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Purpose: Two consanguineous Pakistani families with autosomal recessive primary congenital glaucoma were recruited
to identify the disease locus.
Methods: Ophthalmic examinations including slit lamp biomicroscopy and applanation tonometry were employed to
classify the phenotype. Blood samples were collected and genomic DNA was extracted. A genome wide scan was
performed on both families with 382 polymorphic microsatellite markers. Two point LOD scores were calculated, and
haplotypes were constructed to define the disease interval.
Results: Clinical records and ophthalmic examinations suggest that affected individuals in families PKGL005 and
PKGL025 have primary congenital glaucoma. Maximum two-point LOD scores of 5.88 with D14S61 at θ=0 and 6.19
with D14S43 at θ=0 were obtained for families PKGL005 and PKGL025, respectively. Haplotype analysis defined the
disease locus as spanning a 6.56 cM (~4.2 Mb) genetic interval flanked by D14S289 proximally and D14S85 distally.
Conclusions: Linkage analysis localizes autosomal recessive primary congenital glaucoma to chromosome 14q24.2–24.3
in consanguineous Pakistani families.

Glaucoma is the second leading cause of vision loss, and
approximately 15% of blindness worldwide result from
glaucoma [1]. It is a group of poorly understood
neurodegenerative disorders that are usually associated with
elevated intraocular pressure [2]. Glaucoma is clinically and
genetically heterogeneous with several different forms, each
with diverse causes and severities. Clinically, it is
characterized by slow but progressive degeneration of retinal
ganglion cells and their axons, leading to deterioration of the
visual field and to optic nerve atrophy.

Although rare, primary congenital glaucoma (PCG) is the
most common form of glaucoma in infants with an overall
occurrence of 1 in 10,000 births [3]. It is prevalent in countries
where consanguinity is common with incidence as high as 1
in 1,250 births in the Slovak population, 1 in 2,500 births in
Saudi Arabia, and 1 in 3,300 births in the state of Andhra
Pradesh in India [4,5]. PCG is an inherited ocular congenital
anomaly of the trabecular meshwork and anterior chamber
angle [6-9]. This leads to the obstruction of aqueous outflow
and increased intraocular pressure (IOP) resulting in optic
nerve damage leading to childhood blindness. The disease
manifests in the neonatal or early infantile period with
symptoms of photophobia, epiphora, signs of globe
enlargement, edema, opacification of the cornea, and breaks
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in Descemet's membrane. The mode of inheritance is largely
autosomal recessive with variable penetrance, but rare cases
of pseudo dominance are also seen in families with multiple
consanguinity [10-13]. To date, three genetic loci have been
reported for autosomal recessive PCG, GLC3A (2p21; OMIM
231300), GLC3B (1p36; OMIM 600975), and GLC3C
(14q24.3), with pathogenic mutations only reported in the
human cytochrome P450 gene (CYP1B1; OMIM 601771)
[14,15]. It is significant to note that CYP1B1 mutations have
also been reported in patients with early onset of primary
open-angle glaucoma. Additionally, autosomal dominant
forms of PCG have been reported, and MYOC, a gene
associated with primary open-angle glaucoma, is reported to
play a possible role in the pathogenesis [16,17].

The current study is aimed to explore the genetic basis of
PCG in the Pakistani population. A genome wide linkage
analysis was performed, which showed segregation of PCG
in two consanguineous Pakistani families. Microsatellite
markers on chromosome 14q24.2–24.3 cosegregated with the
disease phenotype and defined the disease locus as spanning
a 6.56 cM (~4.2 Mb) genetic interval flanked by D14S289
proximally and D14S85 distally.

METHODS
Thirteen consanguineous Pakistani families with PCG were
recruited to participate in this study to understand the genetic
aspects of glaucoma at the Centre of Excellence in Molecular
Biology (Lahore, Pakistan). Institutional Review Board
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approval was obtained for this study from the Centre of
Excellence in Molecular Biology (CEMB). The participating
subjects gave informed consent consistent with the tenets of
the Declaration of Helsinki. Both families described in this
study are from the Punjab province of Pakistan.

A detailed medical history was obtained by interviewing
family members. All of the ophthalmic examinations
including slit lamp biomicroscopy and applanation tonometry
were completed at the Layton Rahmatullah Benevolent Trust
(LRBT) hospital (Lahore, Pakistan). Diagnosis of PCG was
based on established criteria that include measurement of IOP,
measurement of corneal diameters, and observation of optic
nerve head where possible as well as symptoms of corneal
edema including photophobia, buphthalmos, cloudy cornea,
and excessive tearing. Patients with elevated IOP associated
with other systemic or ocular abnormalities were excluded.
Blood samples were collected from affected and unaffected
family members. DNA was extracted by a non-organic
method as described by Grimberg et al. [18].

Genotype analysis: A genome wide scan was performed
with 382 highly polymorphic fluorescent markers from the
ABI PRISM Linkage Mapping Set MD-10 (Applied
Biosystems, Foster City, CA) having an average spacing of
10 cM. Multiplex polymerase chain reactions (PCRs) were
performed in a 5 μl mixture containing 40 ng genomic DNA,
various combinations of 10 μM dye labeled primer pairs,
0.5 μl 10X GeneAmp PCR Buffer II, 0.5 μl 10mM Gene Amp
dNTP mix, 2.5 mM MgCl2, and 0.2 U of Taq DNA polymerase
(AmpliTaq Gold Enzyme; Applied Biosystems).
Amplification was performed in a GeneAmp PCR System
9700 (Applied Biosystems). Initial denaturation was
performed for 5 min at 95 °C followed by 10 cycles for 15 s
at 94 °C, for 15 s at 55 °C, and for 30 s at 72 °C, and then 20
cycles for 15 s at 89 °C, for 15 s at 55 °C, and for 30 s at 72 °C.
The final extension was performed for 10 min at 72 °C
followed by a final hold at 4 °C. PCR products from each DNA
sample were pooled and mixed with a loading cocktail
containing HD-400 size standards (PE Applied Biosystems).
The resulting PCR products were separated in an ABI 3100

DNA Analyzer and analyzed by using the GeneMapper
software package (Applied Biosystems).

Linkage analysis: Two point linkage analysis were
performed using the FASTLINK version of MLINK from the
LINKAGE Program Package (provided in the public domain
by the Human Genome Mapping Project Resources Centre,
Cambridge, UK) [19,20]. Maximum LOD scores were
calculated using ILINK. Autosomal recessive PCG was
analyzed as a fully penetrant trait with an affected allele
frequency of 0.001. The marker order and distances between
the markers were obtained from the Marshfield database. For
the initial genome scan, equal allele frequencies were assumed
while for fine mapping, allele frequencies were estimated
from 100 unrelated and unaffected individuals from the
Punjab province of Pakistan.

Mutation screening: Individual exons were amplified by
PCR using primer pairs designed by using the primer3
program (primer sequences and annealing temperatures are
available upon request). Amplifications were performed in 25
μl reactions containing 50 ng of genomic DNA, 2.5 μl 10X
GeneAmp PCR Buffer II, 8 pmoles of each primer, 2.5 mM
dNTP, 2.5 mM MgCl2, and 0.2 U Taq DNA polymerase.
Amplification was performed in a GeneAmp PCR System
9700 (Applied Biosystems). PCR amplification consisted of
a denaturation step at 96 °C for 5 min followed by 40 cycles,
each cycle starting at 96 °C for 45 s followed by 57 °C for 45
s and 72 °C for 1 min. PCR products were analyzed on 2%
agarose gel and purified by ethanol precipitation. The PCR
primers for each exon were used for bidirectional sequencing
using Big Dye Terminator Ready reaction mix (Applied
Biosystems) according to manufacturer instructions.
Sequencing products were precipitated and resuspended in
10 μl of formamide and denatured at 95 °C for 5 min.
Sequencing was performed on an ABI PRISM 3100
Automated sequencer (Applied Biosystems). Sequencing
results were assembled by the ABI PRISM sequencing
analysis software version 3.7 and analyzed using Chromas
software (version 1.45).

TABLE 1. CLINICAL FEATURES OF AFFECTED INDIVIDUALS OF FAMILIES PKGL005 AND PKGL025.

 Family
number

Individual
      ID Gender

Age of
 onset

Age at
time of
study

Maximum
     IOP
(OD/OS)

C/D ratio
(OD/OS)

Visual
acuity

(OD/OS) Other changes
PKGL005 11 M 3 years 8 years 32/20* 0.8/NV CF/CF Megalocornea
PKGL005 41 M 3 years 6 years 38/30 1.0/0.3 CF/CF Megalocornea
PKGL025 15 F By birth 4 years 20*/24* 0.3/0.3 CF/CF Buphthalmos
PKGL025 28 M By birth 8 months 25/26 NA CF/CF Buphthalmos
PKGL025 25 F By birth 5 years 12*/16* 0.9/0.9 CF/CF Megalocornea,

cornea haze
PKGL025 24 F By birth 15 years NA/38 NV/1.0 NPL/NPL Buphthalmos

An asterisk indicates that IOP is controlled by medical or surgical treatment. IOP, intraocular pressure; OD, right eye; OS, left
eye; PL, perception of light; NPL, no perception of light; HM, hand motion; NA, not available; NV, no view because of eyeball
atrophy or corneal opacity; CF, counting fingers.
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RESULTS
The two families reported here, PKGL005 and PKGL025, are
from the Punjab province of Pakistan. Ophthalmic
examinations and medical history for both families concluded
that a total of 11 affected individuals in both families have
primary congenital glaucoma (PCG). The symptoms of PCG
in affected individuals of PKGL005 appeared in the first three
years of life. Visual acuity was confined to light perception
and/or counting fingers. The cup to disc ratios of affected
individuals 11 and 41 were 0.8 (OD) and 1.0/0.3 (OD/OS),
and the recorded IOPs for individuals 11 and 41 were 32/20
mm Hg (OD/OS) and 38/30 mm Hg (OD/OS), respectively
(Table 1). On the other hand, symptoms of PCG in PKGL025
were either present at birth or appeared in the first six weeks
of life. Visual acuity was reduced to counting figures and/or
light perception with bilateral buphthalmos eyes. The IOPs
for affected individuals in PKGL025 were either above the
normal range or was controlled by medical treatment (Table
1).

Initially, all reported loci for PCG were excluded for
linkage using closely spaced microsatellite markers (data not
shown). A genome wide scan was completed with the ABI
MD10 panel, which consisted of 382 polymorphic
microsatellite markers and spaced at an average of 10 cM
across the whole genome. During the genome-wide scan,
LOD scores above 1.5 were obtained for markers D6S308,
D10S59, D10S1652, D11S1314, D14S74, D14S68,
D16S404, and D18S53 in PKGL005 and for markers D2S112,
D3S1279, D9S1776, D14S74, and D21S263 in PKGL025. Of
these markers, D6S308, D10S59, D10S1652, D11S1314,
D16S404, and D18S53 have closely flanking markers

yielding large negative LOD scores in PKGL005. Similarly,
in PKGL025, D2S112, D3S1279, D9S1776, and D21S263
have closely flanking markers yielding large negative LOD
scores. Linkage to markers other than chromosome 14q
markers that showed LOD scores greater than 1.5 during the
genome-wide scan was further excluded by haplotype
analysis of closely flanking markers.

Two point linkage analysis provided the first evidence of
linkage to markers at 14q24.2–24.3 with maximum LOD
scores of 5.88 and 6.19 with markers D14S61 and D14S43 at
θ=0 for families PKGL005 and PKGL025, respectively.
Additional STR markers selected from the NCBI and
Marshfield databases were genotyped to define the linkage
interval in these families. Two point LOD scores of 4.96, 5.60,
4.01, 4.84, 4.76, 5.88, 3.50, and 3.69 with D14S77, D14S43,
D14S284, D14S1036, D14S85, D14S61, D14S59, and
D14S1008 at θ=0 were obtained for PKGL005 (Table 2).
Similarly, two point LOD scores 4.66, 6.19, 4.44, 5.28, 3.19,
and 5.38 with D14S77, D14S43, D14S284, D14S1036,
D14S85, and D14S74 at θ=0 were obtained for PKGL025
(Table 3).

Haplotype analysis supports the results of linkage
analysis as shown in Figure 1. There is a proximal
recombination in affected individual 19 of PKGL025 at
D14S63 and in affected individuals 28 and 41 of PKGL005 at
D14S289. Similarly, there is distal recombination in affected
individual 28 of PKGL025 at D14S606 and in affected
individual 41 of PKGL005 and unaffected individual 23 of
PKGL025 at D14S74 as well as in unaffected individual 14
of PKGL025 at D14S85. Taken together, these results suggest

TABLE 2. TWO POINT LOD SCORES OF PKGL005 WITH CHROMOSOME 14q MARKERS.

Marker cM Mb
Two-point LOD score values at recombination fraction (θ=)

Zmax θ max0.00              0.01 0.03         0.05         0.07        0.09 0.10 0.20            0.30
D14S63 69.18 44.71 -5.50 -0.38 0.42 0.70 0.83 0.89 0.90 0.72 0.37 0.90 0.10
D14S258 76.28 50.65 -5.49 -0.38 0.41 0.69 0.83 0.89 0.89 0.72 0.37 0.89 0.09
D14S289 78.20 51.63 0.97 1.89 2.13 2.13 2.06 1.96 1.90 1.14 0.38 2.13 0.03
D14S77 80.82 53.63 4.96 4.84 4.61 4.38 4.15 3.91 3.80 2.62 1.51 4.96 0.00
D14S43 84.16 54.98 5.60 5.49 5.24 4.98 4.73 4.46 4.33 3.02 1.74 5.60 0.00
D14S284 84.69 55.75 4.01 3.89 3.65 3.42 3.18 2.94 2.82 1.72 0.84 4.01 0.00
D14S76 84.69 55.82 1.96 1.88 1.71 1.56 1.39 1.25 1.18 0.59 0.99 1.96 0.00

D14S1036 84.69 55.83 4.84 4.73 4.48 4.23 3.98 3.73 3.61 2.36 1.23 4.84 0.00
D14S85 84.76 – 4.76 4.65 4.40 4.15 3.90 3.65 3.52 2.29 1.17 4.76 0.00
D14S61 86.29 56.37 5.88 5.75 5.50 5.24 4.98 4.71 4.58 3.23 1.90 5.88 0.00
D14S59 87.36 58.11 3.50 3.40 3.20 2.99 2.79 2.59 2.49 1.53 0.75 3.50 0.00
D14S74 87.36 58.70 -0.06 2.95 3.18 3.16 3.06 2.93 2.70 1.96 1.06 3.18 0.03

D14S1008 89.19 59.94 3.69 3.61 3.43 3.24 3.06 2.88 2.79 1.90 1.10 3.69 0.00
D14S606 91.62 – -0.08 2.19 2.46 2.47 2.41 2.31 2.25 1.54 0.81 2.47 0.05
D14S974 93.76 – -2.14 0.25 0.60 0.70 0.72 0.71 0.70 0.46 0.21 0.72 0.07

LOD scores were calculated at different θ values for each marker with the FASTLINK version of MLINK from the LINKAGE
program package. Maximum LOD scores for each marker were calculated using ILINK.
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the disease locus lies in a 6.56 cM (~4.2 Mb) region flanked
by markers D14S289 and D14S85. As marker D14S1036 is
uninformative for individual 10 of PKGL0255, it is possible
that the distal boundary lies proximal to marker D14S1036.
Alleles for D14S77, D14S43, D14S284, D14S76, and
D14S1036 were homozygous for all affected individuals in
families PKGL005 and PKGL025 whereas the normal
individuals are either heterozygous carriers of the disease
allele or are homozygous for the normal allele.

The critical interval on chromosome 14q24.2–24.3
harbors coenzyme Q6 homolog (COQ6), which encodes a
flavin-dependent monooxygenase in Saccharomyces
cerevisiae. This suggests a functional similarity with
CYP1B1. We investigated the COQ6 gene to identify the
mutation leading to the disease phenotype in these families by
sequencing all coding exons, exon-intron boundaries, and the
5'-untranslated region, but we did not find any pathogenic
mutations in this gene. Our sequencing results identified
previously reported SNPs rs3213692 and rs2074930 in
PKGL005 and rs17552038, rs3213692, and rs7141392 in
PKGL025.

DISCUSSION
Here, we report autosomal recessive primary congenital
glaucoma (PCG) in two large consanguineous Pakistani
families, mapped to chromosome 14q24.2–24.3. Maximum
LOD scores of 5.88 and 6.19 with markers D14S61 and
D14S43 at θ=0 for families PKGL005 and PKGL025,
respectively, the lack of LOD scores above 2.0 for any
markers other than chromosome 14q in the entire genome

scan, and the disease haplotype segregating with the disease
phenotype in both families strongly suggest that the PCG
locus maps to chromosome 14q24.2–24.3 in these families.
Haplotype analysis of these two families refines the disease
interval to a 6.56 cM (~4.2 Mb) region flanked by markers
D14S289 and D14S85. Localization of the disease interval to
14q24.2–24.3 in two consanguineous Pakistani families
strongly suggests genetic heterogeneity of primary congenital
glaucoma.

To date, three PCG loci have been mapped to
chromosomes 2p21 (GLC3A), 1p36 (GLC3B), and 14q24.3
(GLC3C) whereas mutations associated with PCG have only
been reported in the CYP1B1 gene [13-15,21]. Previously,
GLC3C was localized to chromosome 14q24.3 flanked by
markers D14S61 and D14S1000 as shown in Figure 2 [22]. In
 PKGL025,   individual   14   delineates   the   distal  boundary
at marker D14S85, strongly suggesting that the disease locus
in   PKGL025   does   not   overlap  with  GLC3C.  As  both
families in this study come from similar geographical and
racial backgrounds, haplotype analysis of both families
strongly suggests that the region flanked by markers D14S289
and D14S85 harbors the disease causing gene. However, we
cannot rule out the possibility that the disease phenotype in
these two families is caused by two different mutations, and
the   pathogenic   mutation   for  PKGL005   may  be   present
in a gene localized in a region overlapping with the GLC3C
locus.

The critical interval on chromosome 14q24.2–24.3
harbors 97 genes including coenzyme Q6 homolog (COQ6),
WD repeat domain 21A (WDR21A), and ceh-10 homeo

TABLE 3. TWO POINT LOD SCORES OF PKGL025 WITH CHROMOSOME 14q MARKERS.

D14S63 69.18 44.71 -2.50 2.00 2.50 2.75 2.75 2.75 2.75 2.00 1.25 2.75 0.03
D14S258 76.28 50.65 2.50 4.00 4.25 4.25 4.00 4.00 3.75 2.75 1.50 4.25 0.03
D14S289 78.20 51.63 1.56 2.69 2.94 2.94 2.81 2.75 2.69 1.88 1.00 2.94 0.03
D14S77 80.82 53.63 4.66 4.59 4.44 4.28 4.09 3.91 3.81 2.78 1.69 4.66 0.00
D14S43 84.16 54.98 6.19 6.03 5.72 5.44 5.13 4.84 4.69 3.19 1.72 6.19 0.00
D14S284 84.69 55.75 4.44 4.31 4.06 3.81 3.63 3.38 3.25 2.06 1.06 4.44 0.00
D14S76 84.69 55.82 2.32 2.27 2.17 2.07 1.97 1.86 1.81 1.29 0.79 2.32 0.00
D14S1036 84.69 55.83 5.28 5.16 4.91 4.63 4.38 4.13 3.99 2.69 1.44 5.28 0.00
D14S85 84.69 – 3.19 3.13 3.06 2.94 2.81 2.68 2.62 1.81 1.06 3.19 0.00
D14S61 86.29 56.37 -4.34 1.91 2.22 2.25 2.22 2.16 2.09 1.47 0.78 2.25 0.05
D14S59 87.36 58.11 -4.34 5.75 5.75 5.75 5.50 5.50 5.25 4.00 2.50 5.75 0.01
D14S74 87.36 58.70 5.38 5.25 5.00 4.75 4.50 4.25 4.13 2.75 1.50 5.38 0.00
D14S1008 89.19 59.94 -4.34 2.75 3.50 3.75 3.50 3.50 3.50 2.50 1.50 3.75 0.05
D14S606 91.62 – -4.34 2.16 2.84 3.00 3.03 2.97 2.91 2.09 1.09 3.03 0.07
D14S974 93.76 – -4.34 1.50 2.19 2.38 2.44 2.44 2.38 1.75 0.94 2.44 0.07

LOD scores were calculated at different θ values for each marker with the FASTLINK version of MLINK from the LINKAGE
program package. Maximum LOD scores for each marker were calculated using ILINK.
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Figure 1. Pedigree of families PKGL005 and PKGL025. Squares denote males, circles indicate females, filled symbols represent affected
individuals, double lines between individuals indicate consanguinity, and a diagonal line through a symbol signify that the family member is
deceased. The haplotypes of 15 adjacent chromosome 14q14.2–24.3 microsatellite markers for families PKGL005 (A) and family PKGL025
(B) are shown with alleles forming the risk haplotype shaded black, alleles cosegregating with primary congenital glaucoma (PCG) but not
showing homozygosity shaded gray, and alleles not cosegregating with PCG shown in white.
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domain containing homolog (CHX10). COQ6 is a lipid
soluble antioxidant and an obligatory component of the
respiratory chain and uncoupling proteins [23,24]. COQ6 in
Saccharomyces cerevisiae encodes a flavin-dependent
monooxygenase, suggesting a functional similarity with
CYP1B1, a mixed-function monooxygenase that belongs to
the cytochrome P450 1B subfamily [25]. We sequenced all
the coding exons and exon-intron boundaries as well as the 5’
and 3’ regions of affected individuals of families PKGL005
and PKGL025; however we did not identify any pathogenic
mutation.

WDR21A belongs to the WD repeat protein family.
Members of this family are involved in a variety of cellular
processes including cell cycle progression, signal
transduction, apoptosis, and gene regulation. Mutations in
WDR36, also a member of the WD repeat protein family, have
been associated with adult-onset primary open-angle
glaucoma (POAG) [26]. In contrast, CHX10 is homeobox
transcription factor gene that is expressed in progenitor cells
of the developing neuroretina and in the inner nuclear layer of

Figure 2. Schematic representation of linkage on chromosome
14q24.2–24.3 in families PKGL005 and PKGL025. Filled circles
denote STR markers, and solid vertical lines represent the
chromosomal intervals in which markers are homozygous for
affected members of each of the two families.

the mature retina. In humans, CHX10 mutations are associated
with microphthalmia with cataracts and iris abnormalities,
isolated microphthalmia with coloboma 3, isolated
microphthalmia 2, and isolated microphthalmia with cloudy
corneas [27-29]. Similarly, mutations in CHX10 cause
microphthalmia, progressive degeneration of the retina, and
an absence of the optic nerve in mice [30]. We are currently
sequencing these two candidate genes to identify any
pathogenic mutations.

In summary, we have localized autosomal recessive PCG
to chromosome 14q24.2–24.3 in two consanguineous
Pakistani families. Identification of the PCG causing gene at
this locus will help to unveil the underlying molecular
complexity of primary congenital glaucoma and will be a
valuable addition to the existing repertoire of glaucoma
genetics, particularly of PCG. Finally, it will be helpful in
screening for carrier status and genetic counseling of PCG
families especially in the Pakistani population to prevent
severe visual impairment and blindness.
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