Skip to main content
. 2008 Sep 9;6(9):e219. doi: 10.1371/journal.pbio.0060219

Figure 2. Lasting Increase in Protrusion Turnover Induced by Rhythmic Activity.

Figure 2

(A) Dendritic segments imaged on three consecutive days under control conditions (Ctrl, D1–D3) or before (D1) and following LTP induction (LTP, D1–D3; [+] new and [−] lost protrusions) (scale bars: 1 μm).

(B) Proportion of stable, new, and lost protrusions (spines and filopodia) per 24 h under control conditions (n = 30 cells/1,627 protrusions).

(C) Changes in protrusion turnover measured following LTP induction (TBS, circles; n = 17/916), or TBS + 100 μM D-AP5 (diamonds; n = 11/724), or low-frequency stimulation (0.3 Hz; squares; n = 6/183). Filled and empty symbols represent changes in new and lost protrusions, respectively. Data are plotted as percentage of control values with the shaded area representing the confidence interval. The insert shows the changes in EPSP slope measured in the CA1 area before and after LTP induction (filled circles; n = 13) and TBS + 100 μM D-AP5 (open circles; n = 7).

(D) Same as in (C) but following theta activity (shown in the insert) induced by treatment with 10 μM Cch (circles, n = 11/723). Diamonds: 10 μM Cch + 100 μM D-AP5 (n = 8/639; ***p < 0.001, 2-way ANOVA with Bonferroni post-tests). The insert illustrates the spontaneous baseline activity of 1–3 Hz observed in one experiment and the increased 5–10 Hz activity induced by Cch. Below are shown the changes in EPSP slope measured during and after Cch treatment (n = 5).