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Abstract

A convergent and enantioselective synthesis of the natural product amurensinine is described. The
synthetic strategy takes advantage of mild and selective C—H and C—C bond insertion reactions, in
addition to the palladium-catalyzed aerobic oxidative kinetic resolution recently developed in these
laboratories.

The development of mild and selective C—H and C—C bond insertion reactions for complex
molecule synthesis has the potential to enable strategic disconnections that would be
inconceivable using traditional methods.> Because of the sheer abundance of C-H and C-C
bonds in most organic molecules and the general shortage of methods to perform selective
reactions on these bonds, the application of C—H and C-C activation reactions in the context
of natural product synthesis has been limited. Despite these challenges, the number of examples
continues to rise.2 In this communication, we present a convergent and enantioselective
synthesis of the natural product amurensinine (1) that employs mild and selective C—H and C-
C bond insertion reactions as key strategic maneuvers.

Amurensinine (1) is a member of the isopavine family of alkaloids, which are exemplified by
a characteristic tetracyclic tetrahydroisoquinoline core structure consisting of a doubly
benzannulated azabicyclo[3.2.2]nonane (Figure 1) 4 The i isopavines exhibit important
biological properties for the treatment of neurological disorders, such as Parkinson's and
Alzheimer's disease.® To date, there has been only one reported enantioselective synthesis of
amurensinine (1), which was based on a chiral auxiliary approach.6

Our retrosynthetic strategy for the preparation of amurensinine ((+)-1) commences with the
disconnection of the bridging amine functionality, exposing hydroxyester 6 as a synthetic
intermediate (Scheme 1). We reasoned that this chiral benzylic alcohol could be produced
enantioselectively by application of the palladlum catalyzed oxidative kinetic resolution
methodology, recently developed in our group. 7,8 Alcohol (2)-6 could be accessed from
ketoester ()-7, which contains the benzosuberane core carbocycle, an ideal retron for an
efficient and mild C—C bond insertion reaction involving the acylalkylation of arynes,
previously reported by our laboratories. 9,10 Thuys, aryne 8 and B-ketoester 9 were revealed as
substrates for the C—C bond insertion reaction. The former may be generated in situ from o-
trimethylsilyl triflate 10:12 and the latter b%/ a position-selective Rh-catalyzed C—H bond
insertion reaction of diazo compound 11.1
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We began our efforts toward amurensinine ((+)-1) with the preparation of p-ketoester 9
(Scheme 2). Functionalization of (3,4-dimethoxyphenyl)acetic acid (12) by standard methods
produced diazo compound 11, which was subjected to Rhy(OAc)4-catalyzed dediazotization.
13 Despite the possibility for intramolecular insertion into a number of C—H bonds at sp3 and
sp? carbon centers (i.e., H29), as well as intermolecular reactions, we observed the product of
a single C-H insertion event into the aryl C-H@ bond producing the desired p-ketoester 9 in
96% yield.

In the key bond-forming reaction of the synthesis, coupling of -ketoester 9 and aryne precursor
109 in the presence of CsF produced ketoester (+)-7 in 57% isolated yield (Scheme 3). This
single-step C—C insertion reaction generates the polycyclic carbon framework of amurensinine
by direct acyl-alkylation of 8. From a strategic standpoint, the aryne/B-ketoester ringexpansive
fragment coupling affords the concomitant production of the most synthetically challenging
carbocycle of 1, as well as the convergent union of the two major synthetic subunits.

With the carbocyclic core structure of amurensinine (1) available (i.e., 7), we implemented our
strategy for kinetic resolution and completion of the synthesis. To that end, ketoester (+)-7 was
diastereoselectively converted to hydroxyester (+)-6 by chemoselective carbonyl reduction
with L-Selectride. Gratifyingly, application of our oxidative kinetic resolution technology to
(%)-6 using Pd(sparteine)Cl, and O, provided the enantioenriched intermediate (—)-6 in 90%
ee (s =19, Scheme 4). Treatment of hydroxyester (—)-6 with (PhO),P(O)Nj3 in the presence of
DBU, 14 followed by reduction with Pd/C under an atmosphere of H, spontaneously produced
lactam (+)-16. Exhaustive reduction of the lactam with LiAIH4 and subsequent reductive
methylation yielded the natural product amurensinine ((+)-1).

Although this reaction sequence converted ketoester (x)-7 to amurensinine ((+)-1) in a rapid
fashion, the enantioenrichment produced by the oxidative Kinetic resolution was degraded
drastically. Most likely, this resulted from partial epimerization during the conversion of
hydroxyester (—)-6 to the corresponding azide due to the acidic nature of the C(5) position15
and the propensity to produce achiral o-quinonedimethide intermediates following in situ
activation of the C(12) hydroxyl.

In order to test this hypothesis and remedy the problem of racemization in our synthesis, we
devised an alternate endgame strategy (Scheme 5). Hydroxyester (+)-6 was reduced to a diol,
and the primary alcohol was silylated to furnish hydroxysilane (x)-17. This racemic alcohol
was then subjected to the oxidative kinetic resolution conditions to provide alcohol (—)-17 in
47% yield and greater than 99% enantiomeric excess, corresponding to an associated s -factor
of >47. Conversion of the enantioenriched alcohol (-)-17 to azide (—)-18 was straightforward
and produced azidoalcohol of greater than 99% ee. Azide (—)-18 was then transformed to the
desired secondary lactam (+)-16 in three simple steps. Importantly, the lactam produced by
this new synthetic sequence suffered no loss in optical purity and was converted to
amurensinine ((+)-1) as a single enantiomer.

In summary, we have developed a convergent and enantioselective synthesis of amurensinine
that takes advantage of sequential C—H and C—C bond insertion reactions to build the core
structure of the isopavines in a rapid fashion. A palladiumcatalyzed enantioselective aerobic
oxidation of hydroxysilane (+)-17 was utilized to generate enantioenriched amurensinine
((+)-1). Our work underscores the utility of selective C-H and C—C bond insertion reactions
for strategic planning of multi-step syntheses and provides the first demonstration of the
oxidative kinetic resolution in the context of natural product synthesis. Development and
applications of these powerful reactions are ongoing.
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Figure 1.
Representative isopavine natural products.
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