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Purpose: Paired box gene 6 (PAX6) heterozygous mutations are well known to cause congenital non-syndromic aniridia.
These mutations produce primarily protein truncations and have been identified in approximately 40%–80% of all aniridia
cases worldwide. In Mexico, there is only one previous report describing three intragenic deletions in five cases. In this
study, we further analyze PAX6 variants in a group of Mexican aniridia patients and describe associated ocular findings.
Methods: We evaluated 30 nonrelated probands from two referral hospitals. Mutations were detected by single-strand
conformation polymorphism (SSCP) and direct sequencing, and novel missense mutations and intronic changes were
analyzed by in silico analysis. One intronic variation (IVS2+9G>A), which in silico analysis suggested had no pathological
effects, was searched in 103 unaffected controls.
Results: Almost all cases exhibited phenotypes that were at the severe end of the aniridia spectrum with associated ocular
alterations such as nystagmus, macular hypoplasia, and congenital cataracts. The mutation detection rate was 30%. Eight
different mutations were identified: four (c.184_188dupGAGAC, c.361T>C, c.879dupC, and c.277G>A) were novel, and
four (c.969C>T, IVS6+1G>C, c.853delC, and IVS7–2A>G) have been previously reported. The substitution at position
969 was observed in two patients. None of the intragenic deletions previously reported in Mexican patients were found.
Most of the mutations detected predict either truncation of the PAX6 protein or conservative amino acid changes in the
paired domain. We also detected two intronic non-pathogenic variations, IVS9–12C>T and IVS2+9G>A, that had been
previously reported. Because the latter variation was considered potentially pathogenic, it was analyzed in 103 healthy
Mexican newborns where we found an allelic frequency of 0.1116 for the A allele.
Conclusions: This study adds four novel mutations to the worldwide PAX6 mutational spectrum, and reaffirms the finding
that c.969C>T is one of the three more frequent causal mutations in aniridia cases. It also provides evidence that
IVS2+9G>A is an intronic change without pathogenic effect.

Aniridia is a congenital ocular disorder characterized by
bilateral variable iris hypoplasia with an estimated occurrence
of one in every 64,000–96,000 live births worldwide [1]. The
manifestations of the aniridia phenotype are variable, ranging
from thinning of the stroma and absent pupillary sphincter to
complete aniridia [2,3]. In addition to iris hypoplasia, other
ocular congenital defects may be present such as cataracts,
foveal hypoplasia, nystagmus, corneal opacity, lens
dislocation, and glaucoma with significant loss of vision [4].
Because of the wide spectrum of clinical manifestations
associated with this ocular pathology, Gronskov et al. [5]
proposed to categorize the phenotype into six different levels
based on iris presentation. However, this classification is not
widely used.

Correspondence to: Dra. Ariadna González-del Angel, Laboratorio
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Approximately two thirds of cases are familial with an
autosomal dominant inheritance pattern, probably with
complete penetrance [5,6]. Some sporadic aniridia cases have
the WAGR syndrome (Wilms tumor, aniridia, genitourinary
anomalies, and mental retardation; OMIM 194072). Several
genes at 11p13 are deleted in the WAGR syndrome including
WT1 and the evolutionarily conserved paired box gene 6
(PAX6) [7].

The human PAX6 spans 26 kilobases (kb), contains 14
exons [8,9], and encodes the PAX6 transcription factor.
PAX6 is considered the master control gene for ocular
morphogenesis and contributes to central nervous system
development [10]. Like other transcriptional activators of the
PAX family, PAX6 contains two DNA-binding domains (a
paired domain at the NH2-terminus and a middle
homeodomain) and a proline-serine-threonine (PST)-rich
transactivator domain at the COOH-terminus [8,9].

Homozygous loss of PAX6 is thought to lead to early
embryonic lethality [11]. Heterozygous mutations are found
in approximately 40%–80% of all non-syndromic aniridia
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cases [9,12-15], and most are searched by single strand
conformation polymorphism (SSCP), which is considered one
of the most useful molecular detection methods [12,16]. There
are no clear gene hotspots, and the majority of mutations in
PAX6 are predicted to introduce premature termination
codons, most of which are assumed to be functionally null
because of haploinsufficiency [15]. To date, more than 400
PAX6 mutations have been reported (Online Human PAX6
Allelic Database). The most frequent mutations are c.
1080C>T (c.718C>T), c.969C>T (c. 607C>T), c.1311C>T (c.
949C>T), and c.1629insT (c.1267dupT).

The molecular basis of aniridia in Mexico is poorly
characterized. In fact, there is only one report of three different
intragenic deletions of PAX6 found in five unrelated cases in
the Mexican population. Interestingly, the authors of this
study suggested a founder effect for a four-base intragenic
deletion (c.732_735delAACA) in exon 7 in Mexican aniridia
patients because this mutation was found in three nonrelated
cases [17]. In the present study, we further analyze PAX6
variants in a group of Mexican aniridia patients and describe
associated ocular findings.

METHODS
We evaluated 30 unrelated aniridia probands recruited from
two referral hospitals in Mexico City, the National Institute of
Pediatrics and the Dr. Luis Sanchez Bulnes Hospital. All
individuals were of Mexican origin, showed no associated
systemic abnormalities, and had normal psychomotor
development. Patients were categorized according to
Gronskov’s iris classification [5].

This study was conducted in accordance with the World
Medical Association Declaration of Helsinki and was
approved by the respective local research and ethics
committees. Written informed consent was obtained from all
participants.

Genomic DNA was extracted from peripheral blood
leukocytes using the PureGene DNA purification kit (Gentra
Systems, Minneapolis, MN). PAX6 mutation screening was
performed by polymerase chain reaction (PCR) amplification
of all 14 exons and immediate flanking sequences using the
primers and conditions proposed by Love et al. [18] followed
by SSCP analysis in 1X Mutation Detection Enhancement
gels (BioWhittaker Molecular Applications, Rockland, ME).
Gels were run under constant power (6 W) for 12 h at room
temperature and visualized by silver nitrate staining (Silver
Stain Kit, Bio-Rad Laboratories, Hercules, CA). Fragments
displaying abnormal electrophoretic patterns were purified by
the silica column method (QIAquick, Gel Extraction Kit;
QIAGEN Inc. Valencia CA) and directly sequenced using a
Big Dye Terminator Kit with an automated ABI PRISM
Model 377 sequencer (Applied Biosystems, Foster City, CA)
according to the manufacturer’s recommendations. The
mutations identified in the probands were sought in parents

that were available. The nomenclature used for describing
novel genetic changes follows the recommendations of the
Human Genome Variation Society [19], and nucleotides were
numbered according to the consensus coding DNA sequence
of PAX6 isoform a (CCDS31451.1). In silico analyses of novel
missense mutations and intronic changes were performed
using the SIFT program and the NetGene2 Server,
respectively. The intronic nucleotide variation, IVS2+9G>A
(c.-129+9G>A), reported previously as pathogenic [20], was
sought in 103 nonrelated healthy Mexican newborns using the
PCR restriction fragment length polymorphism (PCR-RFLP)
method by amplifying the 3′ end of exon 2 according to Love
et al. [18] and restricting with the AciI enzyme where the
presence of the G allele eliminates the restriction site. The
Hardy–Weinberg equilibrium conformance was evaluated
using the SNPstats software.

RESULTS
Phenotypic information was available from 28 of the 30
probands, and a summary of findings is given in Table 1. The
median age of cases was 5.2 years, and 18 of the probands
(62%) were female. Eighteen of the cases (62%) were
sporadic cases, and 11 had at least one relative with aniridia.
Absent or nearly absent irides were evident in 26 cases (93%),
and these were categorized as Iris 5 or Iris 6 according to
Gronskov’s classification [5]. Of the remaining two cases, one
was classified as Iris 3 and 4 (one eye each) and the other was
classified as Iris 4. At least two ocular-associated alterations
were present in 21 patients (75%), and the most common
alterations were nystagmus (75%), macular hypoplasia
(57%), and congenital cataracts (53%). Other less frequent
features were optic nerve hypoplasia and keratopathy. Six
individuals had glaucoma, which was congenital in two cases.
The iris defect was not associated with any other ocular
abnormality in only one patient (case 13).

Molecular findings are summarized in Table 2. We
detected 11 SSCP mobility shifts in PAX6 products, all of
which were consistent with the presence of mutations or
neutral polymorphisms after sequencing. Causal mutations of
the aniridia phenotype were found in 9 of 30 cases, yielding
a detection rate of 30%. All mutations were heterozygous and
unique except for the recurrent mutation, c.969C>T, which
was observed in two sporadic unrelated cases. Four mutations
were novel, c.184_188dupGAGAC, c.361T>C, c.879dupC,
and c.277G>A. The  remaining  four  mutations  identified
(c.969C>T, IVS6+1G>C, c.853delC, andIVS7–2A>G) have
been previously reported (Human PAX6 allelic database) .
Additionally, we found two intronic, nonpathogenic
variations, IVS9–12C>T and IVS2+9G>A, both of which
have also been previously described [20,21]. Of the nine
probands in whom pathological mutations were identified,
only   nine   parents   were   available  for   molecular  analysis
Table 2).
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With respect to novel changes, case 4 showed an insertion
of a GAGAC sequence at nucleotide position 184, causing a
frameshift arising from tandem duplication of nucleotides
184–188 that is predicted to encode a protein truncated in the
paired domain. At evaluation, the patient exhibited a
phenotype characterized by nystagmus, macular hypoplasia,
and subtotal aniridia defect (Iris 5 in Gronskov’s
classification). His mother had a normal ocular phenotype and
did not have the mutation. A DNA sample from his father was
not available, but he was referred to as visually healthy.

Case 6 was a female patient with a novel missense
substitution. Her right eye exhibited an eccentric pupil,
circumpupillary iris hypoplasia (Iris 3), and cortical cataract.
In the left eye, she had an atypical sector nasal iris coloboma
(Iris 4), stromal hypoplasia, and total cataract (Figure 1 and
Figure 2). The missense mutation identified was c.361T>C in
exon 7 that changes serine 121 to proline (p.S121P) in the
paired domain. Her mother exhibited foveal hypoplasia and
nystagmus with whole irides, and her sister had congenital
cataracts, nystagmus, and macular hypoplasia. Both affected
relatives had the mutated allele.

A base duplication at position 879 in exon 10 was found
in case 21 and his mother. This previously unreported
duplication (c.879dupC) causes a frameshift and introduces a
premature stop codon 47 nucleotides downstream in the PST
domain. The patient had Iris 5 with the associated ocular
abnormalities of macular hypoplasia and nystagmus. The
clinical manifestations of his mother were not available.

Figure 1. Right eye iris and pupil of aniridia case 6 who had a novel
missense mutation (c.361T>C) located in the NH2-region of the
paired domain of PAX6. This eye exhibited eccentric pupil and
circumpupillary iris hypoplasia (Iris 3).

Female case 22 showed the novel missense substitution,
c.277G>A, in exon 6, which encodes part of the extreme
amino end of the paired domain. The mutation changes
glutamate at position 93 to lysine. This case also had a
previously reported intronic polymorphism (IVS9–12C>T)
[21]. The patient presented with total aniridia (Iris 6),
nystagmus, and congenital cataracts. Her mother was referred
to as affected, but we could not accomplish family studies
because the patient resided in an orphanage.

With respect to previously reported mutations, we found
the IVS6+1G>C splice-site mutation [22] in case 18 who had
Iris 5, microcornea, nystagmus, ectopia lentis, and macular
and optic nerve hypoplasia. Her unaffected parents did not
show this splice site change. Additionally, the patient and her
father showed the previously described intronic substitution,
IVS2+9G>A [20]. We searched for this substitution in 103
Mexican healthy controls and observed 19 heterozygotes (G/
A) and two newborns homozygous for the A allele.

The only deletion that we observed was the previously
reported loss of cytosine at position 853 (c.853delC) that
introduces a premature stop codon 43 nucleotides downstream
[5]. This deletion was found in case 20, but phenotypic
information was not available.

We found the c.969C>T nonsense substitution (Human
PAX6 allelic database), which changes arginine 203 to a UGA
stop codon in the linker region, in two unrelated probands
(case 10 and case 24); both were sporadic aniridia cases.

Figure 2. Left eye iris of aniridia case 6 who had a novel missense
mutation (c.361T>C) located in the NH2-region of the paired domain
of PAX6. This eye exhibited partial absence of iris, an atypical sector
nasal iris coloboma (Iris 4), stromal hypoplasia, and a total cataract.
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Unfortunately, phenotypic information on case 24 and his
parents were unavailable, but the molecular study was normal
in both parents. Case 10 was a female dizygotic twin who
showed subtotal aniridia (Iris 5), nystagmus, and macular
hypoplasia. Her male twin and mother were genotypically
normal and had a normal ocular phenotype, but the father was
not studied.

Finally, we also observed a mutation that produces a
substitution in the splice acceptor site of intron 7 (IVS7–
2A>G). An in silico analysis of this mutation, which has been
previously reported in another single study [22], revealed the
possible use of different cryptic splice sites. The individual
with this mutation (case 26) had Iris 6 with nystagmus,
cataract, and strabismus. Other members of her family were
referred to as having a normal ocular phenotype, but they were
unavailable for study.

DISCUSSION
To the best of our knowledge, this is the first work on aniridia,
apart from the original report, that uses the Gronskov
classification of iris hypoplasia. Gronskov originally reported
that the proportion of patients with Iris grade 1 to 4 was
approximately 40% [5] whereas we found only two index
cases (7%), one with Iris grade 3 and 4, another with Iris 4,
and none with lesser severity. This discrepancy might be
explained by ascertainment bias, reflecting the fact that first-
contact ophthalmologists are more familiar with the classic or
severe aniridia presentation than with milder phenotypes.
Another reason might be that individuals with milder cases,
which are generally asymptomatic, do not seek medical care.
In our opinion, Gronskov’s classification [5] should be widely
used as a way to improve diagnosis, detect potential
complications, and provide genetic counseling in aniridia
cases with milder phenotypes.

To our knowledge, this work represents the third largest
aniridia series (only smaller than those published by Gronskov
et al. [14] and Vincent et al. [15]) that included a molecular
study of PAX6. Although we analyzed the entire coding region
of the PAX6 gene in this work, the mutation detection rate of
30% that we found was lower than the 80% and 55% rates
reported by the groups of Gronskov et al. [14] and Vincent et
al. [15], respectively, who used diverse techniques for
detecting pathological mutations. In this work, we used the
SSCP technique exclusively, which is a widely used and
efficient method for detecting mutations in PAX6 [12,16].
However, a low rate of PAX6 mutation detection (40%) using
the SSCP technique has also been reported in patients
described by Glaser et al. who proposed the possibility of
mutations in more distant cis regulatory sequences [9]. Our
low detection rate might be consistent with this interpretation
because contiguous regulatory or non-coding sequences were
not analyzed in our study. However, it also could be because
of limitations of the SSCP technique itself as large genomic
rearrangements would not be identified by this methodology.

The inclusion of other mutation detection techniques in future
studies would be expected to improve our mutation detection
rate.

We identified eight different causal PAX6 mutations in
nine unrelated cases with isolated aniridia. The nature of the
mutations was very similar to that reported in other
populations [5,13,15,21]. Interestingly, we did not find the
intragenic deletions previously reported in five Mexican
patients, suggesting that these deletions might not be as
frequent in our population as thought by Ramirez-Miranda et
al. [17]. In this same context, our findings do not provide
support for a founder effect of a specific mutation in the
Mexican population [17].

The only intragenic deletion identified (c.853delC)
produces a frameshift and introduces a premature stop signal
42 codons downstream in exon 8. If it were translated, the
predicted truncated PAX6 product would retain the paired
domain but lack the homeobox and PST transactivator
domain. This mutation has been observed twice before, once
in a male patient with aniridia (Iris 4), cataracts, and
nystagmus [5] and once in a female in which only aniridia was
mentioned [22]. Unfortunately, our case was unavailable for
phenotype-genotype correlation.

The duplications, c.184_188dupGAGAC and c.
879dupC, are novel, and both give rise to frameshifts,
introducing premature stop codons in the paired domain and
PST region, respectively. Phenotypes observed in other cases
with insertion mutations are severe [5,23]. Consistent with
this, our cases with these mutations had Iris 5.

The nonsense substitution, c.969C>T, which changes an
arginine codon (CGA) to a stop codon (UGA), was detected
in two unrelated, sporadic cases (cases 10 and 24). This
mutation has been previously found in at least 20 patients
worldwide including familial and sporadic cases, making it
one of the three more frequent changes in PAX6 along with c.
1080C>T (27 cases) and c.1311C>T (20 cases; Human PAX6
allelic database). The differences in the ethnic origins of
patients bearing the c.969C>T change indicate that this
mutation is recurrent in PAX6. The recurrence of these three
mutations might be explained at least in part by the presence
of CpG dinucleotides in PAX6 that tend to become methylated
and might thereby create conditions favorable for C>T
substitutions as a consequence of spontaneous deamination of
cytosine residues [23]. Our two patients positive for c.969C>T
might represent independent mutational events since they
were unrelated.

With respect to the phenotype of c.969C>T
heterozygotes, there are only five cases described in the
Human PAX6 allelic database. Interestingly, one had partial
aniridia with foveal hypoplasia and nystagmus, and the other
four had aniridia with the associated ocular manifestations of
nystagmus, cataracts, glaucoma, or corneal erosion. Of our
two patients positive for c.969C>T, clinical information was
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available for only case 10. This patient had a severe phenotype
and was classified as Iris 5 with nystagmus and macular
hypoplasia.

Literature reports based on the haploinsufficiency model
have suggested that frameshift and nonsense mutations
predicted to result in a truncated protein such as those
described above are likely to exert their pathological effects
through a “nonsense-mediated-decay” process where
translation to protein might not occur because the mRNA is
degraded [21,23]. However, it has also been noted that
truncating mutations located downstream of DNA-binding
domains especially those in exons 12 and 13 might have a
dominant-negative effect [23,24]. In the present work, we did
not identify nonsense mutations in this extreme 3′ region of
the PAX6 gene.

On the other hand, both novel missense mutations
observed in the present work–c.277G>A (p.E93K) and c.
361T>C (p.S121P)–might affect the function of the paired-
box domain of the PAX6 protein because the properties of the
substituted amino acids are quite different. In one case
(p.E93K), a negatively charged glutamate is replaced by a
positively charged lysine. In the other (p.S121P), the polar
serine residue is replaced by the non-polar amino acid, proline.
Moreover, glutamate 93 and serine 121 are largely invariant
among closely related PAX family members with glutamate
93 conserved in PAX3, PAX4, and PAX7 and serine 121
conserved in eight PAX family genes (Protein BLAST). An in
silico analysis using the SIFT program predicted that protein
function would be affected (p<0.01), providing support for a
possible pathogenic effect of these mutations, but further
functional analyses are needed to confirm this.

Missense mutations, which account for roughly 17% of
changes in PAX6 worldwide, potentially retain residual
protein activity and have been associated with milder
phenotypes [5,16,23]. Consistent with this, case 6 who had a
c.361T>C mutation showed Iris 3 (circumpupillary iris
hypoplasia) and Iris 4 (atypical sector coloboma), which were
the mildest iris grades found in the probands of our series. In
contrast, case 22 carrying a c.277G>A substitution had
complete aniridia (Iris 6) as well as nystagmus and cataracts.
Although both of these mutations affect the paired domain,
the c.277G>A mutation is located in the NH2-region and
would therefore be expected to have a more profound effect
on paired domain structure and function than the COOH-
terminally localized c.361T>C mutation. This difference in
location may account for the observed phenotypic differences,
but additional studies will be required to support this idea.

In some cases, missense mutations in PAX6 have also
been associated with neurodevelopmental abnormalities such
as absence/hypoplasia of the anterior commissure, callosal
area, or pineal gland; olfactory system anomalies; cerebellar
coordination problems; mental retardation; and epilepsy [11,
16,20,25-28]. In fact, Dansault et al. [20] suggested that these

abnormalities should be systematically investigated in every
patient with aniridia. In cases 6 (age 8 years) and 22 (age 15
years) who had the missense mutation, clinical neurological
anomalies were not observed, but cerebral CT scan or MRI
imaging were not performed. Further descriptions of aniridia
cases with missense mutations and neurodevelopmental
anomalies will be needed to improve genotype-phenotype
correlations. In addition to the novel missense substitution, c.
277G>A, female case 22 had the intronic polymorphism,
IVS9–12C>T, which is thought to represent a neutral variant
[21].

With respect to the splice-site mutation, IVS7–2A>G
[22], an in silico analysis performed with the NetGene2
Server predicted that this change would eliminate the activity
of the natural acceptor site in intron 7 and activate different
cryptic acceptor sites within the exon or intron 8. It could,
however, result in the use of the natural acceptor site in intron
8 and thereby lead to an in-frame, exon-skipping event that
deletes exon 8. This mutation has been previously observed
in a single case [22] with aniridia, cataracts, nystagmus, and
corneal dystrophy (Human PAX6 allelic database). Similarly,
our patient with this mutation (case 26) had a complete iris
defect (Iris 6), nystagmus, cataract, and strabismus but
without the corneal anomalies that might be present at an older
age.

The previously reported IVS6+1G>C substitution [22]
disrupts the conserved dinucleotide GT in the intron 6 splice-
donor site and might lead to the use of an alternative in-frame
donor site inside exon 6. The predicted protein would lack the
last 36 amino acid residues encoded by this exon, and the
resulting deletion of a portion of the paired domain would be
expected to lead to a severe phenotype (Human PAX6 allelic
database). Consistent with this, the ocular phenotype of our
patient was Iris 5 with nystagmus, microcornea, ectopia lentis,
and macular and optic nerve hypoplasia. Both parents were
considered healthy and were negative for IVS6+1G>C. This
mutation has been reported once before in an aniridia patient
but without the description of other clinical data [22].
Remarkably, there have been at least nine previous reports of
a substitution at guanine by either adenine or thymine in the
+1 position in GT donor sites in aniridia patients [12,29,30].

In addition, case 18 and her unaffected father showed the
previously described IVS2+9G>A substitution [20].
Although this intronic change was assumed to be potentially
pathogenic by Dansault et al. [20] who observed it in a
sporadic case with microphthalmia and other ocular
abnormalities but not in 200 normal healthy individuals, an in
silico analysis of this variant predicted that the binding
capacity of the natural donor site would be unchanged. In our
own search of 103 healthy Mexican newborns, we found this
variant in a heterozygous state in 19 individuals and in a
homozygous state in two. Hence, our data indicate that
IVS2+9G>A is a neutral polymorphism and is not responsible
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for a pathological phenotype. The allele frequencies obtained
for this polymorphism were in Hardy–Weinberg equilibrium.

In summary, most of the mutations detected in our
analysis alter invariant amino acid residues in the paired
domain or predict truncation of the PAX6 protein. Four of the
PAX6 mutations identified in this study are novel. In addition,
our results lend support to the notion that c.969C>T is one of
the three more frequent causal mutations in isolated aniridia
cases and provide evidence that the IVS2+9G>A
(c.-129+9G>A) variant is a neutral polymorphism.
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