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Abstract

Mass spectrometry (MS) has become increasingly

important for tissue specific protein quantification at

the isoform level, as well as for the analysis of protein

post-translational regulation mechanisms and turnover

rates. Thanks to the development of high accuracy

mass spectrometers, peptide sequencing without prior

knowledge of the amino acid sequence—de novo

sequencing—can be performed. In this work, absolute

quantification of a set of key enzymes involved in

carbon and nitrogen metabolism in Medicago trunca-

tula ‘Jemalong A17’ root nodules is presented. Among

them, sucrose synthase (SuSy; EC 2.4.1.13), one of the

central enzymes in sucrose cleavage in root nodules,

has been further characterized and the relative phos-

phorylation state of the three most abundant isoforms

has been quantified. De novo sequencing provided

sequence information of a so far unidentified peptide,

most probably belonging to SuSy2, the second most

abundant isoform in M. truncatula root nodules. TiO2-

phosphopeptide enrichment led to the identification of

not only a phosphorylation site at Ser11 in SuSy1, but

also of several novel phosphorylation sites present in

other root nodule proteins such as alkaline invertase

(AI; EC 3.2.1.26) and an RNA-binding protein.
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asparagine synthetase, de novo sequencing, mass western,

Medicago truncatula, phosphoproteomics, plant proteomics,

root nodules, stable isotope labelling, sucrose synthase.

Introduction

Legumes are able to establish nitrogen-fixing symbiotic
relations with soil bacteria generally termed rhizobia. This
symbiosis is beneficial for both partners: plants provide
a carbon source and nutrients for the microsymbiont
which, in return, produces a reduced form of nitrogen
directly assimilatable by the plant. Sucrose is the main
carbohydrate transported via phloem to sink tissues like
nodules, where it is metabolized by either SuSy or AI
(Morell and Copeland, 1984; Flemetakis et al., 2006).
SuSy is a cytosolic enzyme, which catalyses the cleavage
of sucrose to fructose and UDP-glucose (Okamoto and
Akazawa, 1980). This enzyme is considered primarily
responsible for sucrose metabolism in mature nitrogen-
fixing nodules, as it has been shown to be essential for
symbiotic nitrogen fixation in a variety of legume plants
(Gordon et al., 1999; Horst et al., 2007; Kuster et al.,
2007). In addition, it has been demonstrated that SuSy is
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involved in the regulation of nitrogen fixation under
different abiotic stresses, both at the transcriptional and
post-transcriptional level (Gonzalez et al., 1995; Gordon
et al., 1997; Zhang et al., 1999).
SuSy has been well-characterized at the molecular level

in the model legume Medicago truncatula (Hohnjec et al.,
1999, 2003). Based on transcriptional profiles, five iso-
forms have been described that are expressed in root
nodules. However, a recent multi-dimensional LC-MS/
MS-based proteomic profiling study which identified
around 400 proteins from M. truncatula root nodules was
only able to identify SuSy1, the most abundant isoform
(Larrainzar et al., 2007). In contrast to shotgun proteomic
techniques, targeted MS approaches allow for the de-
tection and quantification of low abundance proteins
present in complex samples (Wienkoop and Weckwerth,
2006; Mallick et al., 2007). While western blots are very
sensitive and have been widely used for semi-quantitative
protein analysis, absolute quantification can only be
achieved when used in conjunction isoform specific
antibodies and is subsequently scarcely used (Duncan
et al., 2006). Thus, the fact that protein quantification by
western blots is only relative, the requirement of specific
antibodies, together with the limitation in the number of
proteins detectable per analysis, has led to the develop-
ment of alternative LC/MS-based techniques such as the
so-called ‘mass western’ (Lehmann et al., 2008).
In this current work, a selective LC-MS/MS-based

method using synthetic isotope-labelled peptides (Wienkoop
and Weckwerth, 2006) has been applied for accurate
quantification of SuSy proteins and other nodule meta-
bolic enzymes (Fig. 1). Within a single analysis, several
proteins involved in root nodule N metabolism as well as
SuSy were detected and quantified with high sensitivity in
absolute terms. Specific identification of different SuSy
isoforms sharing high sequence similarity is presented.
Furthermore, phosphopeptide-enrichment techniques have

been applied to analyse the state of SuSy1 phosphoryla-
tion as well as for the identification of new phosphoryla-
tion sites in several nodule proteins. A schematic
overview of the workflow can be found in Fig. 1.

Materials and methods

Plant growth conditions and nodule harvest

Medicago truncatula ‘Jemalong A17’ plants were inoculated with
Sinorhizobium meliloti strain 2011. Plants were grown in 1.0 l pots
with a mixture of vermiculite:perlite (5:2 v:v) as substrate under
controlled environment conditions (14/10 h day/night, 22/16 �C
temperature, and 70/60% relative humidity). The photosynthetic
photon flux was 600 lmol m�2 s�1. When plants were 10 weeks
old, root nodules were collected, frozen in liquid nitrogen and
stored at –80 �C for further analysis.

Protein extraction

Nodules (0.1 g fresh weight) were homogenized in a mortar and
pestle with 0.5 ml ice-cold homogenization buffer (50 mM HEPES,
pH 7.8). Homogenates were centrifuged at 2000 g at 4 �C for 15
min and supernatants were collected and kept as nodule plant
fractions.

Generation of stable isotope-labelled peptides

For absolute quantification of SuSy and proteins involved in nodule
N assimilation, isoform-specific 13C/15N leucine-labelled peptides
were synthesized (Thermo Electron, Ulm, Germany) and employed
as internal standard peptides. Two approaches were used for the
selection of peptides, empirical (i) and theoretical (ii).

(i) Many of the proteins that were to be targeted for quantitation
had already been previously identified by MS (Larrainzar et al.,
2007). Consequently, peptides derived from these proteins were
already known and can be found in the ProMEX spectral library
(Hummel et al., 2007). From this list of peptides, isoform-specific
peptides were selected according to the recommendations of
Thermo Electron in the instructions for the design of heavy peptide
standards. The guidelines advise on sequence length and on the
avoidance of certain amino acids that are common targets of
uncontrolled modifications and in some cases were limiting factors
for the successful selection of candidate peptides.

Fig. 1. Schematic workflow of the different MS analysis carried out. ID, identification.
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(ii) Peptides selected for quantitation that had not been
identified by MS in previous studies were designed based on
proteotypic peptide prediction. In the case of the SuSy isoforms
where peptides from SuSy1 have previously been identified, the
peptide sequences were aligned and proteotypic peptides from the
other isoforms selected based on similarity to a known peptide from
SuSy1. These peptides displayed changes in amino acid composi-
tion that resulted in significant mass differences and thus a specific
proteotypic peptide for each isoform (Fig. 2, framed segment).

Detailed information about peptide sequences and specific single
reaction monitoring transition data can be found in Table 1. Peptide
mass shifts caused by methionine oxidation reactions were below
1% and, therefore, did not significantly influence the quantification.

SDS-PAGE and in-gel protein digestion

Prior to mass western analyses, plant nodule protein extracts (80 lg
of protein per sample) were separated by SDS-PAGE on 6% (w/v)
polyacrylamide gels. After electrophoresis, proteins were visualized
using Gel-Code Blue Stain reagent (Pierce Biotechnology, Rockford,
USA). For the specific analysis of SuSy isoforms and determination
of phosphorylation levels, gel bands corresponding to a molecular
weight of approximately 90 kDa were cut out and standard synthetic
peptides were added. For the identification of novel phosphopro-
teins, bands in the range between 25–60 kDa were also excised from
the gels. A total number of four gel band replicates were analysed.
In-gel digestion was carried out as previously described by
Shevchenko et al. (1996).

In-solution protein digestion

Aliquots containing 50 lg of plant nodule proteins were digested
overnight at 37 �C with Porosyzme immobilized trypsin beads

(1:10, v/v, Applied Biosystems, Darmstadt, Germany). After
centrifugation to remove beads the peptide mixtures were desalted
using SPEC C18 columns according to the manufacturer’s instruc-
tions (Varian, Darmstadt, Germany). Desalted digest solutions were
dried and pellets stored at –20 �C until use. Four biological
replicates were analysed.

Phosphopeptide enrichment

For the identification of novel nodule phosphopeptides, gel digests
corresponding to protein bands within the range of 25–60 kDa were
loaded onto titanium dioxide columns (TiO2, TopTips) purchased
from SunChrom (Friedrichsdorf, Germany). Phosphopeptide enrich-
ment was carried out as previously described by Mazanek et al.
(2007).

Determination of phosphorylation stoichiometry

To determine the relative phosphorylation states of proteins,
corresponding bands were excised from SDS-PAGE gels, digested,
and analysed by MS. Relative abundance was assessed by comparing
peak areas for the phosphorylated and non-phosphorylated tryptic
peptides (see also ‘Orbitrap settings for the identification of
phosphopeptides and relative phosphorylation state analysis’, and
the workflow diagram in Fig. 1).

Q-TOF settings for de novo sequencing analysis

For de novo sequencing, gel digests corresponding to SuSy were
loaded onto a HPLC system (Waters 2695 Alliance, Waters GmbH,
Eschborn, Germany) directly coupled to a Q-TOF mass spectrom-
eter (Waters GmbH, Eschborn, Germany). Peptides were eluted
using a 15-min gradient from 0–80% (v/v) acetonitrile (ACN)/0.1%
(v/v) formic acid (FA) using a C18 column (15031 mm, Jupiter 4l

Fig. 2. Alignment of SuSy isoforms sequences of M. truncatula. The de novo peptide sequence is included in bold as part of SuSy2 isoform. Framed
segment indicates the proteotypic peptides from the SuSy isofroms selected for absolute quantification.
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Proteo 90A, Phenomenex, Aschaffenburg, Germany). De novo
sequencing was performed using Mass Lynx software (Waters
GmbH, Eschborn, Germany). The software was programmed to
screen for the doubly charged precursor masses 521.7 and 602.8 of
the known SuSy peptides (ALESEMLSR and SIGNGVQFLNR,
corresponding to SuSy1; TC100410), a mass 527.2 for ALENEM-
LAR (corresponding to isoform SuSy2; TC95820) and a mass of
602.8 plus a mass shift of 0.5, in an attempt to identify a possible
sequence variation due to amino acid differences encoded by single
nucleotide polymorphisms (SNPs), for example, glutamine (Q)/
glutamic acid (E) or asparagine (N)/aspartic acid (D) exchange.

Triple quadrupole settings for absolute quantification

For the identification and absolute quantification of different SuSy
isoforms, a one-dimensional (1D) nano-flow LC-MS/MS system
equipped with a pre-column (Agilent, Zeesen, Germany) was
employed. Peptides were eluted using a monolithic column (Merck,
Darmstadt, Germany) of 15 cm length and 0.1 mm internal diameter
during a 30 min gradient from 5% to 100% (v/v) methanol/0.1% (v/v)
FA with a controlled flow rate of 0.7 ll min�1. 1 pmol of each
internal standard peptide was added to the protein sample prior to
analysis, as peptides at this concentration have been shown to lie
within the linear range of detection (Wienkoop and Weckwerth,
2006). MS analysis was performed on a TSQ Quantum Discovery
MAX mass spectrometer (Thermo Electron, Ulm, Germany)
operated in the positive mode and tuned to its optimum sensitivity
for each standard peptide as previously described (Glinski and
Weckwerth, 2005). Scan width for all MRMs (multiple reaction
monitoring) was 0.7 mass units, and resolution was set to 0.25 and
0.7 mass units for Q1 and Q3, respectively. The dwell time per
transition was 50 ms, spray voltage was set to 1.8 kV and
temperature of heated transfer capillary was set to 150 �C. Collision
energies used for recorded transitions are summarized in Table 1.
Absolute quantification was performed based on peak integration.

Orbitrap settings for the identification of phosphopeptides and

relative phosphorylation state analysis

After phosphopeptide enrichment, TiO2-peptide eluates were loaded
on a 1D nano-flow LC-MS/MS system equipped with pre-column

(Agilent, Zeesen, Germany). A monolithic column (Merck,
Darmstadt, Germany) of 15 cm length and 0.1 mm internal diameter
was coupled to an Orbitrap LTQ XL mass spectrometer (Thermo
Electron, Ulm, Germany). Peptides were eluted during a 50-min
gradient from 5–100% (v/v) methanol/0.1% (v/v) FA with a con-
trolled flow rate of 0.5 ll min�1. For precursor masses determi-
nations, resolution and accuracy of the Orbitrap were set to
3000 ppm and 2 ppm, respectively. MS/MS measurements
were performed on wideband mode. Spray voltage was set to 1.8
kV and temperature of the heated transfer capillary was set to
150 �C. Potential phosphopeptide candidates were evaluated
using MSQuant 1.4 software. A post-translational modification
(PTM) score for localization, which estimates the probability to
find an actual phosphorylation site based on fragment ions
(Olsen et al., 2006), is shown in Table 2. For the relative
quantification of phosphorylation levels, gel digests were directly
analysed using the same settings as described for phosphopeptide
identification.

Results and discussion

Detection of different SuSy isoforms in M. truncatula
root nodules

Although detection of three SuSy isoforms using isoform-
specific antibodies has been reported in maize (Duncan
et al., 2006), multi-dimensional LC-MS/MS and western
blot analysis did not allow detection of SuSy isoforms
other than SuSy1 in M. truncatula root nodules (Larrainzar
et al., 2007). This is probably due to the relatively low
abundance of the other isoforms, together with the
similarity they share at the amino acid sequence level,
which limits an MS/MS-based discrimination. Figure 2
represents an alignment of the N-terminal region of the
five described SuSy isoform sequences. Sequences for
SuSy1 and SuSy3 (TC94447) appear to be complete,
whereas the known sequences for SuSy2 (TC95820),

Table 1. Triple quadrupole tune settings for the specific standard peptides used for absolute quantification

Peptide sequences employed in this work, as well as their corresponding precursor masses and product ions are given. Stable isotope-labelled leucine
residues are marked in bold.

TC code Name Peptide sequence Standard peptide Native peptide

Precursor
ion (m/z)

Product
ions (m/z)

Collision
energy

Precursor
ion (m/z)

Productions
(m/z)

Collision
energy

TC100391 AS STYAWGLEAR 580.7 738.3 19 577.2 731.3 19
TC100393 AS STFAWGLEAR 572.8 552.2 18 569.3 545.2 18
TC106729 GS1a ITEIAGVVVSFDPK 741.4 243.9 36 737.9 243.9 36
TC106808 GS1b HETADINTFLWGVANR 617.6 702.3 19 615.3 702.3 19
TC106913 GS2 IHIEAYGEGNER 465.5 475.1 14 463.2 475.1 14
TC94780 GOGAT EVLVDFDNLLPK 704.9 1166 17 701.4 1159 17
TC94631 AAT2 ATAELLLGADNPAIK 752.4 785.4 22 748.9 785.4 22
TC106918 AAT1 TEEGKPLVLDVVR 487.9 917.6 19 485.6 910.6 19
TC94623 AAT IPSGHGYDDFEVVR 534.2 744.3 18 530.9 739.3 18
TC94704 GDH GLDIPSLLK 481.8 564.3 15 478.3 557.3 15
TC100410 SuSy1 VHSLKER 438.2 639.3 18 434.7 632.3 18
TC100410 SuSy1 ALESEMLSR 521.7 851.4 18 518.2 851.4 18
TC95820 SuSy2 ALENEMLAR 527.2 862.4 18 523.7 862.4 18
TC94447 SuSy3 ALENEMLR 491.7 791.3 17 488.2 791.3 17
TC99016 SuSy5 ALEEELLQK 540.2 888.5 18 536.7 888.5 18
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SuSy5 (TC99016), and SuSy4 (TC98648) are estimated to
be 72, 40, and 19%, respectively. To improve the
detection of different SuSy isoforms in root nodules
further, two approaches were carried out: (i) targeted
screening for peptide sequence variation using a Q-TOF
mass spectrometer with high mass accuracy; and (ii)
multiple reaction monitoring on a triple quadrupole based
on predicted proteotypic peptides.

Identification of a new SuSy peptide sequence

When comparing sequences of protein isoforms, it is
common to find certain amino acid differences encoded
by SNPs [i.e. glutamine (Q) for glutamic acid (E) or
asparagine (N) for aspartic acid (D)]. These sequence
variations are translated into mass differences in peptides
enabling isoform discrimination using MS. Looking for
this type of polymorphism, the predicted amino acid
sequences of the SuSy isoforms were aligned (Fig. 2) and
examined for potential candidates with this type of
polymorphism. A SuSy1 tryptic peptide containing some
of the above-mentioned residues was subsequently chosen
(SIGNGVQFLNR). After screening the gel sample for
masses corresponding to the doubly charged peptide, two
ions were selected: one corresponding to a mass-to-charge
ratio (m/z) of 602.8 derived from a SuSy1 tryptic peptide,
and the other peptide of unknown sequence with an m/z

of 603.3. De novo sequencing was performed on the
unknown ion and was identified as the peptide
(SI)GDGVQFLNR (Fig. 3), which did not match any of
the previously reported sequences (Fig. 2). The observed
mass difference corresponds to a shift starting from ion
y7, explained by a replacement of D instead of the
original N residue present in SuSy1. The only other
possible combination producing a 603.3 m/z peptide
would be the replacement of isoleucine (I) for leucine (L)
in the N-terminal region. However, as this region appears
to be well-conserved in the amino acid sequence of SuSy
in different legume plants (data not shown), this alterna-
tive appears to be less likely. Furthermore, peptides
derived from both SuSy1 and SuSy2 were detected during
the analysis of 1D-PAGE samples (see Materials and
methods and Fig. 2), further supporting the hypothesis
that the new peptide is driven from SuSy2 (Fig. 2).
Interestingly, SuSy2 is the second most abundant isoform
in M. truncatula root nodules at the transcript level
(Hohnjec et al., 2003).

Mass western of different SuSy isoforms in root
nodules

For the specific absolute quantification of protein iso-
forms, a technique based on high resolution multiple
reaction monitoring in a triple quadrupole mass spectrom-
eter, called mass western, has recently been established
(Lehmann et al., 2008). Instead of antibodies, isoform-
specific stable isotope-labelled peptides are synthesized.
These are then employed as internal standards and added
to protein samples, which are subsequently digested either
in gel or directly in solution (Wienkoop and Weckwerth,
2006). As the concentration of the standard peptides is
known, absolute quantification of native proteins is
achievable in fmol lg�1 of total protein.
In the present study, four standard peptides specific for

each of the isoforms SuSy1, 2, 3, and 5 were selected
(Table 1). As only 19% of the SuSy4 sequence is

Table 2. Phosphopeptides found in M. truncatula root nodules
after TiO2-enrichment and MSQuant validation (PTM: post-
translational modification)

Protein Peptide sequence Phospho
site

Mascot
score

MSQuant
PTM score

TC106886 AGLDNYDNYS(p)PGGR Ser65 69 114
SGFNTPAS(p)SAR Ser77 48 73

TC101080 KHASS(p)PPPDSPSQ
DSVEKPTYVR

Ser21 53 60

TC97295 HQSAAT(p)PTPTAGAR Thr33 40 70

Fig. 3. Q-TOF driven MS/MS spectrum of the de novo sequence for a tryptic peptide with m/z 603.3 (SIGDGVQFLNR).
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available (Fig. 2), this isoform was excluded from the
analysis. Out of the four isoforms analysed, absolute
quantification was only possible for three of them
(Table 3; Fig. 4). SuSy5 appeared either to be below the
detection limit or not present in nodules under the
conditions investigated. Results show that SuSy2 is the
second most abundant isoform present in M. truncatula
root nodules. This finding further supports the hypothesis
that the de novo peptide sequence belongs to this second

isoform. Due to the high sensitivity of this technique,
SuSy3 was also successfully identified, despite its much
weaker signal (Fig. 4). Absolute quantification of the
different isoforms shows that the protein ratios for
SuSy1:SuSy2:SuSy3 are 1:0.013:0.0018 (Table 3). These
results are in agreement with a recent transcript analysis in
pea nodules (Marino et al., 2008), where the ratio for the
three isoforms was 1:0.002:1.7 3 10�5. From a technical
point of view, the four orders of magnitude range
determined in a single analysis corresponds to the current
maximum capacity for a MS-based analysis (Wienkoop
et al., 2006; Wienkoop and Weckwerth, 2006). This
limitation is mainly due to the limit of detection of each
peptide and the loading capacity of the columns. Never-
theless, the sensitivity (2 ng) in the present study has been
shown to be comparable to those of western blots
(Lehmann et al., 2008). A significant advantage of the
mass western is that it allows for absolute quantification
and for multiple targets to be analysed in a single run.
Furthermore, mass western provides a direct measurement
of protein concentration, not available by transcript
analysis.

Table 3. Absolute quantification of three different SuSy iso-
forms in M. truncatula root nodules after in-gel digestion (n¼4)

TC Code Name Specific amounta

fmol lg�1

protein
pmol per
gel slide

ng per
gel slide

TC100410 SuSy1 16062.21 12.8 1000
TC95820 SuSy2 2.160.03 0.170 16
TC94447 SuSy3 0.360.25 0.023 2
TC99016 SuSy5 n.d. n.d. n.d.

a n.d., Not detected.
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Absolute quantification of proteins involved in N
metabolism present in complex nodule protein
samples

Absolute quantification enables the analysis of complete
metabolic pathways in complex protein samples in a single
analysis. In contrast to the previous analysis, where the
starting materials employed were in-gel digests, absolute
quantification was also carried out using nodule extract
protein samples as the starting material. Internal standard
peptides for glutamine synthetase (GS), glutamate de-
hydrogenase (GDH), asparagine synthetase (AS), and
aspartate aminotransferase (AAT) were synthesized (pep-
tide sequences shown in Table 1), and these metabolic
enzymes, together with SuSy, were subjected to absolute
quantification (Table 4). Regarding SuSy, only the most
abundant isoform, SuSy1, representing about 1% of the
total nodule proteins, was detected. The reason for this
might be a higher signal-to-noise ratio of a complex
protein sample compared to the pre-fractionated gel
sample used in the previous analysis. However, the
absolute amount of SuSy1 appears to be slightly higher in
the complex nodule protein analysis indicating that the in-
gel analysis may be even more sensitive.
Most of these enzymes involved in nodule N metabo-

lism (GS, GDH, AAT) are well characterized and their
activities are routinely assessed (Vance, 2008). Although
most of the N exported from temperate climate nodules is
in the form of asparagine, detection of AS activity in plant
tissues is extremely difficult (Lea et al., 2007). The
reasons for this are not clear, but they may be related to
the presence of inhibitors (Joy et al., 1983), asparaginase
activity (Streeter, 1977) or protein instability (Huber and
Streeter, 1985). To overcome these limitations, quantifica-
tion of AS gene expression has been suggested to be
a good semi-quantitative indicator of its activity levels,
showing a good correlation with asparagine:aspartate
ratios transported to the shoot via the xylem (Antunes
et al., 2008). The strategy shown in the present paper may

provide a more accurate alternative for the quantification
of AS in nodules.

Identification of phosphorylation sites and
determination of the phosphorylation state of SuSy1
in nodules under normal growth conditions

SuSy has been shown to be phosphorylated in a number
of tissues in different plants. While initial evidence that
SuSy was phosphorylated came from work on maize cell
cultures (Shaw et al., 1994), it was Huber et al. (1996)
who first characterized a phosphorylation site at Ser15 in
SuSy isolated from maize leaves. Further studies have
described other phosphorylation sites in maize (Hardin
et al., 2003) and legume plants like soybean (Zhang and
Chollet, 1997; Zhang et al., 1999; Komina et al., 2002).
In particular, Zhang et al. (1999) described a putative
seryl-phosphorylation domain near the N-terminus of the
protein (LTRVHS11LRER) in soybean. This motif, which
was reported to be the primary phosphorylation site of
nodule soybean SuSy in planta, is present in practically
all the SuSy sequences reported to date.
In the present work, MS analysis revealed that SuSy1

from the nodules of M. truncatula is also phosphorylated
at Ser11, the same residue identified as phosphorylated in
soybean and homologous to Ser15 in maize SuSy1
(VHS11LKER; spectra can be found in ProMEX database
http://promex.mpimp-golm.mpg.de/home.shtml). In addi-
tion, the relative phosphorylation state of the protein was
analysed and quantified by comparing peak areas of the
phosphorylated and non-phosphorylated tryptic peptides
derived from the same analysis (see also ‘Determination
of phosphorylation stoichiometry’, and the workflow
diagram in Fig. 1).

M. truncatula nodule SuSy1 was found to be hyper-
phosphorylated, as the phosphopeptide was 1.7-fold more
abundant than the non-phosphorylated peptide. The
meaning of this hyperphosphorylation state remains the
subject of much debate. In soybean, in vitro studies
suggest that nodule SuSy sucrose-cleavage activity is not
dependent on the phosphorylation state of the protein, but
rather influences the attachment of this enzyme to the
membrane (Zhang et al., 1999). However, studies in
maize have shown that leaf SuSy is activated when
phosphorylated at its primary site (Ser15), while phos-
phorylation at Ser170 would trigger degradation of the
enzyme (Hardin et al., 2003, 2004). More recently, it has
been suggested that sucrose concentration and phosphor-
ylation may regulate SuSy oligomerization and F-actin
association in maize kernels and seedlings (Duncan and
Huber, 2007). Regarding membrane attachment, Komina
et al. (2002) investigated the phosphorylation state of
membrane and soluble SuSy forms of nodules in soybean.
Using several non-MS-based approaches, the microsomal
SuSy fraction was found to be hypophosphorylated

Table 4. Absolute quantification of several proteins involved in
C and N metabolism in M. truncatula root nodules after gel free
shotgun analysis

TC Code Name fmol mg�1 proteina

TC100410 SuSy1 195.2623.7
TC95820 SuSy2 n.d.
TC94447 SuSy3 n.d.
TC100391 AS 76.562.5
TC100393 AS 90.568.5
TC106729 GS1a 98.961.0
TC106808 GS1b 29.668.6
TC106913 GS2 23.865.8
TC94631 AAT2 44.360.9
TC106918 AAT1 5.160.9
TC94623 AAT 20.764.1
TC94704 GDH 51.169.3

a n.d., Not detected.
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relative to the soluble form (on an equivalent SuSy protein
base). Although abiotic stresses seem to have a negative
impact on SuSy abundance, as well as on its phosphory-
lation levels (data not shown), the physiological meaning
of a state of hyper- or hypophosphorylation remains to be
elucidated.

Other phosphoproteins found in nodules

SuSy is one of the most characterized nodule proteins in
legumes. Due to its relatively high abundance in root
nodules and, specifically with regard to M. truncatula, its
hyperphosphorylation state, it is understandable that the
conserved Ser11 phosphopeptide has been described
several times. In order to identify novel putative phos-
phorylated proteins in M. truncatula root nodules, a phos-
phopeptide enrichment strategy based on TiO2-affinity
chromatography was carried out. As a result, several other
phosphopetides were identified (Table 2). Among them,
two phosphopeptides (AGLDNYDNYS65PGGR and
SGFNTPAS77SAR) belonging to AI (TC106886), the
other enzyme with a sucrose-cleavage activity in nodules.
In contrast to SuSy, relative peak area quantification of
both peptides indicated that AI is mostly hypophospory-
lated in nodules. The non-phosphorylated to the phos-
phorylated forms of Ser65 and Ser77 were determined to
be in a ratio of 1:0.01:0.03, respectively. It has been
suggested that AI is post-transcriptionally regulated
through an interaction with a phospho-binding 14-3-3
protein in developing barley grains (Alexander and
Morris, 2006). However, to our knowledge this is the first
report where the actual phosphorylation sites of the
protein are described. Several other phosphopeptides were
found that belong to a putative RNA-binding protein
(TC101080) and a hypothetical protein (TC97295), which
is similar to a universal stress response protein described
in Arabidopsis thaliana (At4g27320) (Table 2). Although,
thus far, little is known about the function of these
proteins in nodules, they may be considered interesting
candidates for further studies given the roles of phosphor-
ylation in metabolic regulation.
Nevertheless, several other nodule proteins have been

suggested to be phosphorylated and were not identified in
this present study. This is the case for both GS (Lima et al.,
2006) and phosphoenolpyruvate decarboxylase (Zhang
et al., 1995) from M. truncatula. Previously reported
phosphopeptides from GS did not appear to be detectable
after tryptic digestion, but may be detected using different
proteolytic enzymes. In the case of phosphoenolpyruvate
decarboxylase, phosphopeptides were not detected using
the current approach as its molecular weight was out of
range of the analysed bands subjected to TiO2 enrichment.
Therefore, future analysis may include a wider range of
molecular weights to identify new nodule protein subject
to protein phosphorylation.

Conclusion

This study has demonstrated for the first time the absolute
quantification of three distinct M. truncatula SuSy isoforms
in an independent tissue-specific manner. It is shown
that, besides the nodule-enhanced SuSy1, two other protein
isoforms are present in root nodules at quantifiable
amounts. De novo sequencing allowed for the identification
of a new peptide sequence, most probably driven from the
second most abundant isoform SuSy2, which complements
the existing sequence information based on transcript data.
Absolute quantification of N metabolism enzymes was
carried out, enabling the discrimination of different protein
isoforms from a single analysis, even when those isoforms
were present at very low amounts. Nodule SuSy1 was
shown to be hyperphosphorylated at Ser11 in M. truncatula
and novel phosphoproteins present in nodules were
identified. All peptides found in this study can be viewed
in the ProMEX spectral library (Hummel et al., 2007).
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