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Abstract

Background: Recent advances in proteomics have shed light to discover serum proteins or peptides as biomarkers for
tracking the progression of diabetes as well as understanding molecular mechanisms of the disease.

Results: In this work, human serum of non-diabetic and diabetic cohorts was analyzed by proteomic approach. To analyze
total 1377 high-confident serum-proteins, we developed a computing strategy called localized statistics of protein
abundance distribution (LSPAD) to calculate a significant bias of a particular protein-abundance between these two cohorts.
As a result, 68 proteins were found significantly over-represented in the diabetic serum (p,0.01). In addition, a pathway-
associated analysis was developed to obtain the overall pathway bias associated with type 2 diabetes, from which the
significant over-representation of complement system associated with type 2 diabetes was uncovered. Moreover, an up-
stream activator of complement pathway, ficolin-3, was observed over-represented in the serum of type 2 diabetic patients,
which was further validated with statistic significance (p = 0.012) with more clinical samples.

Conclusions: The developed LSPAD approach is well fit for analyzing proteomic data derived from biological complex
systems such as plasma proteome. With LSPAD, we disclosed the comprehensive distribution of the proteins associated
with diabetes in different abundance levels and the involvement of ficolin-related complement activation in diabetes.
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Introduction

Diabetes mellitus (DM) is one of the most common metabolic

disorders in the world, in which more than 90% are grouped to

type 2 diabetes mellitus (T2DM) [1]. Given the predicted

explosion in the number of T2DM cases worldwide [2], the

biomedical researchers face much stronger challenges, particularly

on understanding the pathogenesis of disease and discovering

biomarkers for tracking the disease process.

T2DM is characterized by abnormal glucose homeostasis

leading to hyperglycemia, and the serum glucose has been used

as a golden standard for diabetes diagnosis. However, T2DM is a

kind of disease involving defects of multiple organs, which cannot

be distinguished through the measurement of the serum-glucose

level. In addition, T2DM is a multiple-stage disease, which usually

covers several decades from impaired plasma glucose to various

complications. The serum-glucose level only reflects the conse-

quence of multiple physiological disorders in the given stage.

Therefore, many efforts have been made to identify genetic and

protein markers to reveal the molecular/cellular details or

progression of diabetes [3–9]. The genetic defects certainly render

more probability to diabetes. On the other hand, the protein

markers can track real-time status of diabetes. It has been found

there are changes in the protein abundances of serum in diabetes

progression [10,11]. For instance, a number of studies suggest that

the elevated circulating inflammatory biomolecules such as C-

reactive protein and serum amyloid A can be used for predicting

the development of T2DM [12–15]. However, since the

traditional strategy of diabetic diagnosis only relies on the

individual molecules as the biomarkers, the sensitivity and

accuracy of the biomarkers might be fluctuated due to ethnic or

personal variance [16–18]. Proteomic technology might provide

the new solutions for solving this problem, which can identify large

set of the proteins in cells or tissues through high-throughput

methods, and provide a globe view of the protein changes

associated with diabetes.

It is well known that serum severs the optimal resource for

discovery of disease biomarkers. Up to now, a few proteomic

analyses of serum related to diabetes have been reported. For

example, Dayal B et al. used the protein-chip to identify the high-
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density lipoproteins apoA-I and apoA-II and their glycosylated

products in patients with diabetes and cardiovascular disease [19].

Zhang et al. found that the protease inhibitors including clade A

and C, alpha 2-macroglobulin, fibrinogen, and the proteins

involved in the classical complement pathway such as complement

C3, and C4 exhibited the higher expression-levels in insulin

resistance/type-2 diabetes [20]. Bergsten et al. analyzed the serum

proteins in T2DM by SELDI-TOF-MS and peptide-mass

fingerprinting (PMF), and found the expression levels of

apolipoprotein, complement C3 and transthyretin were over-

represented, whereas albumin and transferrin were under-

represented in T2DM [21].

However, none of these above works provided the real globe

view for the protein profile of the diabetic serum, since the

proteomic analysis of serum is a formidable challenge for its huge

complexity and dynamic range [11,22]. Recent advances in serum

sample preparation such as a depletion of high abundance proteins

can be coupled to 1D or 2D-LC-MS/MS analysis, which have

provided the new ways for large-scale serum proteomic analysis

[23–25]. However, the step of the depletion of the high abundance

proteins might cause some artifacts. In the present study, we used a

label-free proteomic method with LC-MS/MS to investigate the

protein profiling between the non-diabetic and diabetic serum

without removing the high abundant proteins. After analyzing the

proteomics data according to the stringent criteria, a total of 3,010

proteins and 3,224 proteins were identified from the non-diabetic

and diabetic serum, respectively. In-depth bioinformatic analysis

was employed for these differential proteins between the non-

diabetic and diabetic serum.

Results

Selection of non-diabetic subjects and diabetic patients
Previous studies observed that T2DM might occurred at a

greater frequency in adults who are younger than 65 years,

suggesting that people who are old than 65 without diabetes

mellitus usually do not anticipate the genetic susceptibility [26].

Therefore, we set age criteria for sample cohort that an adult in

the present study must be old than 65 years (Non-diabetic subjects:

age 67.661.67 years; type 2 diabetic patients: age 6761.71 years)

in order to reduce the genetic effects related to T2DM between

non-diabetic and diabetic cohort. Furthermore, the careful

selection of samples was performed based on the clinical

parameters of non-diabetic and diabetic cohorts. Supplementary

Table S1 summarized the clinical parameters of the selected non-

diabetic subjects and diabetic patients, in which type 2 diabetic

patients group had higher FPG, PG2H, WT, BMI, HOMA,

HbA1c and C-peptide compared with control. To reduce the

individual variance of serum proteins within the cohort, we pooled

all the serum of each cohort for proteomic analysis, respectively.

Semi-quantitative proteomic identification in non-
diabetic and diabetic serum

We analyzed differential protein profile in two cohorts using

shotgun proteomics and label-free quantitative strategy. In order to

reduce sample complexity, proteins in non-diabetic and diabetic

serum were first separated on SDS-PAGE gel and the gel bands were

excised and subjected to in-gel tryptic digestion, respectively

(Figure 1A). The proteins were identified with criteria corresponding

to an estimated false dicovery rate of 2.5%. After combining the MS/

MS data generated from our experiment, we were able to assign

1,212,256 MS/MS spectra to 150,881 peptide counts, leading to

identification of 5,882 unique peptides corresponding to 3,010

protein groups in non-diabetic serum, and 1,211,006 MS/MS

spectra to 189,792 peptide counts, resulting in 5,960 unique peptides

corresponding to 3,224 protein groups in diabetic serum (all these

identified protein groups are called proteins in the text below for

clarity). Supplementary Figure S1 showed the quite similar

distributions of the identified peptides and proteins between non-

diabetic and diabetic serum, indicating non-bias of the identified

MS/MS spectra between non-diabetic and diabetic serum.

Among the identified 3,010 proteins in non-diabetic serum and

3,224 proteins in diabetic serum, 942 (30.30%) and 1,046

(32.44%) proteins were selected respectively under the condition

that each identified protein contained at least two peptide spectral

Figure 1. Overview of Idnetitication of proteins in non-diabetic
and diabetic serum. (A) Scheme of label-free strategy to differential
protein identification in non-diabetic and diabetic serum. Pooled serum
samples from five non-diabetic and five diabetic sera were separated
respectively by gel electrophoresis. Each gel lane was divided into 42
regions and each section was processed for mass spectrometry. (B)
1377 proteins were identified by at-least two peptide spectral counts in
either serum. 888 overlapped proteins were identified both in non-
diabetic and diabetic serum, whereas 223 proteins were identified
uniquely from the non-diabetic serum and 266 proteins were found
uniquely from the diabetic serum.
doi:10.1371/journal.pone.0003224.g001
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counts. Totally 1,377 proteins were obtained according to these

more stringent filter, resulting the false discovery rate of 1.6%.

There were 888 identified proteins overlapped in non-diabetic and

diabetic serum, whereas 223 proteins were identified uniquely

from the non-diabetic serum and 266 proteins were found

uniquely from the diabetic serum (Figure 1B, Supplementary

Table S2).

Localized statistics of protein abundance distribution
(LSPAD)

Since the peptide-spectral-count distributions of identified 1377

serum-proteins were widely spread out to the range of 105

(Supplementary Table S2), we developed M-A plotting referring to

microarray analysis in order to display a relative protein-

abundance distribution of each protein. First, for each protein,

X1 representing its peptide spectral counts in diabetic serum was

transformed into Y1 with formula f(X1) = log2(X1+1) as diabetic

protein abundance, while the X2 in non-diabetic serum was

transformed into Y2 with the same formula as a non-diabetic

protein abundance. Then, we defined ‘‘M’’ as differential protein

abundance between diabetic and non-diabetic serum by the

formula of Y12Y2, and ‘‘A’’ as an average protein abundance by

the formula of (Y1+Y2)/2. Based on these formulas, total 1377

proteins were plotted as a scatter chart, in which the values of M

were distributed on the Y-axis, and the values of A were

distributed on the X-axis (Figure 2A).

This scatter chart showed that the log2-ratio-range of the

differential protein-abundances between non-diabetic and diabetic

serum was considerably decreased along M-axis when the protein-

abundances were increased along A-axis (Figure 2A). These

observations indicated that the abundance ratio based on peptide

spectral counts cannot be simply used as indicators for differential

significance between diabetic and non-diabetic serum. For

example, the significance of 2-fold change from 2 to 1 peptide

spectral counts is not equal to the significance of 2-fold change

from 20000 to 10000. In addition, we realized that the protein-

distribution profiles at the low, middle and high level of protein

abundance, respectively, were considerably different (Figure 2B),

suggesting significance-calculation of particular differential pro-

teins should be localized to a certain range of related abundance

level. Therefore, we developed a computing method called

Localized Statistics of Protein Abundance Distribution (LSPAD)

to evaluate the statistical significance of protein-abundance bias

between diabetic and non-diabetic serum, by which the differentia

significance of a particular protein should be calculated through its

local protein-abundance distribution-window rather than through

whole distribution range from the lowest to highest protein-

abundances. Since the whole distribution range of protein

abundances could be generally subdivided into three parts (high,

middle and low protein-abundances, see Figure 2 and Supple-

mentary Table S2), we postulated a width of the local window for

statistics as 33%, i.e. only neighbored proteins with A value

located within the 33% A-axis around a particular protein should

be used for calculation.

In detail, for a particular protein, all the average peptide

spectral counts of neighbored proteins whose A value were within

the 33% abundance-window of the target protein were calculated

as a background to evaluate the statistical significance (p value) of

over-representation or under-representation of the target protein

by performing fisher’s exact test on a following four-fold table:

Figure 2. Quantitative strategy of proteins in non-diabetic and diabetic serum. (A) M-A plotting of 1377 identified proteins. ‘‘M’’ was
defined as differential protein abundance ratios of each protein between diabetic and non-diabetic serum, and ‘‘A’’ was defined as protein-
abundance of each protein. In addition, ret dots represented statistically significant over-represented proteins in diabetic serum, green dots
represented statistically significant under-represented proteins in diabetic serum, and grey dots were proteins without statistically-significant change
in diabetic serum and non-diabetic serum. (B) The distribution profiles of 1377 identified proteins (black line), identified proteins with M less than 5
(red line), between 5 and 10 (green line), and more than 10 (blue line).
doi:10.1371/journal.pone.0003224.g002

D ND

Peptide spectral counts of a target protein X1 X2

Sum of counts of all the other proteins in the window S1 S2
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The p-values derived from the fisher’s exact test were linearly

transformed into p9 in order to evaluate the bias of each protein-

abundance between diabetic and non-diabetic serum.

The formula of linear transformation is p0~
p=2,sgn~1

1{p=2,sgn~{1

�
:

(sgn = 1 indicates that a protein is over-represented in diabetic

sample, and sgn = 21 indicates that a protein is over-represented

in non-diabetic sample)

To evaluate the reliability of LSPAD, we carried out the MA-

plotting analyses to two duplicates of diabetic serum sample. First,

the duplicates of one pooled diabetic-serum sample were separated

by SDS-PAGE, and the entire gel was cut into 12 gel slices for LC-

MS/MS analysis (Supplementary Figure S2A). The results showed

the consistent proteomic data from these two duplicates (Supple-

mentary Figure S2B–E). Then these data were subjected to

LSPAD analysis. The result showed few protein-variants by

comparing the protein-abundances between two duplicates of one

pooled diabetic-serum sample with LSPAD method (Supplemen-

tary Figure S3A). Furthermore, we analyzed the expression-

differentiation significance of one diabetic-serum duplicate versus

a non-diabetic serum (Supplementary Figure S3B), and the other

diabetic-serum duplicate versus the same non-diabetic serum

(Supplementary Figure S3C). The Supplementary Figure S3D

showed the high correlation coefficient of the M values between

the significantly differential proteins in Supplementary Figure S3B

and S3C. Taken together, these results indicate that this LSPAD

method is reliable for exploring the differentiation of the protein

abundances between non-disease and disease serum.

Accordingly, after 42 gel bands were analyzed in diabetic and

non-diabetic serum respectively (Figure 1), 1377 identified proteins

were analyzed by LSPAD approach. All the significant abun-

dance-biases of 1377 proteins were calculated (Supplementary

Table S2). Furthermore, we marked the proteins with p9,0.01 in

red color as the significantly over-represented in diabetic serum,

the proteins with p9.0.99 in green color as the significantly under-

represented in diabetic serum, and the non-significantly differen-

tial proteins in grey color (Figure 2).

The 68 significant over-represented proteins in diabetic serum

were listed in Table 1. Many known risk factors of diabetes such as C-

reactive protein, serum amyloid A and haptoglobin were over-

represented in diabetic serum, in agreement with the observations by

traditional approaches based on the analysis of individual proteins

[27]. In addition, a number of other factors including the novel

proteins associated with diabetes were detected by this large-scale

survey (Table 1). On the other hand, 74 proteins were found under-

represented in diabetic serum (Supplementary Table S2). As far as we

know, some studies reported that Keratin and IgG were associated

with diabetes [28,29]. In addition, a lot of keratins were also involved

in the pathway of cell communication (Supplementary Figure S4) in

our results. According to our pathway-associated differential

significance analysis, we found keratin associated pathway were

significantly overall bias with diabetic serum, which might not result

from the bias of sample preparation.

Pathway-associated differential significance analysis
To further reveal the significant bias of the protein abundances at

the level of biological pathways in diabetic serum, we mapped those

1377 proteins into KEGG pathways [30]. Total 1377 identified

proteins in the present study involved in 147 related pathways

(Supplementary Table S3). Then, we calculated these proteins with

their p-values at the pathway level in order to discover overall bias of

pathways associated with diabetic-serum. The calculation proce-

dure was as follows: Supposing all the proteins are non-differential

expressed and independent of each other, their p-values, p, should

follow a uniform distribution between[0,1]. Thus, z = qnorm(p),

should follow a standard normal distribution (here qnorm is normal

inverse distribution function). After the normal inverse transforma-

tion of pi to zi, the summarized Z score for a certain pathway j was

generated by the formula, Zj~

Pnj

i~1

zixiffiffiffi
nj
p . Here nj was the number of

the proteins involved in the pathway j in our experiments, and

ix = {ixi} denoted the index of these proteins. Because the proteins

involved in the pathway j were supposed to be non-differential

expressed and independent of each other, the summarized score for

pathway j, Zj, should also follow a standard normal distribution. In

our case, for pathway j, the following hypothesis test was performed:

H0: Zj follows the standard normal distribution, indicating that the

pathway is not un-biased in diabetic serum.

H1: Zj doesn’t follow the standard normal distribution, indicating

that the pathway is over-represented or under-represented in

diabetic serum

P value for pathway j, Pj, was transformed from Zj by a normal

cumulative function, p = pnorm(z). Under a statistic significance

threshold a, an over-represented pathway in diabetic serum was

identified with Pjv
a=2 and under-represented pathway was

identified with Pjv1{a=2. If the P value is less than 0.01, it

indicates that this pathway is significantly overall overrepresented

in diabetic serum compared with non-diabetic serum. If the P

value is more than 0.99, it means that this pathway is significantly

overall overrepresented in non-diabetic serum.

Among the 147 pathways, we selected 18 pathways, in which each

pathway should have at least 5 identified proteins as well as more than

10% coverage of all the pathway-proteins in the database, to evaluate

the pathway-bias between non-diabetic and diabetic serum. All the

values of the protein-abundance biases in these 18 pathways were

presented in Supplementary Figure S4. Particularly, the pathways of

complement system, PPAR system, cell communication and

Alzheimer’s disease showed the significantly overall over-representa-

tion in diabetes serum (p,0.01), while insulin signaling, coagulation

cascade, focal adhesion and long-term pathways presented signifi-

cantly overall bias in non-diabetic serum (p.0.99) (Figure 3).

These significant differential pathways could be subdivided into

two major categories: one had many significant-differential compo-

nents in one pathway, and the other had a few highly significant-

differential components in one pathway. For example, on the PPAR

pathway, three apolipoproteins were all over-represented significantly

in diabetic serum (Figure 4A). In Alzheimer’s disease pathway, the

apoliprotein E over-presentation also contributed the overall bias of

this pathway to diabetic serum. Therefore, apolipoproteins could be

considered as a kind of the important biomarkers associated with

diabetes. As previous reports, many apolipoproteins were involved in

lipid metabolism [31–43]. These proteins were further selected to

show their abundance biases between non-diabetic and diabetic

serum. As shown in Figure 4B, 8 proteins including apolipoprotein A-

I, AII, C-II and C-III were significantly over-represented in diabetic

serum, whereas 6 proteins were significantly under-represented in

diabetic serum, which covered some regulatory factors such as

paraoxonase 1 (PON1) in lipid metabolism.

Over-representation of ficolin-related complement
pathway in diabetic serum

Our results showed that 12 proteins associated with comple-

ment system were significantly over-represented in diabetic serum

Diabetes Serum Proteome
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Table 1. Characterization of proteins significantly over-represented in diabetic serum compared to non-diabetic serum based on
LSPAD method. (P,0.01).

IPI ID Protein name
Diabetic peptide
spectral count

Non-diabetic peptide
spectral count P value

IPI00022434 ALB protein 61457 47082 4.09E-91

IPI00514824 Complement component C4B 875 183 1.44E-80

IPI00555805 Complement component 4A 3896 2109 1.63E-69

IPI00032258 Complement C4 precursor 3846 2077 3.06E-69

IPI00453459 Complement Component 4B preproprotein 3933 2141 9.77E-69

IPI00418163 C4B1 3811 2077 2.48E-66

IPI00384697 ALB protein 47105 37323 6.64E-37

IPI00556148 Complement factor H 2732 1691 1.30E-30

IPI00465313 Alpha 2 macroglobulin variant 17016 13013 7.50E-26

IPI00478003 Alpha-2-macroglobulin precursor 17344 13335 3.06E-24

IPI00385264 Ig mu heavy chain disease protein 1614 880 4.42E-23

IPI00164623 Complement C3 precursor 9754 7267 8.64E-22

IPI00479708 Immunoglobulin heavy constant mu (IGHM) 2007 1204 1.02E-21

IPI00549273 Immunoglobulin heavy constant mu (IGHM) 1995 1190 3.09E-21

IPI00019943 Afamin precursor 553 221 1.57E-20

IPI00479169 65 kDa protein 1932 1181 2.35E-18

IPI00022488 Hemopexin precursor 1952 1268 2.99E-14

IPI00426051 Hypothetical protein DKFZp686C15213 5203 3835 6.18E-14

IPI00021727 C4b-binding protein alpha chain precursor 638 321 1.01E-13

IPI00478493 Haptoglobin precursor 4214 3100 7.28E-12

IPI00550991 Alpha-1-antichymotrypsin precursor 1088 628 2.99E-11

IPI00019591 Splice Isoform 1 of Complement factor B precursor 1183 696 4.42E-11

IPI00021842 Apolipoprotein E precursor 394 181 3.28E-10

IPI00019399 Serum amyloid A-4 protein precursor 143 43 9.21E-10

IPI00021857 Apolipoprotein C-III precursor 144 49 3.87E-08

IPI00022392 Complement C1q subcomponent, A chain precursor 103 30 1.25E-07

IPI00021841 Apolipoprotein A-I precursor 4069 3112 2.14E-07

IPI00010865 Casein kinase II beta subunit 23 0 2.70E-07

IPI00396929 PREDICTED: similar to immunoglobulin M chain 165 68 1.55E-06

IPI00410714 Alpha 2 globin variant 433 244 3.33E-06

IPI00163446 The Human Immunoglobulin Heavy Diversity (IGHD) 134 53 4.03E-06

IPI00171834 Keratin, type I cytoskeletal 19 140 57 1.29E-05

IPI00399007 Hypothetical protein DKFZp686I04196 5114 4039 1.41E-05

IPI00003590 Quiescin Q6 15 0 4.53E-05

IPI00022389 Splice Isoform 1 of C-reactive protein precursor 15 0 4.53E-05

IPI00015309 Keratin, type I cytoskeletal 12 89 33 7.63E-05

IPI00290077 Keratin, type I cytoskeletal 15 142 62 8.21E-05

IPI00217963 Keratin, type I cytoskeletal 16 223 117 0.000146102

IPI00418422 The Human Immunoglobulin Heavy Diversity (IGHD) 69 23 0.000152193

IPI00423461 Hypothetical protein DKFZp686C02220 828 548 0.000223242

IPI00450768 Keratin, type I cytoskeletal 17 147 69 0.000275352

IPI00011261 Complement component C8 gamma chain precursor 266 152 0.000391696

IPI00556567 Ficolin-3 protein 80 33 0.000819734

IPI00441196 Hypothetical protein 3090 2450 0.000949718

IPI00386839 Amyloid lambda 6 light chain variable region SAR 180 98 0.001229635

IPI00017601 Ceruloplasmin precursor 2260 1816 0.001476612

IPI00383953 VH4 heavy chain variable region precursor 132 64 0.001483067

IPI00009866 Keratin, type I cytoskeletal 13 107 52 0.001918932

Diabetes Serum Proteome
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Figure 3. The overall bias analysis of selected pathways found in non-diabetic and diabetic serum. Proteins identified in non-diabetic
and diabetic serum were mapped to known pathways using KEGG. The p value of each pathway was digitized to the length of the bar diagram.
doi:10.1371/journal.pone.0003224.g003

IPI ID Protein name
Diabetic peptide
spectral count

Non-diabetic peptide
spectral count P value

IPI00470798 Hypothetical protein DKFZp686E23209 4508 3647 0.002098573

IPI00017530 Ficolin-2 precursor 9 0 0.002266054

IPI00021854 Apolipoprotein A-II precursor 853 582 0.002359293

IPI00004550 Hypothetical protein FLJ20261 96 45 0.00238822

IPI00011252 Complement component C8 alpha chain precursor 81 36 0.002415224

IPI00293898 Hepatocellular carcinoma associated protein TB6 19 4 0.002727717

IPI00384444 Keratin, type I cytoskeletal 14 207 120 0.003122976

IPI00021856 Apolipoprotein C-II precursor 32 11 0.00418406

IPI00219806 S100 calcium-binding protein A7 8 0 0.004391148

IPI00446354 Hypothetical protein FLJ41805 8 0 0.004391148

IPI00479762 115 kDa protein 8 0 0.004391148

IPI00022446 Platelet factor 4 precursor 82 39 0.00501026

IPI00300725 Keratin, type II cytoskeletal 6A 158 90 0.005161139

IPI00242956 Fc fragment of IgG binding protein 24 8 0.006549075

IPI00384401 Myosin-reactive immunoglobulin kappa chain variable region25 8 0.006595492

IPI00293665 Keratin, type II cytoskeletal 6B 141 79 0.00706398

IPI00299145 Keratin, type II cytoskeletal 6E 144 83 0.007903541

IPI00383603 Anti-thyroglobulin light chain variable region 7 0 0.008537501

IPI00452748 Serum amyloid A protein precursor 7 0 0.008537501

IPI00021304 Keratin, type II cytoskeletal 2 epidermal 810 575 0.009876282

doi:10.1371/journal.pone.0003224.t001

Table 1. cont.
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(Figure 5A). It has been known that the complement system can be

activated through three different ways, including lectin, classical

and alternative pathways (Figure 5B) [44,45]. The present work

showed that two trigger factors of lectin-complement activation,

ficolin-2 and ficolin-3, were both over-represented significantly in

the diabetic serum (Table 1), while the ficolin-3 was detected with

much higher abundance than ficolin-2. Another kind of lectin

related to complement initiation, mannose biding lectins (MBL),

was not detected. These results indicate that ficolin-3 might be the

major trigger of lectin-complement activation in diabetic patients.

Validation of ficolin-3 related complement activation in
diabetic serum

When the complement system is activated, the complement C3

is cleaved to C3a and C3b, which is the common and crucial step

in all complement activation pathways (as shown in Figure 5B,

[46]). To validate the level of C3 and its activation, Western

blotting for C3, corresponding fragment C3a and C3b were

performed in the non-diabetic and diabetic serum. It was

confirmed that these proteins were over-represented in diabetic

serum (Figure 6).

Figure 4. The identified proteins and abundance biases in specific pathways. (A)PPAR system, (B) Apolipoproteins associated Lipid
metabolism. The p value of identified protein was digitized to the length of the bar in each pathway.
doi:10.1371/journal.pone.0003224.g004
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Figure 5. Overview of proteins associated with complement system. (A) The identified proteins and the abundance biases in complement
system. The p value of identified protein was digitized to the length of the bar in each pathway. (B) The three activation pathways of complement
system: the classical, mannose-binding lectin, and alternative pathways. The three pathways converge at the point of cleavage of C3. Therefore, the
C3 cleavage is the crucial step in activation of the three complement pathway. Molecules of C3 are cleaved to C3a and C3b by the C3 convertase. C3b
binds covalently around the site of complement activation. Some of this C3b binds to the C4b and C3b in the convertase enzymes of the classical and
alternative pathways, respectively, forming C5 convertase enzymes. This C3b acts as an acceptor site for C5, which is cleaved to form the
anaphylatoxin C5a and C5b, which initiates the formation of the membrane-attack complex. Excitedly, ficolin-3 is a biologically active protein of the
lectin-complement activation in association with MBL-associated serine protease (MASP). In this figure, significantly up-regulated proteins in diabetic
serum were denoted with red color, slightly up-regulated proteins in diabetic serum were denoted with light red color, significantly up-regulated
proteins in non-diabetic serum were denoted with blue color, and slightly up-regulated proteins in non-diabetic serum were denoted with light blue
color. Not identified proteins or the fragment of the complement component were denoted with light grey color.
doi:10.1371/journal.pone.0003224.g005
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It has been known that lectin is one of the trigger to

complement activation [46,47]. Our studies identified 33 and 80

spectral peptide counts of ficolin-3 from non-diabetic and diabetic

serum, respectively (Table 1). Among these detected peptides, two

particular peptides (VVLLPSCPGAPGSPGEK and YAV-

SEAAAHK) were detected exclusively from diabetic serum

(Figure 7A and 7B). Taken together, these findings indicate that

ficolin-3 in diabetic serum are over-represented in diabetic serum.

We further confirmed this observation by Western blotting

(Figure 6).

In order to evaluate the correlation of ficolin-3 with diabetes,

the protein-abundance of ficolin-3 was validated by Western

blotting in additional clinical sera from 24 non-diabetic subjects

and 24 diabetic patients (Supplementary Table S4). As shown in

Figure 7C and Supplementary Figure S5, the level of serum

ficolin-3 was 0.9060.43 in non-diabetic sera and 1.4360.87 in

diabetic sera (p = 0.012). Taken together, these results suggest a

ficolin-3 related complement activation in diabetic serum.

Discussion

The strategy for analyzing the highly dynamical range of
protein abundances

In this study, LC-MS/MS coupled with a label-free quantitative

strategy was applied to analyze the differential serum-protein

abundance profile between non-diabetic and diabetic patients.

The label-free quantitation based on peptide-spectral counts offers

a high-coverage identification of proteins, and then gives a

comprehensive and rapid comparison to the differential proteins,

especially to the plasma proteins [48]. Since the distribution range

of the peptide-spectral counts of the serum-proteins was up to 105

(Supplementary Table S2), we applied M-A plotting method

referring to microarray data-analysis for analyzing the effects of

the different abundance-levels as well as the count-ratio of a

particular protein between non-diabetic and diabetic serum

(Figure 2A). From the Figure 2B, we realized that the lower the

abundance-level of the peptide-spectral counts, the higher the

deviation of the count-ratio. In this regard, we cannot fix a count-

ratio as a threshold covering low abundance-level to high

abundance-level for evaluating the bias of the protein abundance

of diabetic serum. In other words, the quantitative selection of

differentia proteins based on the ratio of the particular protein-

abundance, which is usually used in isotope-labeling proteomic

methods, seems not suitable in the peptide-spectral counts

quantification for the systems with the highly dynamic range of

protein-abundances, i.e. serum proteome.

Therefore, we developed a localized statistics of protein

abundance distribution (LSPAD) for identifying the over- or

under-represented proteins in diabetic serum. Based on this

method, we can calculate the significance of the peptide-spectral-

count bias for differentia proteins instead of using the count-ratio.

Furthermore, we defined an abundance-window of 33% around a

target protein as a localized background for calculating the

statistical significance, by which we can evaluate the significant

bias of a target protein-abundance compared to the abundance-

distribution range of its neighbored proteins rather than to the

abundance-distribution range of all identified proteins.

Involvement of lipid metabolism and inflammation in
type 2 diabetes

In this study, many individual proteins associated with T2DM

reported in previous studies were also identified. In the group of

apolipoproteins, for example, many components were over-

represented in diabetic serum including Apolipoprotein E, CII,

CIII and serum amyloid. Apo E content of postprandial TG-rich

lipoproteins in subjects with both T2DM and coronary artery

disease was increased [49]. Serum amyloid A, a major apoprotein

(45%) in high-density lipoproteins (HDL), was increased due to

inflammation [50]. Apolipoprotein C III (apo C III) plays a central

role in regulating plasma metabolism of triglyceride-rich lipopro-

tein (TRL). Previous studies suggested that apo C III might be an

independent risk factor for atherosclerotic diseases in Chinese type

2 diabetes [51]. On the other hand, we identified some under-

represented regulatory factors in lipid metabolism such as

paraoxonase1 (PON1). PON1 is an anti-inflammatory enzyme,

which participates in the prevention of low density lipoprotein

(LDL) oxidation [52,53]. Recently, Mackness et. al reported that

high C-reactive protein and low paraoxonase1 in diabetes might

be used as risk factors of coronary heart disease [53].

We also found certain proteins associated with acute-phase

response were over-represented in diabetic serum such as C-

reactive protein [54,55], serum amyloid A [56], haptoglobin [57],

a-1-acid glycoprotein [12], ceruloplasmin [58] and Von Will-

ebrand factor [59]. Recently, abundant scientific evidences

suggested the elevated circulating inflammatory markers such as

C-reactive protein could be used for the prediction of the

development of T2DM [12–15]. Moreover, C- reactive protein

was also as a biomarker for inflammation in uremia [60]. Studies

also showed that haptoglobin and C-reactive protein were

increased significantly in both diabetes and glucose intolerance

[57]. There has been an explosion of interests that the chronic low-

grade inflammation and the activation of the innate immune

system were closely involved in the pathogenesis of T2DM [61].

Complement activation in type2 diabetes
Cross-sectional study have demonstrated strong correlation

between complement C3 and insulin resistance, which showed

Figure 6. Western blot confirmation of the serum level of C3
(,187 kD), C3a (,9 kD), C3b (alpha’ chain, ,104 kD) and
Ficolin-3 (,34 kD). The Non-diabetic serum: the mixture of equal
amount of serum from five non-diabetic subjects in Table 1, Diabetic
serum: the mixture of equal amount of serum from five diabetic
patients in Table 1.
doi:10.1371/journal.pone.0003224.g006
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that C3 was associated with a increased risk of developing diabetes

[47]. In the present study, the serum levels of C3 and its fragments

C3a were over-represented in diabetic serum by western blot

analysis, indicating the activation of complement system. Adipsin/

complement factor D is a serine protease that is secreted by

adipocytes into the bloodstream. Adipsin is deficient in several

animal models of obesity [62]. In our study, the expressing level of

adipsin was under-represented in diabetic serum. Lectin is also a

trigger for complement activation. This process begins due to the

binding of mannose-binding lectin (MBL) or ficolins with MBL-

associated serine protease-2 (MASP-2), and leads to the formation

of a C3 convertase [63–66]. Up to now, only a few evidences

showed that the increased level of MBL can provide prognostic

information in patients with T2DM [67]. In the present work,

MBL was not detected by mass spectrometry in serum, while both

ficolin-2 and ficolin-3 were detected over-represented in diabetic

serum. However, ficolin-2 was uniquely identified in diabetic

serum with only 9 spectral counts while ficolin-3 was detected with

much higher spectral counts. Therefore, it seems that ficolin-3

should be the major trigger and indicator of lectin-complement

activation. The Western-blotting of serum ficolin-3 with a lager

clinical population supports that serum ficolin-3 was significantly

over-represented and positively correlated with T2DM. Thus, we

argue that ficolin-3 triggers the lectin-complement pathway, which

might play an important role in the chronic low-grade inflamma-

tion and activation of the innate immune system associated with

T2DM.

In summary, the LSPAD approach developed in this present

work is well useful for analyzing proteomic data derived from

biological complex systems such as plasma proteome, by which we

disclosed the comprehensive distribution of the proteins associated

with diabetes among high, medium and low abundant proteins. In

addition, we found the involvement of the ficolin-related

complement system in type 2 diabetes.

Materials and Methods

Clinical sample collection and preparation
Ten male adults were selected for this investigation, including

five non-diabetic subjects (FPG 4.8260.21 mmol/L; PG2H

4.7861.54 mmol/L; BMI 21.6760.81 kg/m2; HbA1c

5.6860.54%; C-peptide 1.0960.25 ng/mL; and homeostasis

model assessment [HOMA] 1.0460.67), and five type 2 diabetic

patients (FPG 7.2662.73 mmol/L; PG2H 12.261.21 mmol/L;

Figure 7. MS/MS spectra of representative peptides from ficolin-3 and validation of ficolin-3 up-regulation in diabetic sera. (A)
VVLLPSCPGAPGSPGEK (B) YAVSEAAAHK (C) Western blot validation of the serum ficolin-3 level in the non-diabetic subjects and diabetic patients
(n = 24, respectively) were conducted. N: non-diabetic serum; D: diabetic serum.
doi:10.1371/journal.pone.0003224.g007
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BMI 27.0364.23 kg/m2; HbA1c 7.1460.42%; C-peptide

3.4461.31 ng/mL; HOMA 5.6763.96). The Homeostasis Model

Assessment (HOMA) for insulin resistance and b-cell function was

calculated from fasting plasma glucose and insulin concentrations.

Informed consent was obtained from each person in written

format and approved by Shanghai No. 6 People’s Hospital Review

Committee.

Immediately after collection, fasting blood samples were allowed

to clot at room temperature for four hours, and the serum were

collected and centrifugated at 3000 rpm/min for 15 min. Before

pooling the samples, the protein concentration of the serum

samples was determined by Bradford assay on a Microplate

Reader (Bio-Rad, Model 680). Five non-diabetic serum samples

were mixed as control-pool sample, and five diabetic serum

samples were also mixed as disease-pool sample. The two pooled

serum samples were diluted respectively to ,20 mg/mL with

100 mM phosphate buffer (pH 2.0, containing 5% ACN). Then,

the pooled serum samples were filtered through 0.22 mm filters

(Agilent technologies) by spinning at 10 000 g at 4uC for 30 min

and dialyzed to 100 mM phosphate buffer (pH 2.0, containing 5%

ACN).

Gel electrophoresis and In-Gel Digestion
The serum sample containing 1.8 mg proteins was reduced by

adding 2 mL of 1 M DTT to 10 mM and incubated at 37uC for

2.5 hours. The mixture then was added with 10 mL of 1 M IAA

and incubated for 40 min in darkness at room temperature. After

these treatments, the samples were subjected to SDS-PAGE on a

7.5–17.5% gradient gel. The gel lane stained with Coomassie Blue

was excised into 42 sections. Each excised section was cut into

approx. 1 mm3 pieces and destained using 30% acetonitrile/70%

100 mM ammonium bicarbonate solution, followed by dehydra-

tion in 100% acetonitrile for 5 min. Gel pieces were placed under

vacuum centrifugation until completely dried. Each gel slice was

then incubated in a 50 mM ammonium bicarbonate solution

containing 10 ng/mL trypsin (Promega Biotech Co., Madison, WI,

USA.) overnight. Peptides were extracted with 0.1% TFA/80%

acetonitrile, dried by vacuum centrifugation, and stored at 280uC
for further analysis with mass spectrometry.

Label-free shotgun proteomic identification
Each gel slice containing peptides was dissolved in 60 mL 0.1%

formic acid, and then the half of this peptide-solution was loaded

into the RP column. RP-HPLC was performed using an Agilent

1100 Capillary system (Agilent technologies) with C18 column

(150 mm i.d., 100 mm length, Column technology Inc., Fremont,

CA). The pump flow rate was 1.6 mL/min. Mobile phase A was

0.1% formic acid in water, and mobile phase B was 0.1% formic

acid in acetonitrile. The tryptic peptide mixtures were eluted using

a gradient of 2–55% B over 135 min. The mass spectral data were

acquired on a LTQ linear ion trap mass spectrometer (Thermo,

San Jose, CA) equipped with an electrospray interface operated in

positive ion mode. The temperature of heated capillary was set at

170uC. A voltage of 3.0 kV applied to the ESI needle. Normalized

collision energy was 35.0. The number of ions stored in the ion

trap was regulated by the automatic gain control. Voltages across

the capillary and the quadrupole lenses were tuned by an

automated procedure to maximize the signal for the ion of

interest. The mass spectrometer was set as one full MS scan was

followed by ten MS/MS scans on the ten most intense ions from

the MS spectrum with the following Dynamic ExclusionTM

settings: repeat count, 2, repeat duration, 0.5 min, exclusion

duration, 1.5 min.

Data analysis
All .dta files were created using Bioworks 3.1, with precursor

mass tolerance of 1.4 Da, threshold of 100, and minimum ion

count of 15. The acquired MS/MS spectra were searched against

the Human International Protein Index protein sequence database

(version 3.07, www.ebi.ac.uk/IPI) combined with sequences of real

protein and reverse sequences of proteins, by using the

TurboSEQUEST program in the BioWorks 3.1 software suite,

with a mass tolerance of 3.0 Da. All cysteine residues were

searched as carboxamidomethycystein (+57.02 Da). Up to one

internal cleavage sites were allowed for tryptic searches. All output

results were combined together using the in-house software named

BuildSummary to delete the redundant data. Searches were

conducted against the Human International Protein Index protein

sequence database to control the false discovery rate at 2.5% and

all spectral peptide count had a DCn score of at least 0.1. The

proteins identified by two or more peptide counts in either non-

diabetic or diabetic serum were used to the following bioinfor-

matics analysis.

Western bolt analysis of C3 and its fragments
Each of 100 mg non-diabetic and diabetic serum-proteins was

subjected to PAGE-gel electrophresis, and then proteins in the gel

were transferred to a nitrocellulose membrane. The membranes

were incubated first with the appropriate primary antibodies (C3b:

ab11871, C3a: ab11872, purchased from Abcam Ltd, Cambridge,

MA), respectively, and then incubated with HRP-conjugated

secondary antibodies for 45 min. The proteins were detected by

enhanced chemiluminescence (ECL-plus, Amersham Pharmacia

Biotech).

Validation of ficolin-3 over-representation in larger
samples

0.4 uL of each individual serum sample (non-diabetic and

diabetic subjects, n = 24, respectively) diluted to 1/10 with 1.0 M

Tris (pH 6.8) buffer was separated by SDS-PAGE, and electro-

transferred to a nitrocellulose membrane (Whatman International

Ltd., England.). The membrane was blotted with a mouse

monoclonal antibody against human ficolin-3 (R&D Systems,

Inc., 1:500). Signal detection was achieved with ECL Plus

chemiluminescence system (Amersham Biosciences). Signal of

bands from Western blot were scanned with PDQUEST GS-710 a

flat-bed scanner and digitized with Gel-PRO Analyzer software

(Media Cybernetics, Inc., USA). To decrease the system

discrepancy, we used the serum of the same patient as the

reference. Relative level of serum ficolin-3 was calculated by the

proportion of density ratio of sample bands to that of the reference

band. These density ratios were used for statistical analyses of

serum ficolin-3 level between non-diabetic and diabetic subjects.

Statistical analysis
Data were expressed as means6standard deviation (SD) for

normally distributed values. Differences between groups for

normally distributed variables were tested using t-test (analysis of

variance). All calculations were performed with GraphPad Prism

software system (GraphPad San Diego, CA, USA) and SPSS13.0

statistical package (Statistical Software, Los Angeles, CA, USA). A

P value below 0.05 was considered statistically significant.
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