Dolan, 2006). The positional information,
derived from the inner cell layer(s), is conveyed by
SCRAMBLED (SCM), an LRR-receptor-like kinase,
which regulates a subset of transcription factors that
ultimately determine the fate of the cell (Kwak et al.,
2005). An as yet unidentified signal is perceived by SCM,
which in turn causes a bias in the expression of the MYB-
type transcription factor WEREWOLF (WER), resulting
in a slightly lower expression of the gene in trichoblast
files (Bernhardt et al., 2005; Koshino-Kimura et al.,
2005). In non-hair cells, WER forms a complex with the
R-like bHLH proteins GLABRA3 (GL3), ENHANCER
OF GLABRA3 (EGL3), and with the WD40 protein
TRANSPARENT TESTA GLABRA1 (TTG1). This com-
plex then promotes the expression of the single-repeat
MYB protein CAPRICE (CPC) and of the homeodomain
leucine zipper protein GLABRA2 (GL2). GL2 acts as
a positive regulator of the non-hair cell fate and blocks the
formation of hairs in the N position. The movement of
CPC from non-hair cells to hair cells enables the protein
to compete with WER to form a complex composed of

CPC/GL3/EGL3 and TTG1, which in turn blocks the
expression of CPC and GL2 in future hair cells. The cell
specification in the root epidermal cells is strengthened by
the movement of GL3/EGL3 from hair cells to non-hair
cells.
Growth of plants in a medium with low availability of

Fe or Pi increases the number of root hairs and alters their
characteristics in a manner typical of each growth type
(Müller and Schmidt, 2004). Based on pharmacological
and genetic evidences, it was shown previously that the
signalling pathways, which ultimately lead to the forma-
tion of extra root hairs, differ between Pi and Fe
deficiency (Schmidt and Schikora, 2001; Müller and
Schmidt, 2004). The formation of additional root hairs
has also been reported for Mn-deficient plants (Ma et al.,
2001; Konno et al., 2006), but no information on how Mn
deficiency is perceived and translated into changes in the
root epidermal pattern is available. It is reported here that
Mn deficiency induces a unique root hair phenotype
comprising changes in the length, characteristics, and in
the position of root hairs relative to the underlying cortical
cells. The Mn deficiency-induced phenotype is dominant
over the inhibition of root hair elongation by high light
intensities and distinguishable from previously observed
changes in root hair patterning in response to other
nutrient deficiencies. Based on these findings, we suppose
that a Mn-specific signalling pathway is induced below
a certain threshold level of external Mn, which triggers
post-embryonic developmental processes that acclimatize
the plant to low Mn availability. Using GeneChip
analysis, potential components of the Mn stress response
in Arabidopsis roots were revealed.

Materials and methods

Plant material and mineral nutrients

Plants were grown in a growth chamber on an agar medium as
described by Estelle and Somerville (1987). Seeds of Arabidopsis
(Arabidopsis thaliana L. Heynh), ecotype Col-0 and cpc were
obtained from the Arabidopsis Biological Resource Center (Ohio
State University) and surface-sterilized by immersing them in 5%
(v/v) NaOCl for 5 min and 96% ethanol for 7 min, followed by four
rinses in sterile water. The medium was composed of (mM): KNO3

(5), MgSO4 (2), Ca(NO3)2 (2), KH2PO4 (2.5), (lM): H3BO3 (70),
MnCl2 (14), ZnSO4 (1), CuSO4 (0.5), NaCl (10), Na2MoO4 (0.2),
and FeEDTA (40), solidified with 0.3% Phytagel (Sigma-Aldrich).
Sucrose (43 mM) and 4.7 mM MES were included and the pH was
adjusted to 5.5. Seeds were placed onto Petri dishes containing
agar medium either with (+Mn plants) or without Mn (–Mn plants)
and kept for 1 d at 4 �C in the dark, before being transferred to
a growth chamber and grown at 21 �C under continuous
illumination (70 lmol m�2 s�1, Phillips TL lamps). Light intensity
was varied as indicated by shading with layers of Miracloth
(Calbiochem Biosciences, La Jolla, CA), which did not alter the
light quality. Mn concentration was varied as indicated. Plants were
analysed 6 d after sowing. For gene expression analysis, roots were
harvested and immediately frozen in liquid nitrogen.
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RNA analysis and real-time RT-PCR

Total RNA was isolated from roots of 100 plants with the RNeasy
Plant Mini Kit (Qiagen) according to the manufacturer’s instruc-
tions. Nucleic acid quantity was evaluated by using a NanoDrop
ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies,
Wilmington, USA). One lg of total DNase-treated RNA (Turbo
DNase, Ambion) was reverse-transcribed using Superscript
III Reverse Transcriptase (Invitrogen) with oligo dT primers in
a total volume of 20 ll. Real-time quantitative PCR was performed
using double-stranded DNA binding dye Sybr� Green PCR
Master mix (Applied Biosystems) in an ABI GeneAmp 7000
Sequence Detection System. Each reaction was run in triplicate
and the melting curves were constructed using Dissociation
Curves Software (Applied Biosystems), to ensure that only a
single product is amplified. Validation experiments were
performed to test the efficiency of the target amplification and
the efficiency of the reference amplification. Duplicate CT

values were analysed with Microsoft Excel using the comparative
CT(DCT) method as described by the manufacturer (Applied
Biosystems). The amount of target (2–DDCT) was obtained by
normalizing to an endogenous reference (Alpha tubulin,
At5g19770) and relative to a calibrator (control tissue). Relative
expression (n-fold) of the normalized target gene in the treatment
was calculated according to the mathematical model proposed by
Pfaffl (2001). Primers were designed by the Primer Express
program (Applied Biosystems). Specificity of the primers was
ensured through sequence alignment by the BLASTN algorithm
(Altschul et al., 1997).
The following primers were used for the validation of the

microarray genes. 5#-AACACAAGAAGGTGGAGCAAGTC-3# and
5#-TTTCCTTCATTGCGCTCTTCA-3# were used for At1g33890;
5#-CGAGAGGTAACCAAATCGCAAT-3# and 5#-TGTGGTTGAT-
TCAACCAGCTGT-3# for At1g56160; 5#-CTTCCGTCGTTCTT-
GCCTC TT-3#and 5#-GGATCAGACGAAACCAAACGAG-3# for
At1g56430; 5#-CGAACGAGGCTGCTCTTTTG-3# and 5#-TGGTA-
GTGGCTCGCAGCATA-3# for At1g73800; 5#-AGACGACAGAA-
ACAGCCAAGGA-3# and 5#-TCACGGATTCCACAGACTCCAT-
3# for At1g79840; 5#-TGGTGGATACAGGGAGGAATG-3# and 5#-
TTTGGACCGAACTGAGATAAACC-3# for At2g24710; 5#-CGAT-
TCTCCAGCTGCTGATGA-3# and 5#-CCGAGCAACAAAACAA-
TGCA-3# for At2g20520; 5#-GCGGAGCATAGGGTTCGAA-3# and
5#-GGGATTTGGTGCCGTGAA-3# for At3g12900; 5#-GCATGCTT
CACCAGCGATG-3# and 5#-TGCCCAATGGAATGACCACT-3#
for At3g53280; 5#-AATCTAAACCTCAAGGAATATCTGAAAGA-
3# and 5#-ACCCGTGGTCGGTCAAAA-3# for At4g02900; 5#-CC-
GATGTTCGAGATGGGATAG-3# and 5#-CAGCGGCACAAACA-
ACTGTAA-3# for At4g10510; 5#-TGCTTCGCAGCTGACGAAG-
3# and 5#-CATTCCGGAGGCATAACACCT-3# for At4g28850; 5#-
GCGATGTTGACCGCACAA-3# and 5#-ACAAAGGGCGGTTGC-
TGTT-3# for At4g37050; 5#-AACACGAAGACCGAACGAAT-3#
and 5#-GTGCTGAAGGTGGAGACGAT-3# for At5g19770; 5#-
ACGTGTTTGTGTTCCCCATAGG-3# and 5#-CAATCGTGATGA-
CAC CAGCATT-3# for At5g39110.

Microarray experiments

The Affymetrix GeneChip Arabidopsis ATH1 Genome Array was
used for cDNA microarray analysis. Total RNA from roots of
control and –Mn plants was isolated as described above. All RNA
samples were quality assessed by using the Agilent Bioanalyser
2100 (Agilent). cRNA synthesis was performed by use of the
GeneChip One-Cycle Target Labeling Kit (Affymetrix). GeneChips
were hybridized with 15 lg of fragmented cRNA. Hybridization,
washing, staining, and scanning procedures were performed as
described in the Affymetrix technical manual.

Microarray data analysis

Data from the mircoarray experiments were imported directly into
GeneSpring (version 7.0, Agilent). The software was used to
normalize data per chip, to the 50th percentile and per gene to the
control samples. The data were then filtered using the following: (i)
by removing genes that were flagged as absent in at least three
replicates; (ii) by expression level to remove those genes that were
deemed to be unchanging between log values 0.8 and 1.2 (>1.5-fold
difference); and (iii) by confidence using a one-sample t test and
a P-value cut-off of 0.05 so that any gene with a P-value of 0.05 or
less when compared to the normalized control was regarded as
statistically significant, i.e. up- or down-regulated compared to the
expression baseline of 1. To determine those genes that were
statistically differentially expressed between groups of samples,
GeneSpring’s ANOVA statistical analysis function (a Welch t test)
was applied to the filtered data set.

Ion content determination

Elemental analysis was carried out by inductively coupled plasma
(ICP) atomic absorption with a Perkin Elmer Optima 5300 DV
optical emission spectrometer (OES) on 6-d-old seedlings. Two
batches of c. 900 plants were grown and treated independently for
replicates. For root analysis, two batches were pooled. Samples
were digested in nitric acid in a microwave digestion unit (CEM,
Matthews, USA). Tomato leaves were used as standard reference
material.

Light microscopy

Stereomicroscopy, using a Discovery Z12 (Zeiss, Göttingen,
Germany) fitted with an eye piece scale bar, was used to count the
number of root hairs per mm along the length of the root. The root
remained within the Petri dish in the media during counting. Root
hair patterns were analysed in cross-sections for control and –Mn
plants. The root samples were fixed, dehydrated, and then
embedded in Technovit 7100 (Heraeus Kulzer, Wehrheim) resin in
gelatine capsules, in accordance with the manufacturer’s instruc-
tions. Transverse sections (6 lm) were cut using a RM 2255 Leica
microtome (Leica, Nussloch, Germany). Sections were dried and
stained with toluidine blue (0.05%) on glass slides and examined
using bright-field on an Axioskop 40 (Zeiss, Jena, Germany)
microscope. The number of cortical and epidermal cells and the
rate of root hairs in the H and N positions root hairs were counted
in 60 cross-sections. The bifurcated root hair number was de-
termined by mounting the root in 10% glycerol and examining the
root hairs along the length of the root. Thirty roots were used for
examining control and –Mn-treated plants.

Confocal microscopy

Seedlings were placed in 10 mg ml�1 propidium iodine solution
(PI) for 1 min. The seedling was gently rinsed with water for 2 min.
The root was removed and mounted in fresh water. The roots where
then observed using a Confocal Laser Scanning Microscope (Zeiss
LSM510 Meta). The peak excitation k and emission k for PI is 536
nm and 620 nm, respectively.
The cells lengths of trichoblasts and atrichoblasts were measured

using ImageJ (http://rsb.info.nih.gov/ij/). The position of each cell
was calculated from the cumulative length of all cells between it
and the quiescent centre. The data sets were then smoothed and
interpolated into 25 mm spaced data points using a kernel-
smoothing routine (Beemster and Baskin, 1998); this was done by
using it as a macro in Microsoft Excel (version 97), enabling the
calculation of the average between replicate roots.
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Results

Mn deficiency changes the patterning of root
epidermal cells

Experiments were conducted to characterize the develop-
mental and molecular responses of Arabidopsis roots to
changes in the availability of external Mn. Growing
seedlings on Mn-free medium substantially increased the

frequency of root hairs and altered their characteristics
(Fig. 1C, D; Table 1). The response to Mn deficiency was
evident in seedlings 6 d after germination and growth on
Mn-free media. No visible symptoms of Mn deficiency
were evident in above-ground tissues at this stage (Fig.
1A, B). A substantial percentage of Mn deficiency-
induced root hairs were bifurcated with branching starting
at the base of the hairs (Fig. 1; Table 1). Besides initiating

Fig. 1. Phenotype of shoots and roots and cross sections from 6-d-old control (A, C, E) and Mn-deficient plants (B, D, F). Control plants were grown
on media containing 14 lM Mn. Note that root hairs of Mn-deficient plants are frequently branched at their base. The asterisk indicates a developing
root hair in an ectopic position. Scale bars (A, B) 1 mm, (C, D) 100 lm, (E, F) 15 lm.
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root hair elongation from cells in the hair (H) position, Mn
deficiency also induced the differentiation of epidermal
cells in the non-hair (N) position into root hairs (ectopic
hairs; Fig. 1F; Table 1), indicative of a change in cell fate.
The increase in root hair number in the H position was not
the result of an increase in the cortical cell number and,
subsequently, in the number of epidermal cells in the hair
position (Table 1).
Light intensity affected the elongation of root hairs of

both Mn-deficient (–Mn) plants and plants grown in the
presence of Mn (+Mn) (Fig. 2). For +Mn seedlings, the
highest root hair density observed was at a PAR of 50
lmol m�2 s�1; higher light intensities almost completely
inhibited the elongation of the hairs without affecting their
initiation (Figs 1, 2). For root hair counting, an epidermal
cell was scored as a root hair cell if any protrusion was
visible, regardless of its length. The effect of light was due

to a direct impact on the roots, since shielding the roots
from light by blackening the medium with charcoal
prevented the effect (data not shown). In addition to the
higher frequency, root hairs formed in –Mn plants were
;50% longer than those of control plants when grown at
light intensities of <50 lmol m�2 s�1 (0.52 mm versus
0.25 mm on average, Fig. 2C, D). The difference between
+Mn and –Mn plants was less pronounced in older (8-d-
old) seedlings. At this age, +Mn plants showed less
restricted root hair elongation at a light intensity of 50
lmol m�2 s�1 but developed fewer hairs at higher light
intensities (data not shown). In contrast to the control
plants, Mn deficiency-induced root hair formation was
stimulated by higher light intensity. At 70 lmol m�2 s�1,
the difference in root hair elongation between +Mn and
–Mn plants was most pronounced, and all subsequent
experiments were performed under the latter light regime.

Table 1. Effects of Mn deficiency on root morphological parameters

Values represent the no. (means 6SE) of the indicated cell type per cell layer. Fifty cross-sections from five roots were scored for each treatment.
Control plants were grown on media containing 14 lM Mn. Plants were grown at high light intensity (70 lmol m�2 s�1) and analysed 6 d after
sowing.

Treatment Epidermal cell
no.

Cortical
cell no.

Elongated root hairs
in H position

Elongated root
hairs in N position

Branched
root hairsa

Control 22.260.1 8.060.0 0 0 0
Mn-deficient 22.560.1 8.160.0 1.360.1 0.460.1 6.560.4

a The number of branched root hairs is given as a percentage of the total root hairs.

Fig. 2. Effect of light intensity (A) and Mn concentration (B) on root hair formation. The effect of Mn concentration on the formation of root hairs
was investigated at high light intensity (70 lmol m�2 s�1). Mn-sufficient plants were grown on media containing 14 lM Mn. Plants were analysed 6
d after sowing. Error bars represent standard deviation of means from the measurements. (C) Root hair phenotype of control and Mn-deficient plants
(D) grown at a light intensity regime of 50 lmol m�2 s�1.
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Bifurcated or ectopic root hairs were not observed under
+Mn conditions regardless of the age or light conditions.
The Mn concentration threshold for inducing root hairs
under this light intensity was around 3 lM in the growth
medium (Fig. 2B). Above this concentration, root hair
elongation was inhibited under high light conditions.
Analysis of longitudinal cell elongation revealed that,

relative to the control plants, the length of root cells in the
meristem in Mn-deficient seedling were smaller, possibly
due to a higher rate of cell division (Fig. 3). No
differences were observed in the average root length
between +Mn and –Mn plants (data not shown). More
distant from the tip, cells from plants grown in the
absence of Mn were found to be longer than those of
control plants. This effect was more pronounced in
atrichoblasts compared to trichoblasts (Fig. 3C, D). The
differences in the length of the epidermal cells between –
Mn and +Mn is not sufficient to account for the
differences in root hair density.

Mn deficiency changes the gene expression profile
in roots

RNA samples were labelled and analysed for expression
profiles using the Affymetrix ATH1 GeneChip. Three

biological replicates from roots of +Mn and –Mn
were examined. The complete datasets are available as
supplementary material (see Supplementary Table S1 at
JXB online). A total of 71 genes were classified as
being differentially expressed in response to Mn de-
ficiency (see Materials and methods for data analysis), the
most prominent functional groups being related to the
cell-wall, signalling, and transcriptional regulation
(Table 2). Nine genes were found to overlap with the
root hair transcriptome (Jones et al., 2006). To
validate the GeneChip data, the expression of 12 genes
have been selected and further analysed by real-time
RT-PCR. RNA preparations from four batches of in-
dependently grown plants were used for each gene. In
addition, two genes that are relevant to this study,
namely the iron transporter IRT1 and the homeodomain
gene GL2, both of which have not been classified as
differentially expressed in Mn-deficient plants, have been
included in our analysis. Quantification of the transcript
abundance of these genes by RT-PCR revealed a close
correlation of message levels with the GeneChip signals.
This was also true for the two genes that were not
classified as being differentially expressed according to
the parameters set for the data analysis (IRT1 and GL2).

Fig. 3. Longitudinal cell length of trichoblasts (C) and atrichoblasts (D) of control and Mn-deficient Arabidopsis seedlings. Plants were grown at
high light intensity (70 lmol m�2 s�1). Cell length was analysed from compound pictures of roots (A, B). Data in (C) and (D) are averages of five
roots per treatment. Control plants were grown on media containing 14 lM Mn. Plants were analysed 6 d after sowing. Scale bars, 200 lm.
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On average, the variation in total fold-change value

between the RT-PCR analysis and the GeneChip signals

was 12% (4% for up-regulated and 28% for down-

regulated genes). The consistency among the different

RNA samples and a comparison to the GeneChip data is

shown in Fig. 4A.

The expression of cell specification genes is not
affected by Mn deficiency

Changes in epidermal cell specification are supposed to be
associated with differential expression of genes encoding
primary determinants of the hair or non-hair fate.
Decisions to enter either cell fate are controlled by the

Table 2. Groups of functionally related genes that are differentially regulated in response to Mn deficiency

Function Gene locusa Annotation Fold change

Cell wall-related At3g60270 Putative uclacyanin 5.81
At4g28850* Xyloglucan endotransglycosylase-like protein 5.24
At2g20520* Fasciclin-like arabinogalactan-protein 6 (FLA6) 3.55
At3g01270 Pectate lyase family protein 3.07
At3g20850* Proline-rich family protein; similar to extensin precursor 3.02
At5g39110 Putative germin-like protein; manganese-ion binding 2.83
At1g26250 Putative proline-rich extensin 2.46
At2g24800 Putative peroxidase 2.44
At5g26080* Proline-rich family protein 2.25
At5g57540* Xyloglucan endotransglycosylase 2.09
At2g05520 Glycine-rich protein (GRP3) 2.05
At1g77100 Putative peroxidase –2.13
At1g16160 WAK-like kinase (WAKL5) –4.49

Signalling At2g24710 Glutamate receptor 2 (ATGLR2) 3.85
At1g33890* Avirulence-responsive protein 3.13
At5g58890 MADS-box family protein 2.60
At3g01420 Pathogen-responsive a-dioxygenase 2.28
At1g66500 Zinc finger (C2H2-type) family protein 2.11
At1g29730 Protein serine/threonine kinase –2.05
At4g21210 Protein kinase –2.06
At4g01190 Phosphatidylinositol phosphate kinase 10 (ATPIPK10) –2.30
At1g19960 Similar to transmembrane receptor –2.35
At4g02900 Early-responsive to dehydration protein-related –3.51

Transcriptional regulators and
nucleic acid interacting

At1g76420 No apical meristem (NAM) family protein 7.35
At2g40350 ERF/AP2 transcription factor 2.13
At5g18090 Transcriptional factor B3 family protein 2.11
At1g34180 No apical meristem (NAM) family protein 2.04
At1g68240 Transcription factor 2.02
At4g18650 Transcription factor-related –2.07
At3g15605 Nucleic acid binding –2.30
At1g56160 Myb family transcription factor (MYB72) –2.36
At1g50350 Similar to zinc finger (C3HC4-type RING finger) family protein –2.81

Protein modification At4g10550* Subtilase family protein 2.00
At3g61930 Expressed protein, N-terminal myristoylation –2.25
At1g79310 Putative latex-abundant protein –2.76
At4g10510 Subtilase family protein –3.29

Transport At4g12360 Protease inhibitor/seed storage/lipid transfer family protein 2.87
At4g25220a Putative glycerol-3-phosphate permease 2.79
At4g13420 Potassium transporter (HAK5) 2.60
At5g49390 Hydrogen ion transporting ATP synthase 2.03
At3g58060 Cation efflux family protein –2.05
At1g04600 Myosin-like protein XIA ATXIA –2.49
At1g08270 Similar to AAA-type ATPase family protein –3.41

Metabolism At4g37050 Patatin-like protein 4 (PLA V/PLP4) 4.78
At2g34490 Cytochrome P450 (CYP710A2) 4.42
At1g34520 Long-chain-alcohol O-fatty-acyltransferase family protein 3.57
At1g78360 Glutathione transferase (ATGSTU21) 2.62
At1g02940 Glutathione transferase (ATGSTF5) 2.24
At1g34540* Cytochrome P450 (CYP94D) 2.13
At1g56430 Putative nicotianamine synthase 2.10
At1g06350 Fatty acid desaturase family protein 2.09
At1g67980 S-adenosyl-L-methionine: transcaffeoyl –2.52

Coenzyme A 3-O-methyltransferase
At3g12900 Oxidoreductase, 2OG-Fe(II) oxygenase family protein –2.53
At3g53280 Cytochrome P450 (CYP71B5) –7.00

a An asterisk indicates genes that overlap with the root hair transcriptome described by Jones et al. (2006).
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WER/GL3/EGL3/TGG gene complex which regulates the
expression of CPC and GL2 as positive and negative
regulators of hair fate (Bernhardt et al., 2005). None of
the cell specification genes were significantly affected in
our experiments, suggesting that the patterning mecha-
nism that is active under normal conditions is bypassed
under Mn-deficient conditions (see Supplementary Table
S2 at JXB online). Overexpression of the receptor kinase
gene SCM caused the formation of ectopic root hairs
(Kwak and Schiefelbein, 2007). SCM is thus a potential
candidate for changing the differentiation of epidermal
cells in the N position. A tendency for higher expression
of SCM in roots of Mn-deficient plants was noted in all
three experiments, but was not statistically significant.
The cpc mutant expresses GL2 in all epidermal cells

and forms very few root hairs under control conditions
(Wada et al., 1997; Fig. 4B). Under conditions of Mn
deficiency, the mutant is partly rescued, further supporting
the suggestion that the extra hairs formed upon Mn
starvation are not or only partly controlled by the GL2-
dependent, basic patterning mechanism (Fig. 4C).

Mn deficiency induces changes in ion homeostasis

Branched root hairs are characteristic of Fe-deficient roots
(Müller and Schmidt, 2004). Thus, the bifurcated hairs
formed in response to Mn deficiency may be caused by
limited Fe availability under Mn-deficient conditions. Mn
deficiency was found to induce secondary Fe deficiency in
the alga Chlamydomonas (Allen et al., 2007). However,
none of the Fe-responsive genes were up-regulated under
Mn deficiency, making such a scenario unlikely (see
Supplementary Table S2 at JXB online). In fact, genes that
were found to be up-regulated in Fe-deficient plants by
microarray analysis (Wintz et al., 2003; Colangelo and
Guerinot, 2004), were slightly down-regulated under Mn
deficiency. A pronounced decrease in transcript abun-
dance under Mn starvation was observed for the iron
transporter IRT1. A lower expression of IRT1 in roots of
Mn-deficient plants was confirmed by real-time RT-PCR
analysis in five independent RNA isolations (Fig. 4A). In
addition, the ATFER1 gene, encoding the iron storage
protein ferritin also shows higher transcript abundance
under Mn-deficient conditions (see Supplementary Table
S2 at JXB online), suggesting an alteration in the cellular
iron homeostasis.
The consequences of Mn deficiency on ion concentra-

tion were measured by inductively coupled plasma-optical
emission spectroscopy (ICP-OES). Manganese concentra-
tions were dramatically reduced in Mn-deficient plants in
both root and leaf tissue (Fig. 5). Concurrent with our
GeneChip results, the concentration of Fe was markedly
higher in Mn-deficient roots, leaf tissue by comparison,
showed a significant but less elevated Fe level. Taking
into account of the changes in iron status, some genes that
were found to be repressed by Mn deficiency may
represent secondary effects of an altered Fe homeostasis
rather than changes induced primarily as a result of Mn
deficiency. For example, the cytochrome P450-like mono-
oxygenase gene At4g31940 was found to be significantly
down-regulated under –Mn conditions (see Supplementary
Table S2 at JXB online), but dramatically up-regulated in
response to Fe deficiency (Colangelo and Guerinot, 2004).
Similarly, HMA3, MYB72, and the subtilidase gene
At5g03570 were all down-regulated upon Mn starvation,
but were found to be highly up-regulated under Fe
deficiency (Colangelo and Guerinot, 2004; TJ Buckhout
and W Schmidt, unpublished data).
Consistent with the assumption that Mn deficiency

causes a down-regulation of genes involved in Fe
acquisition, in particular IRT1, the root concentration of
Zn2+ was also reduced by approximately 50% in Mn-
deficient plants. IRT1 transports both Mn2+ and Zn2+

(Korshunova et al., 1999) and the reduced Zn levels may
be caused by the down-regulation of the IRT1 gene.
Apparently, the lower concentration of Zn cannot be
balanced by increasing the expression of transporters that

Fig. 4. Validation of the GeneChip signals by real-time RT-PCR (A)
and effect of Mn deficiency on the formation of root hairs in the cpc
mutant (B, C). Gene expression analysis was performed with four (five
for IRT1) RNA preparations from independently grown plants. Black
bars indicate means of real-time PCR data, grey bars represent means of
normalized GeneChip signals. Error bars shows standard deviation of
the means. cpc mutants were grown in either media containing 14 lM
Mn or in media deprived of Mn. Plants were analysed 6 d after sowing.
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are able to complement a yeast strain defective in Zn2+

uptake, such as ZIP1, ZIP2, ZIP3, and ZIP4 (Grotz and
Guerinot, 2006). Among these genes only the GeneChip
signals for ZIP2 were consistently higher in –Mn plants,
suggesting that ZIP2 is Zn-responsive and mediates Zn2+

transport under these conditions. The weak response of
Zn2+ transporters may be due to the fact that the Zn status
of the leaves was not affected by Mn deficiency (Fig. 5B).
Mn deficiency has been shown to induce secondary

P deficiency in Chlamydomonas (Allen et al., 2007) and
P-deficient conditions triggers a root hair phenotype
resembling that of Mn-deficient plants in some respects
(i.e. the formation of long and ectopic root hairs), it was
therefore investigated whether Mn deficiency caused
changes in the expression of genes that are responsive to
P-deficiency. In line with the ICP analysis, no changes in
transcript abundance were observed for genes that
were reported to be affected by P-deficient conditions
(Misson et al., 2005; Bari et al., 2006), suggesting that
P homeostasis is not affected by Mn deficiency (see
Supplementary Table S2 at JXB online).

Discussion

Mn deficiency may act late in cell specification

Plants have developed sophisticated mechanisms to
improve the acquisition of immobile nutrients, comprising
of biochemical, physiological, and morphological
responses. Whereas substantial progress has been made
towards the understanding of how the uptake of Fe and Pi
is balanced in plants, the mechanisms of Mn acquisition
and the control of Mn homeostasis are poorly understood.
A profound result from this study is the unique root hair
phenotype that is induced specifically by Mn deficiency,
which differs from the root hair phenotypes observed in
response to a lack of Pi or Fe (see Schmidt, 2008, for
a review). The Mn deficiency phenotype is evident at the
seedling stage and the signal appears to overrule the
inhibition of root hair elongation by high light intensity,
indicating a critical importance of developmental
responses for maintaining a sufficient Mn supply. The
Mn deficiency-induced changes include the re-differentia-
tion of atrichoblasts into root hair-forming cells as shown
by the formation of root hairs in ectopic positions. This
indicates that Mn deficiency does not simply promote the
elongation of hairs from trichoblasts, but alters the
developmental programme of rhizodermal cells.
Under ordinary conditions, root epidermal cell fate is

controlled by the combined action of patterning genes, the
expression of which is biased by a cortical signal.
Surprisingly, none of the genes with functions in cell fate
specification were markedly affected by Mn deficiency.
Although the possibility cannot be ruled out that minor
differences in spatial expression may account for the
changes in cell fate and might potentially be below the
detection limit in an analysis of the whole root, the
GeneChip signals for GL2 were almost identical in control
and Mn-deficient roots, a finding which was confirmed by
real-time RT-PCR. This does not support the hypothesis
that the root hair phenotype is a result of a change in GL2
transcript abundance (see Supplementary Table S2 at JXB
online). It can thus be considered that the patterning
mechanism active under control condition is bypassed
under conditions of Mn deficiency. A similar scenario has
been assumed for root hairs induced by phosphate
deficiency. The cpc mutant, in which root hair develop-
ment is restricted as a result of a GL2 being expressed in
all epidermal cells rather than in atrichoblasts only (Wada
et al., 1997), can be rescued by growing cpc mutant plants
in –P media (Müller and Schmidt, 2004). This suggests
that the –P signal is perceived downstream of the cell
specification cascade. This scenario is supported by
a mathematical model congruent with experimental data,
assuming a phosphate-responsive activator–inhibitor
mechanism that causes a position-independent increase in
root hair density that is not directly affected by GL2 and
the genes controlling its expression (Savage and Schmidt,

Fig. 5. Analysis of mineral ion concentration of roots and shoots from
control and Mn-deficient plants. (A) Macronutrients, (B) micronutrients.
Control plants were grown on media containing 14 lM Mn. Plants were
analysed 6 d after sowing. R, roots, S, shoots.
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2008). Similar to P deficiency, Mn deficiency partly
rescued the cpc phenotype, further supporting the assump-
tion that the Mn-starvation-induced root hairs are not
entirely controlled by GL2 (Fig. 4B, C). Superimposition
of environmental signals over the cell specification
mechanism that is active during embryogenesis has
previously been demonstrated. For example, hormones
such as ethylene can alter the cell fate without changing
the expression of key determinants of the epidermal cell
fate (Masucci and Schiefelbein, 1996). It thus appears that
plasticity of the root hair pattern is conferred by
a downstream mechanism that adapts the number and
characteristics of root hairs to the prevailing conditions.

Cross-talk of light signalling and root hair development

An unexpected finding was the effect of light intensity on
the root hair phenotype. A small increase in light intensity
from 50 lmol m�2 s�1 to 70 lmol m�2 s�1 caused
a marked decrease in root hair elongation under control
conditions, but had no effect when plants were grown on
media deprived of Mn. It should be noted that even the
higher light intensity can be considered as being sub-
optimal for Arabidopsis. The lack of light-induced re-
striction of root hair elongation was also observed in
phosphate-deficient plants (data not shown), suggesting
that nutrient starvation-induced root hair development
interacts with the components of the light signalling
pathway. The light effect was dependent on the de-
velopmental stage and more pronounced in younger
seedlings. A connection between light signalling pathways
and signalling cascades involved in root development has
been reported in a number of studies. For example, in
seedlings carrying a mutation in the bZIP gene HY5,
a positive regulator of photomorphogenic responses, the
number and length of lateral roots, and the length of root
hairs were found to be increased (Oyama et al., 1997).
CONSTANS-LIKE3 (COL3), a protein interacting with
COP1 (CONSTITUTIVE PHOTOMORPHOGENIC1)
that mediates the ubiquitin-dependent degradation of HY5
and other transcription factors, regulates light-dependent
developmental processes and affects the development of
lateral roots (Gyula et al., 2003; Datta et al., 2005). A
promotive effect of light intensity on root hair formation
in Arabidopsis has been reported by De Simone et al.
(2000), and was shown to be reduced in phyA and phyB
mutants. AtMYC2 interacts with light-responsive ele-
ments and thereby negatively regulates the expression of
light-regulated genes. AtMYC2 has been show to act as
a positive regulator of lateral root formation (Yadav et al.,
2005), and as a negative regulator of the formation of root
hairs (Ryosuke et al., 2003), suggesting that AtMYC2 has
multiple roles in root development. Interestingly, red light
was shown to induce genes involved in root hair
differentiation and elongation, such as CPC and RHD3

(Molas et al., 2006). Together with the data in the present
study, it appears that many players in light signalling also
play an important role in the environmentally induced
changes in root developmental programmes. More work is
required to elucidate the cross-talk of light and other
environmental signals.

The Mn deficiency phenotype is not caused by
secondary Fe deficiency

In contrast to the model alga Chlamydomonas, in which
transporters such as NRAMP1 and a member of the cation
efflux family were found to be responsive to Mn de-
ficiency (Allen et al., 2007), none of the genes encoding
candidate Mn2+ transporters such as ZIPs, OPTs or
NRAMPs were induced in the absence of Mn in
Arabidopsis roots. NRAMPs are a class of integral
membrane proteins that can transport a broad range of
metals (Cellier et al., 1995). The NRAMPs 1, 3, and 4 can
complement yeast mutants defective in Mn2+ uptake
(Curie et al., 2000; Thomine et al., 2000), and are
therefore likely candidates for a Mn2+ transporter in
Arabidopsis roots. However, none of the NRAMPs was
up-regulated in roots of –Mn plants (see Supplementary
Table S2 at JXB online). Thus, increased uptake of Mn2+

under conditions of low Mn availability could either be
achieved by post-transcriptional activation of transition
metal transporters, or Mn2+ uptake might be mediated by
a transporter yet to be identified. The iron transporter IRT1
has relatively low substrate specificity and transports Mn2+

as well, which may represent an alternative route of entry
for Mn2+ into the root. In any case, the Mn-deficiency-
induced formation of root hairs is not due to secondary Fe
deficiency; IRT1 was significantly down-regulated in Mn-
deficient roots, most likely as a consequence of the high
Fe concentration under these conditions (Figs 4A, 5B).
Iron overload is further indicated by higher signals on the
GeneChips for FER1 (see Supplementary Table S2 at JXB
online). In Chlamydomonas on the other hand, Mn
deficiency induces secondary Fe deficiency, probably as
a consequence of reduced Fe uptake in order to avoid
oxidative stress due to reduced activity of MnSODs (Allen
et al., 2007).
An alternative route for the uptake of Mn2+ could be

represented by OPT3, a gene that has been found to be
dramatically up-regulated by Fe and Mn deficiency (Wintz
et al., 2003). Although in the present study only
a relatively small increase in transcript abundance was
noted, a role for OPT3 in Mn homeostasis could be
inferred from the fact that OPT3 behaves differently from
IRT1 under Mn deficiency. However, OPT3 was shown to
be preferentially expressed in the vasculature and to be
absent in root hairs and root tips (Stacey et al., 2006).
Thus a function of OPT3 in the uptake of Mn2+ from the
soil solution appears unlikely.
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The formation of root hairs may be crucial for Mn
uptake efficiency

Only relatively few genes are induced in response to Mn
deficiency, indicating that the plant’s innate response to
counteract the nutritional imbalance under these condi-
tions is limited. This suggests that the evolutionary force
to develop a Mn deficiency response syndrome was low
and the situation is not very common in natural habitats.
Apparently, the capacity for Mn2+ uptake under most
conditions appears to exceed the demand for the metal by
far (Clarkson, 1988). The lack of a specific physiological
response to Mn deficiency, which aids in the acquisition
of Mn2+ and the robust root hair phenotype of Mn-
deficient plants, implies that developmental acclimations
are more important for the acquisition of Mn. A lack of
physiological reactions such as increased expression of
a gene coding for a transporter protein may be due to the
fact that, in most situations, suboptimal availability of Mn
is associated with Fe-deficient conditions. Similar to Fe,
the availability of Mn decreases with increasing pH
(Marschner, 1995). Induction of the complex Fe starvation
syndrome of strategy I plants will mobilize Mn in addition
to Fe and the uptake of Mn2+ is then mediated by IRT1.
The formation of extra root hairs may represent a ‘rescue’
back-up, which is induced when the Fe deficiency
response is not triggered by low availability of Fe. The
situation is apparently different from that of Chlamydo-
monas. Therefore, sophisticated mechanisms to balance
Fe and Mn homeostasis, to avoid oxidative stress in
the absence of Mn, are probably less important in plants
due to the presence of Fe-dependent SODs in addition to
MnSOD. It remains to be elucidated how the absence of
Mn is sensed and translated into the changes in root
epidermal patterning.

Supplementary data

The following materials are available at JXB online in the
online version of this article.

Supplementary Table S1. GeneChip data from roots of
control and Mn-deficient plants

Supplementary Table S2. Groups of functionally
related genes that are differentially regulated in response
to Mn deficiency
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Note Added in Proof

While this article was in press, Pedas et al. (2008)
reported that a gene of the ZIP family with high similarity
to OsIRT1, designated HvIRT1, is controlling manganese
uptake in barley roots.
Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring

JK, Husted S. 2008. Manganese efficiency in barley:
identification and characterization of the metal ion trans-
porter HvIRT1. Plant Physiology (published online 9 July
2008; doi:10.1104/pp.108.118851)
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