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Abstract

The Arabidopsis thaliana sterol carrier protein-2
(AtSCP2) is a small, basic and peroxisomal protein
that in vitro enhances the transfer of lipids between
membranes. AtSCP2 and all other plant SCP-2 that
have been identified are single-domain polypeptides,
whereas in many other eukaryotes SCP-2 domains are
expressed in the terminus of multidomain polypepti-
des. The AtSCP2 transcript is expressed in all ana-
lysed tissues and developmental stages, with the
highest levels in floral tissues and in maturing seeds.
The expression of AtSCP2 is highly correlated with the
multifunctional protein-2 (MFP2) involved in p-oxidation.
A. thaliana Atscp2-1 plants deficient in AtSCP2 show
altered seed morphology, a delayed germination, and
are dependent on an exogenous carbon source to
avoid a delayed seedling establishment. Metabolomic
investigations revealed 110 variables (putative metab-
olites) that differed in relative concentration between
Atscp2-1 and normal A. thaliana wild-type seedlings.
Microarray analysis revealed that many genes whose
expression is altered in mutants with a deficiency in
the glyoxylate pathway, also have a changed expres-
sion level in Atscp2-1.
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Introduction

Sterol carrier protein-2 (SCP-2) is an intracellular, small,
basic protein domain that in vitro stimulates the transfer of
lipids between membranes (Ritter et al., 1971; Bloj et al.,
1978). In mammals, SCP-2 is implicated to have role in
peroxisomal B-oxidation. The exact function of SCP-2 in
B-oxidation is unclear, but it might facilitate the pre-
sentation and solubilization of the substrates or stabilizing
the enzymes involved in catalysing the reaction cycles
(Seedorf et al., 2000). Such suggestions are mainly based
on studies of the mammalian peroxisomal proteins sterol
carrier protein-X (SCP-X) and D-bifunctional protein
(DBP), which both contain C-terminal SCP-2 domains.
The human gene SCPX (also known as SCP2) encodes
SCP-X, which consists of a 3-ketoacyl-CoA thiolase
domain connected to a C-terminal SCP-2 domain (Ohba
et al., 1994). Due to the existence of dual promoters, as
well as proteolytic cleavage sites the SCPX encoded SCP-2
domain is also expressed as a single-domain protein
(Ohba et al., 1995). SCP-X and the single-domain SCP-2
are both predominantly located to peroxisomes. Gene
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targeting in mice revealed that complete deficiency of
SCPX resulted in an impaired catabolism of 2-methyl
branched-chain fatty acyl CoAs as shown by a 10-fold
accumulation of phytanic acid in SCPX(—/—) mice (See-
dorf et al., 1998). Further, it has been demonstrated with
FRET microscopy that the single-domain SCP-2 interacts
in peroxisomes with enzymes involved in B-oxidation such
as acyl-CoA oxidase, bifunctional protein, and 3-ketoacyl-
CoA thiolase (Wouters et al., 1998). It may be noteworthy
that plants are not encoding any gene orthologous to the
3-ketoacyl-CoA thiolase in SCP-X (Edqvist and Blomqvist,
2006).

A SCP-2 domain is also present in the C-terminus of the
mammalian DBP (also referred to as MFE-2), which in
the human genome is encoded from HSDI/7B4. DBP has
domains for D-3 (equivalent to 3R)-hydroxyacyl-CoA
dehydrogenase, 2-enoyl-CoA hydratase, and SCP-2
(Adamski et al., 1995; Leenders et al., 1998) and
catalyses the second and third steps of the B-oxidation
pathway. Reactions catalysed by the mammalian DBP
proceed through D-3-hydroxyl-CoA esters. DBP is sug-
gested to be required for the peroxisomal B-oxidation of
the enoyl-CoA esters of very long chain fatty acids,
pristanic acid, and of dihydroxycholestanoic acid (DHCA)
(Wanders, 2004). The role of the SCP-2 domain in DBP is
unclear, but it contains a peroxisomal targeting signal
(PTS1) that locates DBP to the peroxisomes. The structural
and functional conservation may indicate that the SCP-2
domain in DBP also has additional functions, such as to
interact with enzymatic domains of DBP to form an
extended hydrophobic cavity for the hydrophobic tails of
some [-oxidation substrates (Haapalainen et al., 2001).

A. thaliana do not encode DBP, and there are no plant
genes identified orthologous to the D-3-hydroxyacyl-CoA
dehydrogenase domain of mammalian DBP (Edqvist and
Blomgvist, 2006). Rather, the A. thaliana multifunctional
proteins AIM1 and MFP2 each share domain structure
and approximately 50% amino acid sequence similarity to
the human peroxisomal L-bifunctional protein (LBP) (also
referred to as MFE-1) (Kiema et al., 2002). LBP and DBP
lack significant sequence similarity and LBP, as well as
AIM1 and MFP2, are not carrying any C-terminal SCP-2
domain. Furthermore, reactions catalysed by LBP, AIM1,
and MFP2 proceeds through L-3-hydroxyl-CoA esters.

Thus, plants do not encode DBP or SCP-X, but it has
recently been shown that plants also encode and express
SCP-2 (Eklund and Edqvist, 2003; Edqvist et al., 2004;
Edqvist and Blomgqvist, 2006). The gene AtSCP2
(At5g42890) on chromosome 5 encodes the sole SCP-2
domain in the A. thaliana genome. AtSCP2 is a 13.6 kDa
protein with a p/ of 9.2, which localizes to peroxisomes
through its C-terminal PST1 targeting signal. It has lipid
transfer activity in vitro (Edqvist et al., 2004). The known
crystal structures of SCP-2 from rabbit (Choinowski et al.,
2000), of the SCP-2 domain of the human DBP

(Haapalainen et al., 2001) and of yellow fever mosquito
SCP-2 (Dyer et al., 2003) have an o/B-fold consisting of
a five stranded PB-sheet and four or five a-helices. A
C-terminal segment, together with part of the B-sheet and
four o-helices form a hydrophobic tunnel, which is very
suitable for binding of lipids or other hydrophobic ligands.
According to generated models, AtSCP2 has a similar
o/p-fold forming a hydrophobic tunnel (Edqvist e al.,
2004). AtSCP2 and also all other plant SCP-2 that have
been identified are single-domain polypeptides (Edqvist
and Blomgqvist, 2006; Viitanen et al., 2006), whereas, as
indicated above, SCP-2 domains in animals and many
other eukaryotes are often present in the terminal of
polypeptides which carry multiple protein domains.

The only SCP-2 domain encoded in A. thaliana is the
single-domain protein AtSCP-2. As described above and
in Edqvist and Blomgvist (2006), the situation is more
complex in animals, with larger SCP-2 gene families and
often quite complicated arrays of protein domain fusions.
We reason that this turns A. thaliana into a very suitable
model organism for studying the function of the still
enigmatic SCP-2 domain. Here, an initial investigation on
the biological function of AtSCP2 is presented. It is
shown that the activity of the peroxisomal protein AtSCP2
is important for the metabolism in A. thaliana seeds and
seedlings.

Materials and methods

Plant materials and growth conditions

A. thaliana ecotype Columbia (Col-0) was used as the wild-type
plant. Seeds of the T-DNA insertion lines Sail_1231_F11 were
purchased from the European Arabidopsis Stock Centre (NASC)
(Loughborough, UK). The Sail_1231_F11 line is referred to as
Atscp2-1. Seeds were surface-sterilized (washed in 70% ethanol for
1 min and in 15% chlorine and 0.5% SDS for 10 min followed by
at least four washes in sterile distilled water) and sown on half-
strength Murashige and Skoog medium (1/2 MS). Before cultiva-
tion, seed dormancy was broken by 72 h of cold treatment (4 °C).
The synthetic auxin 2,4-dichlorophenoxybutyric acid (2,4-DB)
(0.1 uM, 4 puM) and indole-3-butyric acid (IBA) (3 puM, 30 uM)
were added to the autoclaved medium where indicated. Ten-day-old
plants grown under sterile conditions were transplanted on soil
mixed with vermiculite (2:1 v/v). The plants were cultivated under
controlled conditions in environmental chambers at 20-22 °C under
long day (16/8 h light/dark) conditions. The Atscp2-/ mutant was
back-crossed to wild-type A. thaliana Col-0.

For expression of AtSCP2 in Atscp2-1 under the control of its
own promoter, a DNA fragment carrying the AsfSCP2 gene
including the promoter was obtained through amplification of
A. thaliana genomic DNA with primers ATSCP2promattB1F (5'-
GGGGACAAGTTTGTACAAAAAAGCAGGCTCACACCTCCT-
ATTTATCGGACAT-3") and AtSCP2attB2R (5'-GGGGACCACT-
TTGTACAAGAAAGCTGGGTTCACAACTTTGAAGGTTTACG-
GAAGAT-3"). The PCR fragment was recombined into the
destination vector pMDC99 (Curtis and Grossniklaus, 2003)
resulting in the plasmid pJE602. For expression of AtSCP2 cDNA
under control of the caulifiower mosaic virus (CaMV) 35S
promoter, a fragment carrying a cDNA copy of AfSCP2 was



amplified from A. thaliana cDNA with ATSCP2attB1F (5'-
GGGGACAAGTTTGTACAAAAAAGCAGGCTATGGCGAATA-
CCCAACTCAAATC-3") and ATSCP2attB2R. The PCR fragment
was recombined into destination vector pMDC32 (Curtis and
Grossniklaus, 2003) yielding plasmid pJE601. Recombination
events were done with the Gateway technology from Invitrogen
(Carlsbad, CA, USA). pJE601 and pJE602 were transformed into
Agrobacterium tumefaciens C58. The floral dip method (Clough
and Bent, 1998) was used to transform A. thaliana Atscp2-1 with
A. tumefaciens C58 carrying pJE601 or pJE602. Transformations
and selection of transformants were done at the Uppsala Transgenic
Arabidopsis Facility. The transformants obtained were denoted
Atscp2-1(35S::AtSCP2) for transformation with pJE601 and Atscp2-
1(AtSCP2::AtSCP2) for transformation with pJE602.

Phenotypic assays

The hypocotyl and root lengths were measured on 3-d-old and 7-d-
old seedlings grown on 42 MS medium with 0% or 1% sucrose. At
least 20 seedlings were measured from each growth condition and
time point. All experiments were performed in triplicate. Rosette
diameter was measured at the widest point of the plant without
disturbing any leaves under light. The developing seeds were
counted after self-pollination. The percentage of seed germination
was scored every 12 h after transferring stratified seeds on the MS
media to a growth chamber. Germination was defined as an obvious
protrusion of the radicle through the seed coat. Several seed lots
were tested with similar results.

Histochemical and quantitative GUS activity assays

A DNA fragment carrying the AzSCP2 promoter was amplified from
the A. thaliana Col-0 genome by the use of primers SCPPrU2
(5'-CACACCTCCTATTTATCGGACAT-3") and SCPPiN2 (5'-
GATTTTTGTTAGAGACTGGCACG-3"). The PCR primers were
designed such that a fragment was amplified stretching from the
untranslated region of the nearest gene upstream of AtSCP2 to the
5’ untranslated region of AzSCP2. The obtained 1.4 kb AsSCP2
promoter fragment was inserted into vector PCR2.1-TOPO (Invi-
trogen) to yield the plasmid pER2. The AtSCP2 promoter fragment
was released from pER2 by restriction enzymes Xbal+BamH]1, and
subsequently fused to the B-glucuronidase (GUS) reporter gene by
ligation to the Xbal+BamH1 sites of vector pBI101 resulting in
plasmid pER1. The plasmid pER1 was transformed to A. fumefaciens
Cs8.

Histochemical GUS-assays were performed as described by
Jefferson et al. (1987). Plant tissues were incubated in a substrate
solution containing 50 mM Na-phosphate buffer (pH 7.0), 1 mM
5-bromo-4-chloro-3-indolyl-B-p-glucuronic acid cyclohexyl ammo-
nium salt (X-GlcA CHA) (Duchefa Biochemie, Haarlem, The
Netherlands), 0.5 mM K4 Fe(CN)g, 0.5 mM KsFe(CN)g, and 0.01%
(w/v) Triton X-100 at 37 °C overnight. Stained samples were
incubated in 95% ethanol at room temperature to extract the
chlorophyll.

Quantitative real-time reverse transcriptase-PCR, reverse
transcriptase-PCR and genomic PCR

RNA was extracted from A. thaliana using the Qiagen RNeasy
Plant Mini Kit (Qiagen, Hilden, Germany). Five pg RNA was used
for cDNA synthesis using oligo dT-primer and Superscript II
Rnase-Reverse Transcriptase (Invitrogen) according to the manu-
facturer’s instructions. Amplification of the cDNA was performed in
the presence of gene-specific primers and the SYBR Green PCR
master mix (Applied Biosystems, Foster City, CA, USA) in
MicroAmp Optical 96-well reaction plates with optical covers using
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an ABI Prism 7000 Sequence Detector (Applied Biosystems).
Reaction conditions were 50 °C for 2 min, 94 °C for 10 min,
followed by 40 cycles of 94 °C for 15 s and 60 °C for 1 min. All
cDNA-samples were included in triplicate in all assays. Primers
were designed using Primer express software (Applied Biosystems).
Relative %uantiﬁcation of gene expression data was carried out with
the 2724CT or comparative Ct method (Livak and Schmittgen,
2001). The threshold cycle (Cr) indicates the cycle number at which
the amount of amplified transcript reaches a fixed threshold.
Expression levels were normalized with the Ct values obtained for
the A. thaliana tubulin B-2/B-3 chain (At5g62690). The following
gene-specific primers were used: AtSCP2: SCPF1 (5'-GCCGGGA-
AAGAGGTCACA-3’) and SCPR1 (5'-TGTAAGTAACCTCTT-
CAAACCCTAATTTCT-3); A. thaliana tubulin B-2/B-3 chain
(At5g62690): Tubl (5'-ACACCAGACATAGTAGCAGAAAT-
CAAG-3’) and Tub2 (5'-GAGCCTTACAACGCTACTCTGTCT-
GTC-3"); At3g21720: 3g21720F (5'-TTGCACAGATCGCAGAC-
ATCA-3’) and 3g21720R (5'-GAATTGGGTGCATTCATTGA-
GA-3'); Atlg06570: 1g06570F (5'-CTCCGCCAAATCCGAT-
CTT-3’) and 1g06570R (5'-GGAGGTCACCGGAGGTGAGT-3");
At3g47340: 3g47340F (5'-AACGTCTTGCCGTCATCGAT-3") and
3g47340R (5'-CAATGGTCTTGTCCTCGTTGAA-3"); At1g08630:
1g08630F (5'-CGATGCGAGAAGCAATGTGTA-3") and 1g08630R
(5'-CGTCTAGCCGTTGGGTCATATC-3"); At1g21400: 1g21400F
(5"-AGACACAGGCTGATCATTTGGTT-3") and 1g21400R (5'-
TTTGCCTCCTGGGAAATCC-3"); At3g45140: 3g45140F (5'-AGC-
CCCAATGGAAACAAGTCT-3") and 3g45140R (5'-AGCAAGAT-
TCCATAGCCAGCA-3"); At5g55730: 5g55730F (5'-GGCACCAG-
AGGATGGTGATG-3") and 5g55730R (5'-TCTTTCCTTTCGCTT-
TCCCTTT-3"); At5g04960: 5g04960F (5'-AAACGCGAGCCGAT-
CAAG-3") and 5g04960R (5'-AGAGCTCCGTGAT-GGTGACTTT-
3'); At3g14210: 3g14210F (5'-CAGGAGGAAATGGCTCATCTTC-
TA-3') and 3gl4210R (5'-AGCTCACGGACC-GTCATTG-3");
At1g52050: 1g52050F (5'-TTCCTAAGCTACAGAAGTTTGTTCA-
TGCATG-3") and 1g52050R (5'-CATAGTTGACAACATCGGAA-
TCG-3").

Reverse transcriptase-PCR (RT-PCR) was done as described
previously (Edqvist et al., 2004). The oligonucleotides ATSCPRT1
and ATSCPRT2 were used for expression analysis of AsSCP2
cDNA, while UBL1 and UBL2 were used for amplification of
cDNA for the ubiquitin-conjugating enzyme E2-21 kD (At5g41340)
(Edqvist et al., 2004).

For isolation of A. thaliana genomic DNA, 500 pl of an
extraction buffer consisting of 200 mM TRIS, 250 mM NaCl, and
25 mM EDTA was added to plant tissues. After addition of six
glass beads (3 mm in diameter), the tissues were disrupted by
incubation in a FAST-prep instrument (MP Biomedicals, Irvine,
CA, USA) for 30 s. 25 pl of 10% SDS was added, and the samples
were incubated at 65 °C for 10 min and then centrifuged for 5 min.
450 pl of the supernatant was removed and precipitated with an
equal volume of cold isopropanol. After incubation for 2 min at room
temperature, samples were centrifuged for 5 min. The supernatant
was discarded, and the DNA pellet obtained was dried, dissolved in
water, and used for PCR. The following primers were used for
analysing genomic DNA from Atscp2-1: SAIL_1231_F11_RP
(5'-AACATTGCTCCAAAGGTTGGT-3"), SAIL_1231_F11_LP
(5'-GGACCAAATCCAAGTCACACA-3’) and SAIL_LB1 (5'-
GCCTTTTCAGAAATGGATAAATAGCCTTGC-3").

Expression profiling through microarray analysis

Two-day-old seedlings of the Atscp2-1 and wild-type plants grown
under light conditions on 1/2 MS without sucrose were harvested
and frozen quickly in liquid nitrogen. Two-day-old seedlings were
selected for the expression analysis due to the high AtSCP-2
expression levels and the manifested phenotype of young Azscp2-1
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seedlings when grown on 1/2 MS without exogenous carbon
source. RNA samples were extracted using RNeasy Plant Mini Kit
(Qiagen). Five pg of total RNA was converted to double-stranded
cDNA using the SuperScript polymerase II (Invitrogen) with a
T7-dT primer incorporating a T7 RNA polymerase promoter
(Ambion, Austin, TX, USA). The double-stranded cDNA was
amplified to cRNA through in vitro transcription using Megascript
T7 kit (Ambion). To obtain aminoallyl-labelled cDNA the amplified
cRNA was used as template for cDNA synthesis performed with
SuperScript III (Invitrogen) in the presence of dATP, dCTP, dGTP,
and aminoallyl-dUTP (aa-dUTP). After completion of cDNA
synthesis unincorporated aa-dUTP was removed by using Qiagen
QIAquick PCR purification kit. The purified aminoallyl-labelled
cDNA (aa-cDNA) was lyophilized and subsequently dissolved in
4.5 pl of 0.1 M Na,COj3-buffer, pH 9.0. To label the aa-cDNA,
4.5 pl of the NHS-ester Cy3 or CyS5 dye, prepared in DMSO, was
added and the mixture was incubated at room temperature for 1 h in
darkness. The two resulting dye-labelled cDNA pools were mixed
and then co-hybridized to the same A. thaliana CATMA microarray
slide (Allemeersch et al., 2005) for 2 d at 42 °C in a water bath.
After that, the arrays were washed and then scanned using
a GenePix 4000B array scanner (Molecular Devices, Sunnyvale,
CA, USA). The raw data were stored and analysed using BASE
(https://base.lcb.uu.se) and the Linnaeus Centre for Bioinformatics
(LCB) Data Warehouse (https://dw.lcb.uu.se) at LCB and the WCN
Expression Array Facility at Uppsala University and The Swedish
University of Agricultural Sciences, Uppsala, Sweden. Four
replicates were made. The empirical Bayes methods B-statistics
(Filtering Bstatl >7.21) (Lonnstedt and Speed, 2002; Smyth et al.,
2003; Lonnstedt and Britton, 2005) was applied to rank the genes in
order of evidence for differential expression, from the strongest to
the weakest evidence.

Metabolomics

Metabolites were extracted from 3-d-old seedlings of A. thaliana
wild-type and Atscp2-1. Seedlings were grown on 1/2 MS without
sucrose. The young seedlings were selected for metabolome
profiling due to the high AtSCP-2 expression levels in wild-type
and the manifested phenotype in young Atscp2-1 seedlings when
grown on 1/2 MS without sucrose. From each genotype, 10 samples
of 20 mg fresh weight were used for the analysis. Extraction of
metabolites, GC/MS analysis, and data processing were done as
described previously (Gullberg et al., 2004; Jonsson et al., 2005).
All multivariate statistical investigations (PCA, PLS-DA) were
performed using Simca software 10.5.0.0 (Umetrics, Umed, Swe-
den). The following statistics for the PLS-DA models are discussed
throughout this paper: R2X is the cumulative modelled variation in
X, R?Y is the cumulative modelled variation in Y and Q%Y is the
cumulative predicted variation in Y, according to cross-validation.
The range of these parameters is O—1, where 1 indicates a perfect fit.

Docking of auxin precursors into the homology model of
Arabidopsis thaliana SCP-2

The docking program GOLD 3.2 (Jones et al., 1995, 1997) was
used to dock the auxin precursors IBA and 2,4-DB into the
previously created homology model of AtSCP-2 (Edqvist et al.,
2004), which is based on the crystal structure of the SCP-2-like
domain of human DBP (Haapalainen e al., 2001). The IBA and
2,4-DB structures were generated using the program SYBYL 8.0
(Tripos International, St Louis, MO, USA). Ten independent
genetic algorithm runs with the default docking parameters were
made in GOLD for the ligands. The binding site was restricted
within a 15 A radius of the side-chain hydrogen (HZ) of Phel12 in
the AtSCP2 model. The docking was stopped if the three best

scoring solutions were within 1.5 A rmsd of each other. The cavity
in the AtSCP2 model was identified using the program SURFNET
(Laskowski, 1995). The docking results were visualized and
examined in the BODIL modelling environment (Lehtonen et al.,
2004).

Results

Expression of AtSCP2 during development

To gain insight on the expression pattern of AtSCP2, we
analyzed large amount of data accessible in public
databases (i.e. www.weigelworld.org, www.arabidopsi-
s.org, and www.genevestigator.ethz.ch) from microarray
analysis of gene expression during A. thaliana develop-
ment. Figure 1 shows the expression of AzSCP2 in 63
samples from different tissues or stages of development.
The data are from the AtGenExpress expression atlas
(www.weigelworld.org) (Schmid et al., 2005) and shows
that the AtSCP2 mRNA is present in all tissues and at all
stages of the life of the plant. The highest levels of the
AtSCP2 transcript was found in seeds, such as in green
cotyledons of maturating seeds (Fig. 1, sample 63), and
in floral tissues, such as the stamens of stage 12 flowers
(Fig. 1, sample 51) and petals (Fig. 1, sample 50) and
stamens of stage 15 flowers (Fig. 1, sample 52). The
accumulation of the AtSCP2 transcript in roots, stems, buds,
siliques, inflorescences, and leaves of mature A. thaliana
plants was analysed with quantitative real-time RT-PCR
(data not shown). The results obtained confirmed that the
AtSCP2 mRNA is abundant in most A. thaliana tissues.

The A. thaliana AtSCP2 promoter was fused to the
B-glucuronidase (GUS) reporter gene and the temporal
and spatial patterns of expression were assessed during
plant growth and development (Fig. 2). Endosperm (Fig. 2B),
embryo (Fig. 2C), and 2-d-old seedlings (Fig. 2D) showed
very high GUS activity. Staining was also detected in
vascular tissues and hydathodes of cotyledons (Fig. 2E),
in trichomes of the rosette leaves (Fig. 2F), in the
receptacles (Fig. 2G, H), in vascular tissues of sepals
and petals (Fig. 2G, 1, J), in the style and stigma of the
carpels (Fig. 2G, K), and in anthers, filaments, and pollen
(Fig. 2G, L). The funiculi of the siliques were also shown
to contain GUS activity (Fig. 2M).

The performance of the AtSCP2 promoter-GUS fusion
was also assayed in response to light, darkness, and
sucrose in 1-7-d-old seedlings (Fig. 3). The 1-d-old
seedlings showed high levels of GUS-activity, indicating
high levels of activity of the AsSCP2 promoter early
during germination. There was a decrease in expression
from the AtSCP2 promoter with time, as 7-d-old seedlings
showed lower GUS activity compared with 1-d-old and
3-d-old seedlings. Dark-grown seedlings showed a more
intense staining, indicating a higher activity of the AzSCP2
promoter. Interestingly, the GUS activity increased with
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Fig. 1. Expression of AtSCP2 in A. thaliana tissues. The data are
collected from the microarray experiment AtGenExpress: Expression
Atlas of A. thaliana (Schmid et al., 2005) obtained from www.
weigelworld.org. The investigated tissue samples are from roots (RO)
(samples 1-7), stems (ST) (samples 8-10), leaves (LE) (samples
11-25), whole plants (WP) (samples 26-36), shoot apex (SA) (samples
37-40), floral organs (FL) (samples 41-55), and seeds (samples 56-63)
of A. thaliana Col-0. Samples referred to in the text (4, 5, 27, 28, 50,
51, and 63) are indicated with sample numbers. Samples 10, 20, 30, 40,
50, and 60 are indicated with arrows to simplify for the reader. Plants
were grown on soil, unless growth substrate is indicated. (1) Root, 7 d,
(2) Root, 17 d, (3) Root, 1XMS agar, 1% sucrose, 15 d, (4) Root, 8 d,
IXMS, (5) Root, 8 d, 1 XMS agar, 1% sucrose, (6) Root, 1X MS agar,
21 d, (7) Root, 1 XMS agar, 1% sucrose, 21 d, (8) Hypocotyl, 7 d, (9)
Ist node, 21+ d, (10) 2nd internode, 21+ d, (11) Cotyledons, 7 d, (12)
Leaves no. 1+2, 7 d, (13) Rosette leaf no. 4, 10 d, (14) Rosette leaf no.
2, 17 d, (15) Rosette leaf no. 4, 17 d, (16) Rosette leaf no. 6, 17 d, (17)
Rosette leaf no. 8, 17 d, (18) Rosette leaf no. 10, 17 d, (19) Rosette leaf
no. 12, 17 d, (20) Petiole leaf no. 7, 17 d, (21) Proximal half leaf no. 7,
17 d, (22) Distal half leaf no. 7, 17 d, (23) Leaf, 1X MS agar, 1%
sucrose, 15 d, (24) Senescing leaves, 35 d, (25) Cauline leaves, 21+ d,
(26) Seedling, green parts, 7 d, (27) Seedling, green parts, 1X MS agar,
8 d, (28) Seedling, green parts, 1X MS agar, 1% sucrose, 8 d, (29)
Seedling, green parts, 1 X MS agar, 21 d, (30) Seedling, green parts, 1Xx
MS agar, 1% sucrose, 21 d, (31) Rosette after transition to flowering,
but before bolting, 21 d, (32) Rosette after transition to flowering, but
before bolting, 22 d, (33) Rosette after transition to flowering, but
before bolting 23 d, (34) Vegetative rosette, 7 d, (35) Vegetative rosette,
14 d, (36) Vegetative rosette, 21 d, (37) Shoot apex, vegetative+young
leaves, 7 d, (38) Shoot apex, vegetative, 7 d, (39) Shoot apex, transition
(before bolting), 14 d, (40) Shoot apex, inflorescence (after bolting), 21
d, (41) Flower, stage 9, (42) Flower, stage 1011, (43) Flower, stage 12,
(44) Flower, stage 15, (45) Flower, 28 d, (46) Pedicel, stage 15, (47)
Sepal, stage 12, (48) Sepal, stage 15, (49) Petal, stage 12, (50) Petal,
stage 15, (51) Stamen, stage 12, (52) Stamen, stage 15, (53) Pollen, 6
weeks, (54) Carpel, stage 12, (55) Carpel, stage 15, (56) Siliques, with
seeds stage 3; mid-globular to early heart embryos globular embryo,
(57) Siliques, with seeds stage 4; early to late heart embryos, (58)
Siliques, with seeds stage 5; late heart to mid-torpedo embryos triangle
embryo, (59) Seeds, stage 6, w/o siliques; mid to late torpedo embryos
torpedo embryo, (60) Seeds, stage 7, w/o siliques; late torpedo to early
walking-stick embryos walking stick seed, (61) Seeds, stage 8, w/o
siliques; walking-stick to early curled cotyledons embryos, (62) Seeds,
stage 9, w/o siliques; curled cotyledons to early green cotyledons
embryos, (63) Seeds, stage 10, w/o siliques; green cotyledons embryos.

increasing amounts of sucrose when grown under constant
illumination as well as in darkness. The microarray data
compiled in Fig. 1 also revealed a slight increase in the
accumulation of the ArSCP2 transcript in seedlings in
response to sucrose (compare samples 4 and 5, and
samples 27 and 28).

Functional analysis of AtSCP2 3489

Correlated expression patterns of AtSCP2 to other
genes

To establish a functional context of the expression pattern
of AtSCP2, it was analysed whether its expression is
correlated to that of other genes. To calculate Pearson
correlation coefficients (R) from microarray analysis of
gene expression, the gene correlator function of Geneves-
tigator (www.genevestigator.ethz.ch) (Zimmermann et al.,
2004, 2005) and the ExpressionAngler function of the
Botany Array Resource in the University of Toronto
(bbc.botany.utoronto.ca) (Toufighi et al., 2005) were used.
Results from such investigations using ExpressionAngler
on data from the AtGenExpress experiments are shown in
Fig. 4. At the ExpressionAngler, the data are divided into
four groups: tissue, hormone, stress, and pathogen for
samples collected from various tissues and developmental
stages, after hormone treatments, after abiotic stresses or
biotic stresses, respectively. The 100 genes from each
group giving the highest R to AfSCP2 were listed. The
R cut-off values required for genes to appear on the
TOP100-lists were R=0.923 (hormone), R=0.800 (stress),
R=0.656 (pathogen), and R=0.686 (tissue). R >0.7 is
generally considered a rule-of-thumb threshold for true
correlation and used in various analysis (Lee et al., 2004;
Ren et al., 2005). Figure 4 shows the R of the 26 genes
that were identified in the lists from at least two of the
four groups. Firstly, it can be noted that no gene was
found in all the lists, and that only one gene (At4g07390
encoding a PQ-loop repeat family protein) appeared in
three of the lists. Of the 25 remaining genes there are
three genes (MFP2, PEDI, and PMDHI) which encode
proteins involved in the B-oxidation cycle (Hayashi et al.,
1998; Rylott et al., 2006; Pracharoenwattana et al., 2007).
The correlation of expression between MFP2 and AtSCP2
is particularly strong, with R=0.82 for tissue samples and
R=0.99 for the hormone samples.

Characterization of an AtSCP2 T-DNA insertion
mutant

To elucidate the biological role of AtSCP2 further, the T-
DNA insertion line Sail 1231 F11 was obtained from
NASC (Fig. 5A). The Sail_1231_F11 line is referred to as
Atscp2-1. In Atscp2-1 the T-DNA insertion is in the
second intron of AfSCP2. A homozygous insertion line
was obtained as confirmed by PCR analysis (Fig. 5B).
Transcript analysis using RT-PCR showed that no AtSCP2
transcript was detected in Atscp2-1 seedlings (Fig. 5C).
Adult plants of Azscp2-1 were normal in appearance (data
not shown). Since the expression analysis revealed the
highest levels of the AtSCP2 transcript in floral tissues and
during seed maturation, seed development in Atscp2-1
was investigated. Thirty-three siliques were removed from
wild-type and Atscp2-1 plants, and the developing seeds
were examined under a microscope and counted. For
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Fig. 2. Localization of GUS protein in transgenic A. thaliana plants expressing GUS from the AtSCP2 promoter. (A) Seed, (B) endosperm, (C)
embryo, (D) 2-d-old seedlings, (E) cotyledon hydathode, (F) trichomes, (G) flowers, (H) receptacle, (I) sepal, (J) petal, (K) style, (L) pollen grains,
anther and filament, (M) funiculus. GUS activity is visualized by the blue colour. The bar correspond to 200 um (H, K), 250 pm (A-C, 1, J, L), 500

pm (M), I mm (F, G) or 2 mm (E).

wild-type plants, the average silique contained 56 green
seeds, whereas the average Atscp2-1 silique contained 49
green seeds. According to the performed ¢ test, the seed
per silique numbers of Atscp2-1 were significantly
different from wild-type at a P-value of 0.000155. When
the morphology of the seeds was examined after harvest,
it was revealed that seeds from the Atscp2-1 plants had an
imperfect appearance (Fig. 6). Seeds from Atscp2-1 plants
complemented with wild-type AtSCP-2 from either
pJE602 containing a genomic fragment carrying AtSCP2

including the AtSCP2 promoter [Atscp2-1(AtSCP2::AtSCP2)]
or pJE601 carrying a cDNA copy of AtSCP2 connected to
the CaMV 35S promoter [Atscp2-1(35S::AtSCP2)] showed
wild-type morphology (data not shown).

The germination of Atscp2-1 seeds was tested by
scoring the radicle emergence every 12 h after transferring
stratified seeds on 1/2 MS media to a growth chamber.
The germination kinetics was significantly slower for
Atscp2-1 seeds compared to wild-type seeds (Fig. 7).
75% of the Atscp2-1 seeds were germinated after 72 h
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Fig. 3. Sucrose and darkness stimulates expression of GUS from the AzSCP2 promoter. Seedlings were grown for 1 d (A), 3 d (B, D), or 7 d (C, E)
under constant illumination (A—C) or in darkness (D, E) on 1/2 MS agar supplemented with 0% sucrose (leftmost seedling in A-E), 1% sucrose

(central seedling in A—E) or 3% sucrose (rightmost seedling in A-E).

incubation showing that the mutant seeds also had a lower
germination frequency than the wild-type. Neither the
lowered frequency nor the slower kinetics of germination
could be rescued by the addition of 1% sucrose to the
media. Germination kinetics resembling A. thaliana wild-
type were obtained when Atscp2-I was complemented
with wild-type AtSCP-2 (Fig. 7).

In order to investigate whether the lack of SCP-2 had an
effect on seedling establishment, seeds from Atscp2-1 and
wild-type were placed on agar media with or without
sucrose and germinated under light or in darkness (Fig. 8).
After 3 d on media without sucrose, the Atscp2-1
seedlings were clearly distinguishable from the wild-type.
The insertion line showed smaller cotyledon rosettes and
shorter hypocotyls than wild-type and the root elongation
was also retarded (Fig. 8A—F). Seven days after sowing
the root length was still retarded compared with the wild-
type when grown without a carbohydrate supplement
(Fig. 8E, F). Also in the dark, root elongation was inhibited
on media lacking sucrose as the length of the primary root
in Atscp2-1 was reduced on average to 67% and 48% of
the wild-type length when assayed after 3 d and 7 d,
respectively. The length of the mutant hypocotyls were
slightly reduced in darkness on media lacking sucrose,
as they showed a 20% and 14% reduction in length after
3 d and 7 d, respectively. Growth and development of
Atscp2-1 on 1% sucrose closely matched the wild-type
control, in light (Fig. 8A—F) as well as in darkness (data
not shown).

Effect of 2,4-DB and IBA on germination of AtSCP2
mutants

2,4-DB is B-oxidized to 2,4-dichlorophenoxyacetic acid,
which inhibits root elongation. Several A. thaliana mutants
with deficiencies in B-oxidation have been identified in
screens for plants that elongated roots on normally in-
hibitory concentrations of 2,4-DB (Hayashi et al., 1998).
To investigate whether the AtSCP2 protein may have a role
in B-oxidation of auxin precursors and analogues, seeds of
Atscp2-1 were germinated on media containing 0.1 pM and
4 uM 24-DB and root elongation was followed. The
growth inhibition of root elongation of Atscp2-/ was indis-
tinguishable from the control wild-type plants on any tested
concentration of 2,4-DB indicating that the AtSCP2 is not
involved in catabolism of 2,4-DB (data not shown). Several
B-oxidation mutants also show resistance to the growth
inhibition caused by IBA (Zolman et al., 2001; Adham
et al., 2005). However, Atscp2-1 also showed wild-type
sensitivity to IBA (data not shown).

The binding mode of IBA and 2,4-DB into the
homology model of AtSCP2 was studied by the auto-
mated docking program GOLD, which gave four docking
results for IBA and three results for 2,4-DB. The ligands
were positioned quite similarly in all the dockings and
only the results with the highest fitness are presented in
Fig. 9. Both IBA and 2,4-DB were positioned with their
carboxyl groups in one of the cavity openings (near
GIn92, GIn110, Ile102, and Leul06). The indole of IBA
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Fig. 4. The expression of AtSCP2 is correlated to the expression of genes involved in B-oxidation. The bar graph shows the Pearson correlation
coefficients (R) calculated on data from microarray analysis of gene expression. Samples are grouped in tissue and development, hormone treatments,
biotic stress, and abiotic stress. Only genes, which were present among the 100 genes with the highest R values in at least two sample groups, are
included in the graph. MFP2: MULTIFUNCTIONAL PROTEIN 2; PMDHI: PEROXISOMAL MALATE DEHYDROGENASE 1; ASP3: ASPARTATE
AMINOTRANSFERASE 3; PEDI: PEROXISOME DEFECTIVE 1; UMPI: UBIQUITIN-MEDIATED PROTEOLYSIS 1; PYD3: PYRIMIDINE
DEGRADATION STEP 3; APG8b: AUTOPHAGY-RELATED UBIQUITIN-LIKE MODIFIER 8b; ALDHI: ALDEHYDE DEHYDROGENASE 1,
PYD2: PYRIMIDINE DEGRADATION STEP 2; SDH3-1: SUCCINATE DEHYDROGENASE 3-1; SAY1: STERYL DEACETYLASE 1; MEI2:
MEIOSIS 2; COX17: Copper chaperone for cytochrome ¢ oxidase; SKPI: S-PHASE KINASE-ASSOCIATED PROTEIN; rcdl: required for cell

differentiation 1.

and the dichlorophenyl group of 2,4-DB were positioned
towards the hydrophobic cavity (near Ile37, Phe74,
Phe76, Phe81, Met100, and Phel12). The SURFNET plot
shows that the AtSCP2 model has a very large tunnel-like
cavity. Based on the docking results, the IBA and 2,4-DB
molecules take up only a part of the cavity volume and,
thus, do not extensively interact with the large hydropho-
bic cavity, indicating that they are not optimal AtSCP2
ligands (Fig. 9).

Expression profiling of Atscp2-1

To reveal the molecular mechanisms underlying the
delayed root elongation of Atscp2-1 seedlings, expression
profiling was performed using the CATMA microarray
slides (Allemeersch et al., 2005). RNA was isolated from
2-d-old seedlings of wild-type and Atscp2-1 germinated in
the light on media lacking sucrose. The RNA was used as
the template for the synthesis of cDNA, which sub-
sequently was labelled with Cy5 and Cy3 and hybridized
to the gene-specific tags of 150-500 bp on the microarray
slide. The empirical Bayes methods B-statistics (Lonnstedt
and Speed, 2002; Smyth er al., 2003; Lonnstedt and

Britton, 2005) was applied to identify and rank the 100
reporters that, among about 25 000 reporters on the slide,
showed the most significant changes in expression pattern
in Atscp2-1. These 100 reporters corresponded to 94
different genes from the A. thaliana genome of which 54
were up-regulated and 40 were down-regulated (including
AtSCP2) in Atscp2-1 (see Supplementary Table S1 at JXB
online). The expression pattern of 10 genes identified as
up- or down-regulated in the microarray analysis was tested
with quantitative real-time RT-PCR using gene specific
primers. The results confirmed that these genes had
a modified expression in Atscp2-1 (see Supplementary
Table S2 at JXB online).

Those genes with a significantly altered expression
represent a large range of functional categories, such as
carbohydrate and amino acid metabolism, transport, and
stress response. Interestingly, several genes that previously
were shown to have an altered expression in seedlings of
A. thaliana mutants ic/-2 and mls-2 with mutations in genes
encoding the key enzymes in the glyoxylate cycle,
isocitrate lyase (ICL), and malate synthase (MLS) (Cornah
et al., 2004), also showed an altered expression in Atscp2-1
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Fig. 5. Characterization of the Atscp2-/ mutant. In (A) is the genomic
structure of the AtSCP2 loci on chromosome 5 of the A. thaliana
genome. Exons are indicated as bars. The location of the T-DNA
insertion in Atscp2-1 is shown. (B) PCR analysis of the AtSCP2 loci in
genomic DNA from A. thaliana wild-type and Atscp2-1. The absence of
the AtSCP2 specific (arrow) PCR product indicates that the Atscp2-1
line is homozygous for the T-DNA insertion. (C) Analysis of the
expression of AtSCP2 mRNA in wild-type Col-0 and the Atscp2-1 line.
The absence of a PCR product from RT-PCR analysis of AtSCP2
cDNA shows that AtSCP2 is not expressed in the Atscp2-1 line.
Information regarding primers is provided in the Materials and methods.

Wild-type

Atsep2-1

Fig. 6. Seeds from Atscp2-1 have an aberrant morphology. The picture
shows a random sample of seeds from one wild-type plant and one
Atscp2-1 plant.

(Table 1). In fact, of the 20 genes listed showing the most
significant overexpression in ic/-2 mutants, six were among
the 54 genes that were up-regulated on our Top 100 list.
Two out of 12 genes that showed a 2-fold repression in
mis-2, and 2 out of 10 genes showing a 2-fold over-
expression in mls-2 were also identified in our Top 100 list.
Three genes, ASNI (At3g47340), At2g05540, and THAI
(At1g08630), are overexpressed in Atscp2-1, icl-2, and mls-
2. ASNI is a glutamine-dependent asparagine synthase
(Lam et al., 1994), At2g055490 is a Gly-rich protein, and
THAT is a Thr aldolase, which catalyse the formation of
Gly from Thr (Joshi et al., 2006).

Metabolome analysis of Atscp2-1

We were interested in identifying metabolites that showed
either significantly increased or decreased levels in
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germination (%)

hours

Fig. 7. Seeds from Atscp2-1 show slower germination kinetics and
lower germination frequency. Seeds from wild-type (red lines, trian-
gles), Atscp2-1 (35S::AtSCP2) (black lines, circles), Atscp2-1 (AtSC-
P2::AtSCP2) (blue lines, diamonds), and Atscp2-1 (green lines, squares)
were surface-sterilized and placed on 1/2 MS-media with 1% sucrose
(filled symbols) or 0% sucrose (open symbols). Seeds were then
stratified for 72 h at 4 °C, and placed in growth cabinet at 22 °C. The
time scale measures the time in the growth cabinet. Germination was
scored as radicle protrusion. Each time point contains the scoring
information from 200-300 seeds.

Atscp2-1. Metabolome analyses were performed on 3-d-
old seedlings of Atscp2-1 and A. thaliana wild-type. The
samples were extracted, derivatized, and analysed by GC-
MS according to Gullberg et al. (2004). The GC-MS data
were analysed using hierarchical multivariate curve reso-
lution (H-MCR; (Jonsson et al., 2005)). The data were
centred and scaled to unit variance prior to partial least
squares discriminant analysis (PLS-DA) classification of
the genotypes. The obtained PLS-DA model (three
components; R*X=0.48; R?*Y=0.99; Q2Y:0.93) shows
a clear separation of the genotypes for the first two
components (data not shown). The identification of differ-
ences was performed by interpretation of the loadings (as
described in Trygg and Wold, 2002) from the PLS-DA
model together with the 99% confidence intervals calcu-
lated using jack-knifing. In seedlings, 421 variables were
detected, 110 of those showed a significant difference
between wild-type and Atscp2-1 according to PLS-DA
analysis (one component; RZX:0.2O; RZY:0.91;
Q?*Y=0.81) and interpretation of first loading vector as
described above. The significant metabolites were identi-
fied by comparison of retention index and mass spectra
with retention index and mass spectra libraries (Schauer
et al., 2005). The 20 metabolites that showed the most
significant difference in accumulation between Atscp2-1
and wild-type were ranked. Twelve different metabolites
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Fig. 8. AtSCP2 is important for root growth during seedling establishment. The hypocotyl length (A, B), size of the rosette (C, D) and root length (E,
F) of 3-d-old and 7-d-old seedlings were measured after growing the plants on 1/2 MS without sucrose (A, C, E) or with 1% sucrose (B, D, F) under
constant illumination. At least 20 seedlings were measured from each growth condition and time point. White bars: Atscp2-1, red bars: wild-type,
black bars: Atscp2-1(35S::AtSCP2), blue bars: Atscp2-1(AtSCP2::AtSCP2). Error bars show standard deviation.

were identified on the ranking list (Table 2). There were
higher levels of GlIn, pyroglutamic acid (a putative
derivatization artefact from glutamate), Asp, [-Ala,
fumaric acid, glyceraldehyde, and ribose in wild-type
seedlings compared to Atscp2-1 (Table 2). The Atscp2-1
seedlings contained enhanced levels of Ser, Gly, Asn, 3-
cyanoalanine, and 5-methylthiopentanitrile (tentative iden-
tification). Comparison with the previously published
metabolome analyses of icl-2 and mls-2 seedlings (Cornah
et al., 2004) revealed several similarities as these mutants
were also shown to have lowered amounts of Gln, and
that mils-2 and Atscp2-1 seedlings both contained in-
creased levels of Ser and Gly. The increased levels of Asn
in Atscp2-1 coincide with increased expression of the
asparagine synthase ASN/, as shown by the microarray
analysis of Atscp2-1 seedlings. Elevated levels of Gly
correlated with increased expression of the Thr aldolase
THAI in Atscp2-1.

Discussion

It has been shown that AtSCP2 is ubiquitously expressed
in maturing seeds, young seedlings, and floral tissues,
although the transcript is present throughout all develop-

mental stages of A. thaliana. The expression of AtSCP2 is
correlated to the expression of enzymes of the B-oxidation
machinery, such as MFP2, PED1, and PMDHI. The
AtSCP2-deficient Atscp2-1 show altered seed morphol-
ogy, compromised germination, and require exogenous
carbohydrates to avoid delayed seedling establishment.
Transcriptome and metabolome analysis of AtSCP2-1
revealed similarities to the glyoxylate cycle mutants ic/-2
and mls-2, such as increased expression of the genes
ASN] and THAI, decreased levels of Gln, and elevated
levels of Gly and Ser.

According to current knowledge on B-oxidation and the
glyoxylate cycle in A. thaliana (reviewed in Baker et al.,
2006), fatty acids are delivered into the peroxisomes by
the peroxisomal ABC-transporter CTS (also referred to as
PED3 or PXA1) (Zolman et al., 2001; Footitt et al., 2002;
Hayashi ef al., 2002). The delivered fatty acids are
activated to acyl-CoA esters through the activity of
peroxisomal acyl-CoA synthetases such as the long-chain
acyl-CoA synthetases LACS6 and LACS7 (Fulda et al.,
2004). The acyl-CoA esters then go through the repeated
cleavage of acetate units from the thiol end through the
activities of the B-oxidation enzymes: acyl-CoA oxidases
ACX1-6, the multifunctional proteins MFP2 or AIMI,



and the 3-ketoacyl-CoA thiolases (PED1, KATI1 and
PKT2) (Hayashi et al, 1998, 1999; Richmond and
Bleecker, 1999; Germain et al., 2001; Adham et al.,
2005; Rylott et al., 2006). To allow for conversion of
lipids into sugar via gluconeogenesis, the acetate obtained

Fig. 9. Docking of IBA and 2,4-DB into the homology model of
AtSCP2. The AtSCP2 cavity is shown in transparent grey. IBA and 2,4-
DB are shown in light cyan and cyan, respectively. The IBA and 2,4-
DB molecules lie near one of the cavity openings and leave a large
volume of the binding cavity empty, which suggests that they are not
the best possible ligands for AtSCP2.
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may be fed into the glyoxylate cycle for the synthesis of
succinate, malate, and oxaloacetate. The reactions in the
glyoxylate cycle are catalysed by citrate synthase (CSY),
aconitase, ICL, MLS, and malate dehydrogenase.

Seedling establishment of the Atscp2-I mutant is not
dependent on an exogenous supply of sucrose, but sucrose
is required to avoid a delay. Sucrose-dependent seedling
establishment has been shown for many A. thaliana
mutants deficient in proteins with roles in B-oxidation or
the glyoxylate cycle, such as the acx/acx2 mutant deficient
in the ACXI1 long chain acyl-CoA oxidase and the ACX2
very long chain acyl CoA oxidase (Adham et al., 2005),
the aiml mutant (Richmond and Bleecker, 1999), the mfp2
mutant (Rylott et al., 2006), the pex6 mutant deficient in
a putative peroxisomal ATPase (Zolman and Bartel, 2004),
the pxallped3/cts mutant (Zolman et al., 2001; Footitt
et al., 2002; Hayashi et al., 2002), the lacs6lacs7 mutant
(Fulda et al., 2004), the pedl/kat2 mutant (Hayashi et al.,
1998; Germain et al., 2001), the csy2csy3 mutant
(Pracharoenwattana et al., 2005), the mils-2 mutant
(Cornah et al., 2004), and the sdp2 mutant deficient in
peroxisomal monohydroascorbate reductase (Eastmond,
2007). The sucrose dependency of these mutants is con-
sidered to reflect a lack of gluconeogenesis as a conse-
quence of reduced fatty acid B-oxidation or a blocked
glyoxylate cycle.

Many of the above sucrose-dependent mutants with
defects in B-oxidation are able to grow in toxic levels of
2,4-DB or IBA. The phenotype of the Atscp2-I mutant
resembles that of the mfp2, lacs6lacs7, acxlacx2, and
sdp2 mutants, which are sucrose-dependent but still
sensitive to 2,4-DB and IBA (Fulda et al., 2004; Pinfield-
Wells et al., 2005; Rylott et al., 2006; Eastmond, 2007).
The phenotype of the lacs6lacs7 mutant may be explained
by the fact that probably another CoA-synthetase is
capable of activating 24-DB and IBA to the

Table 1. Atscp2-1 shows a similar pattern of gene expression as icl-2 and mls-1

The data are from microarray experiments, where the gene expression in Atscp2-1, icl-2, and mlis-2 seedlings were compared to wild-type seedlings.
Only genes ranked to be among the 100 genes showing the most significantly altered expression pattern in Atscp2-1 were included in the comparison

to icl-2 and mlis-2. NA, not applicable (see Cornah et al., 2004).

Gene Description” Atscp2-1° icl-2"¢ mls-2"
THAI Threonine aldolase + + +
(At1g08630)

Atl1g21400 2-Oxoisovalerate dehydrogenase + + NA
At2g05540 Gly-rich protein + + +
ASNI Gln-dependent Asn-synthetase + + +
(At3g47340)

At5g20230 Blue-copper binding protein + + NA
At5g50600 Hydroxysteroid dehydrogenase 1 + + NA
At3g14210 Myrosinase-associated protein - NA -
At1g52060 Jasmonate-inducible protein - NA -

“ Descriptions are according to The Arabidopsis Information Resource (TAIR) at www.arabidopsis.org.
+ indicates that the gene is overexpressed in the mutant compared to wild-type; — indicates that the gene is expressed at lower levels in the

mutant compared to in wild-type.
¢ Data are from Cornah et al. (2004).
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Table 2. Compounds showing significantly different levels in 3-
d-old seedlings of wild-type and Atscp2-1

Compound Wild-type Relative®  Atscp2-1 Relative”
mean area +99% mean area =99%
confidence interval ~ confidence interval

Asp 14 122£3572 88082170

B-Ala 798+374 39665

Fumaric acid 1582+412 887163

Gln 174 860+37561 89 282+10191

Glyceraldehyde 815+266 323+71

Pyroglutamic acid 312 447+£55162 182 19918855

Ribose 884+265 458*54

Asn 64771874 11 380+1560

3-Cyanoalanine 752+100 117197

Gly 22 289+3940 50 760*+11217

5—Methylthiopentanenitrileh 0x0 876136

Ser 27 879£9060 58 1895825

¢ Corrected for internal standards and weight.
b Tentative identification.

corresponding CoA-thioester before B-oxidation. More-
over, IBA and 2/4-DB sensitivity shows that the de-
ficiency of the two long chain acyl-CoA synthetases does
not cause a general block of the B-oxidation cycle in the
lacs6lacs7 mutant. The 2,4-DB sensitivity of mfp2
mutants is probably due to that the other A. thaliana
multifunctional protein AIM1 is active on 2,4-DB in
a mfp2 background (Rylott et al., 2006). In the case of the
acxlacx2 mutants, the 2,4-DB sensitivity could be due to
ACX1 and ACX2 showing specificity for medium to very
long chain acyl-CoA species, whereas 2,4-DB is metabo-
lized by ACXs with short-chain specificity as suggested
by Pinfield-Wells et al. (2005). The 2,4-DB sensitivity
shown for sdp2 was hypothesized to be due to many
peroxisomal matrix and membrane proteins remaining
functional in the mutant (Eastmond, 2007). The IBA and
2,4-DB sensitivity of the Atscp2-1 mutant show that
AtSCP2 is not required for B-oxidation of those com-
pounds, and that the B-oxidation cycle is not blocked in
the mutant. Furthermore, the docking analysis of IBA and
2,4-DB shows that they are not the most favourable
ligands for AtSCP2, indicating that AtSCP2 would not be
involved in the binding or transfer of the auxin precursors.

The Atscp2-1 mutant shows a compromised germina-
tion, with slower germination kinetics as well as a lower
germination frequency. Unlike the post-germinative growth
phenotype, the germination phenotype of Atscp2-1 is not
rescued by the addition of exogenous sugar. The slow
germination phenotype of Atscp2-1 resembles the pheno-
type of the lac6lac7 double mutant which reached 50%
germination in 4.5 d compared to 1.5 d for wild-type
(Footitt et al., 2006). Sucrose-independent germination
phenotypes have also been shown for acxlacx2, pedl/
kat2, and cts mutants (Pinfield-Wells et al., 2005). Seeds
from these mutants showed germination frequencies
below 30%, indicating a more severe block in germination

compared to Atscp2-1. Seeds from pedl/kat2 and cts
mutants contain significant amounts of sucrose (Footitt
et al., 2002; Pritchard et al., 2002) suggesting that the
germination phenotypes are not due to a limited supply of
soluble sugars. Rather, as suggested recently (Pinfield-Wells
et al., 2005) the B-oxidation pathway may, during germina-
tion, be utilized for the synthesis of a specific signal
molecule promoting germination, or to degrade a molecule
that inhibits germination. This capacity may then be
compromised in Atscp2-1, lac6blac7, acxlacx2, pedl/kar2,
and cts mutants leading to an inhibition of germination.

During development and maturation of A. thaliana
seeds, the total fatty acid levels in the seeds increase, until
the later stages of seed maturation when the levels drop to
close to 30% relative to the peak levels (Baud et al, 2002).
Metabolic studies of developing embryos of Brassica
napus showed that at least 10% of the fatty acids stored as
triacylglycerol was lost during the desiccation phase of
seed development. Interestingly, metabolic labelling of the
embryos revealed that B-oxidation was not associated with
net gluconeogenic activity (Chia et al., 2005). The func-
tion of fatty acid breakdown during seed development
remains unclear, nevertheless, the activity during seed
maturation may explain the altered morphology of the
Atscp2-1 seeds if AtSCP2 is involved in peroxisomal lipid
utilization. We were somewhat surprised to find that
sucrose stimulated the expression of AtSCP2. Rather, it
had been expected that sucrose would repress the expres-
sion, as increased levels of sucrose could be signalling
a limited need for lipid utilization. Further investigations
of the function of AtSCP2 may possibly reveal the
significance of this observation.

The Atscp2-1 seedlings had elevated levels of Asn, Ser,
and Gly, and decreased levels of Asp, Glu, and Gln.
Changed levels of GIn, Ser, and Gly were previously
reported for ic/-2 and mls-2 seedlings (Cornah et al.,
2004). Asn accumulates in response to sugar starvation,
probably due to an increase in expression of Asn synthase
(Lam et al., 1994; Azevedo et al., 2006), which catalyses
the formation of Asn through the transfer of an amide
group from GIn to Asp. Our microarray experiments
revealed overaccumulation of the ASN/ transcript in
Atscp2-1 seedlings (see Supplementary Table S1 at JXB
online) which suggests that the modified levels of Asn,
Asp, Gln, and Glu in the Atscp2-1 mutant are consequen-
ces of increased accumulation of Asn synthase. Interest-
ingly, ASN1 had elevated expression levels also in icl-2
and mls-2 seedlings (Cornah et al., 2004). Why are
deficiencies in AtSCP2, ICL, and MLS leading to in-
creased expression of ASNI/? Possibly, when an exoge-
nous carbon source is lacking, these mutant seedlings are
in a condition suggestive of sugar starvation. Sugar
starvation triggers ASN/ expression and leads to increased
levels of Asn. Atscp2-1 also had increased levels of Gly
and Ser. This was also seen for the mls-2 seedlings. In the
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case of mls-2, Cornah et al. (2004) hypothesized that
when the glyoxylate cycle is blocked at MLS, glyoxylate
feeds into the photorespiratory pathway. The increased
activity of the photorespiratory pathway then leads to
elevated levels of Gly and Ser. The elevated levels of Gly
and Ser in Atscp2-1 possibly indicate that AtSCP2 also
functions in the glyoxylate cycle. This hypothesis may
also be supported by the decreased levels of fumarate
in Atscp2-1. An underperforming glyoxylate cycle in
Atscp2-1 may lead to lowered levels of fumarate, as
fumarate is produced in the citric acid cycle from succinate,
which is a product of the glyoxylate cycle. The elevated
Gly levels may also, at least partially, be due to the
demonstrated overexpression of THAI in Atscp2-1. THAT,
which is mainly expressed in seeds and young seedlings,
encodes a Thr aldolase functioning in Thr catabolism where
it is catalysing the conversion of Thr to Gly (Joshi et al.,
2006). A thal mutant has a 50% decrease in Gly content
(Joshi et al., 2006), which indicates that it is not unlikely
that the overexpression of THAI in Atscp2-1 would result
in elevated Gly levels. It is interesting that the expression of
THAI was also induced in mls-2 and icl-2 seedlings
(Cornah et al, 2004).Thus, it can not be excluded that the
elevated Gly levels in mls-2 seedlings is, to some extent,
related to increased THAT activity.

We have presented data here showing that the activity
of the peroxisomal protein AtSCP2 is important for
metabolism in A. thaliana. A function in B-oxidation is
supported from the co-expression with MFP2, PED1, and
PMDHI1. The common pattern seen in animals, fungi, and
protists with fusions of SCP-2 domains to catalytic domains
involved in p-oxidation could also support a direct
involvement in PB-oxidation for AtSCP2. However, the
2,4-DB-sensitivity shown for Atscp2-1 may suggest that
AtSCP2 is not required for B-oxidation, at least not for all
compounds. A function related to the glyoxylate cycle is
supported by the similarities between Atscp2-I and the
glyoxylate cycle mutants icl-2 and mls-2, as revealed
by transcriptome and metabolome analyses. Another
possibility that cannot be excluded is that the function of
AtSCP2 is not directly connected to a specific metabolic
pathway. Rather, AtSCP2 could be involved in the
transport, solubilization, and presentation of hydrophobic
reaction intermediates from several metabolic pathways.
Further detailed investigations, including lipid profiling of
Atscp2-1 seedlings, as well as AtSCP2-protein and
AtSCP2-ligand interactions may provide us with addi-
tional clues to the biological function of AtSCP2.

Supplementary data

Supplementary data are available at JXB online.
Table S1. Ranking of genes with significantly altered
expression in Atscp2-1 relative to wild-type.
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Table S2. Comparison of results from microarray and
quantitative real-time reverse transcriptase PCR (qRT-
PCR) analysis of gene expression in wild-type and
Atscp2-1 seedlings.
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