

NIH Public Access

Author Manuscript

J Am Chem Soc. Author manuscript; available in PMC 2008 September 7

Published in final edited form as:

JAm Chem Soc. 2006 May 3; 128(17): 5642–5643. doi:10.1021/ja060621d.

Synthesis and Biological Activity of Phospholipase C-Resistant Analogues of Phosphatidylinositol 4, 5-bisphosphate

Honglu Zhang¹, Yong Xu¹, Zheng Zhang², Emily R. Liman², and Glenn D Prestwich^{1,*}

1 Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257 USA

2 Department of Biological Sciences and Program in Neuroscience, University of Southern California, 3641 Watt Way, Los Angeles, California 90089-2520 USA

Abstract

The membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P₂) is an important regulator in cell physiology. Hydrolysis of PtdIns(4,5)P₂ by phospholipase C (PLC) releases two second messengers, Ins(1,4,5)P₃ and diacylglycerol. To dissect the effects of PtdIns(4,5)P₂ from those resulting from PLC-generated signals, a metabolically-stabilized analogue of PtdIns(4,5)P₂ was required. Two analogues were designed in which the scissile O-P bond was replaced with a C-P bond that could not be hydrolyzed by PLC activity. Herein we describe the asymmetric total synthesis of the first metabolically-stabilized, phospholipase C-resistant analogues of PtdIns(4,5) P₂. The key transformation was a Pd(0)-catalyzed coupling of an *H*-phosphite with a vinyl bromide to form the desired C-P linkage. The phosphonate analogues of PtdIns(4,5)P₂ were found to be effective in restoring the sensitivity of the TRPM4 channel to Ca²⁺ activation.

The membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P₂) is an important regulator of cytoskeletal organization during a plethora of cellular functions such as vesicle trafficking, endocytosis, phagocytosis, focal adhesion formation, and cell migration. ¹ PtdIns(4,5)P₂ binds to and affects the function of many actin-binding and actin-remodeling proteins,^{2–4} and is a cofactor in enzyme activation. ⁵ In addition, PtdIns(4,5)P₂ regulates the activity of many ion channels and transporters.^{6,7} PtdIns(4,5)P₂ is also the source of three second messengers: Ins(1,4,5)P₃, diacylglycerol (DAG)^{8,9} and PtdIns(3,4,5)P₃.¹⁰ In many cases, it is the decrease in PtdIns(4,5)P₂ resulting from hydrolysis by phospholipase C (PLC) (Scheme 1), and not the increase in Ins(1,4,5)P₃ and DAG, that constitutes the physiologically relevant signal.^{11,12} Hydrolysis of PtdIns(4,5)P₂ restores sensitivity of TRPM4 and TRPM5 to activation by Ca²⁺ and restores the sensitivity of TRPM8 and TRPV1 to thermal and chemical stimuli.^{15,16,18,19}

The availability of a metabolically-stabilized analogue of PtdIns(4,5)P₂, i.e., one that lacks the scissile P-O bond and thus could not be hydrolyzed by PLC activity, would have many applications in understanding the role of PtdIns(4,5)P₂ in cell physiology. α -Fluoroalkylphosphonates have emerged as important non-hydrolyzable mimics for phosphoesters in the synthesis of biologically-active "unnatural products".^{20–23} Herein we describe the first asymmetric total synthesis of isosteric and isoelectronic phosphonate analogues 1 - 5 of PtdIns(4,5)P₂ that cannot be hydrolyzed by PLC. The synthesis employs a Pd(0) coupling not previously exploited in phospholipid or phosphoinositide synthesis.

gprestwich@pharm.utah.edu.

Furthermore, we demonstrate that both saturated and unsaturated α -fluorophosphonate analogues can substitute for exogenous PtdIns(4,5)P₂ in restoring the sensitivity of the TRPM4 channel to Ca²⁺.

The synthetic sequence to the stabilized analogues **1–5** of PtdIns(4,5)P₂ is illustrated in Scheme 2. A variety of attempts to connect the intermediate **9**²⁴ with a fluoromethylenephosphonic acid synthon²¹ failed. Eventually, we turned to the Pd(0)-catalyzed coupling of a *H*-phosphite with a vinyl bromide in order to form the desired C-P linkage. Thus, coupling the protected inositol **9** with dibenzyl *N*, *N*-diisopropylphosphor-amidite gave the phosphoramidite intermediate **10**, which was converted to *H*-phosphonate **11** in 76% isolated yield for two steps. ²⁵ The 1-bromo-1-fluoroolefin **7** (~ 1:1 *E/Z*) was ²⁶ separately prepared via a Et₂Zn-promoted olefination reaction of CBr₃F/PPh₃ with glyceraldehyde **6** in excellent yield.

Few examples exist of Pd(0)-catalyzed formation of P-CF bonds, and in our hands only traces of coupled compound **12** and with a majority of the P-O cleaved compound **9** were obtained under standard conditions using Et₃N or K₂CO₃ as base. It appeared that the rate of decomposition was faster than the rate of coupling for the more hindered *H*-phosphonate **11**. To overcome this problem, we selected propylene oxide as a weak Lewis base and an effective scavenger of HBr.²⁷ Using this modification, treatment of the *H*-phosphonate **11** with Pd (OAc)₂/dppf/propylene oxide in THF at 70°C led to the formation of α -fluorovinylphosphonate **12** in 62% yield. Acetal **12** was selectively deprotected by treatment with 60% aqueous trifluoroacetic acid in tetrahydrofuran at 0 °C to give diol **13**. Next, acylation of **13** with either octanoic acid, palmitic acid, or oleic acid provided the fully-protected phosphonates **14a**, **14b** and **14c** in 80%, 73% and 82% yields, respectively. Hydrogenolysis of **14a** a n d **14b** removed the benzyl groups, and then reaction with ethanethiol removed the MOM groups to give the α -fluoromethylenephos-phonate analogues **1** and **2**.²⁸ The α -fluorovinylphosphonates **3**, **4**, **5**²⁸ were obtained by deprotection of benzyl and MOM groups simultaneously with TMSBr/TMSI (5:1).

Recently, the hydrolysis of the water-soluble dioctanoyl PtdIns(4,5)P₂ was found to be important in the desensitization of TRPM4 channel (activated by cytoplasmic Ca²⁺). Exogenous PtdIns(4,5)P₂ could restore the sensitivity of TRPM4 channels to Ca²⁺, demonstrating that PtdIns(4,5)P₂ was a general regulator for the gating of TRPM4 ion channels. ¹⁵ The ability of the two dioctanoyl-PtdIns(4,5)P₂ analogues **2** and **4** to restore TRPM4 currents following rundown is shown in Figure 1. Both analogues restored TRPM4 sensitivity following desensitization, but the α -fluorovinylphosphonate **4** was more potent. Indeed, the unsaturated phosphonate **4** was even more effective than the hydrolyzable dioctanoyl-PtdIns(4,5)P₂ at restoring TRPM4 sensitivity. This provides further evidence that the regulation of TRPM4 by dioctanoyl-PtdIns(4,5)P₂ and the ability of dioctanoyl-PtdIns(4,5)P₂ to restore TRPM4 currents following rundown is not due to effects of products of PLC hydrolysis.¹⁵

To determine sensitivity of TRPM4 currents to **2** and **4**, we measured the effects of varying concentrations of both compounds on the recovery of TPRM4 currents in excised inside-out patches evoked in response to 100 μ M Ca²⁺ (Figure 2). Maximal recovery of TRPM4 currents was observed upon reaching 10 μ M for both **2** and **4**, and half-activation was observed at ~ 2 μ M for both compounds, which is similar to the concentration of PtdIns(4,5)P₂ that promoted half-activation of TRPM4 (6 μ M).¹⁵ The difference between the effectiveness of **2** and **4** in restoring TRPM4 currents (Figure 1) appears to result from differential abilities to promote activation of the TRPM4 channel. Taken together, these data suggest that the α -fluorovinylphosphonate **4** is a biologically-active, long-lived mimic of PtdIns(4,5)P₂.

In conclusion, we developed an efficient synthesis of two non-hydrolyzable $PtdIns(4,5)P_2$ analogues, and we showed that α -fluorovinylphosphonate **4** optimally restored the sensitivity

JAm Chem Soc. Author manuscript; available in PMC 2008 September 7.

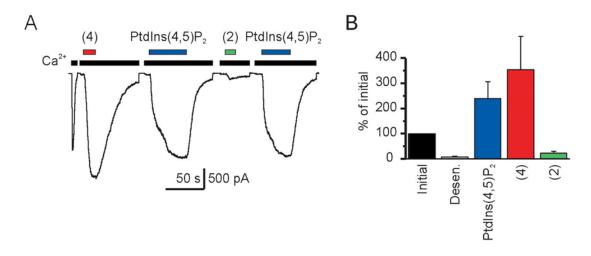
of TRPM4 currents. These results suggest that metabolically-stabilized analogues of PtdIns $(4,5)P_2$ will have a wide variety of applications in separating the role of the phosphoinositide *per se* from activities that result when Ins $(1,4,5)P_3$, DAG, Ca²⁺, or other downstream signals are generated from the hydrolysis of PtdIns $(4,5)P_2$ by PLC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank the NIH (Grant NS 29632 to GDP and DC 004564 to ERL) for financial support of this work.


References

- 1. McLaughlin S, Murray D. Nature 2005;438:605-611. [PubMed: 16319880]
- Anderson RA, Boronenkov IV, Doughman SD, Kunz J, Loijens JC. J Biol Chem 1999;274:9907–9910. [PubMed: 10187762]
- 3. Doughman RL, Firestone AJ, Anderson RA. J Membr Biol 2003;194:77–89. [PubMed: 14502432]
- McLaughlin S, Wang J, Gambhir A, Murray D. Annu Rev Biophys Biomol Struct 2002;31:151–175. [PubMed: 11988466]
- Sciorra VA, Rudge SA, Wang J, McLaughlin S, Engebrecht J, Morris AJ. J Cell Biol 2002;159:1039– 1049. [PubMed: 12486109]
- 6. Hilgemann DW, Feng S, Nasuhoglu C. Sci STKE 2001;2001:RE19. [PubMed: 11734659]
- 7. Suh BC, Hille B. Curr Opin Neurobiol 2005;15:370–378. [PubMed: 15922587]
- 8. Berridge MJ. Nature 1993;361:315-325. [PubMed: 8381210]
- 9. Berridge MJ. Annu Rev Biochem 1987;56:159-193. [PubMed: 3304132]
- 10. Cantley LC. Science 2002;296:1655-1657. [PubMed: 12040186]
- 11. Suh BC, Hille B. Neuron 2002;35:507-520. [PubMed: 12165472]
- Zhang H, Craciun LC, Mirshahi T, Rohacs T, Lopes CM, Jin T, Logothetis DE. Neuron 2003;37:963– 975. [PubMed: 12670425]
- Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D. Nature 2001;411:957–962. [PubMed: 11418861]
- 14. Prescott ED, Julius D. Science 2003;300:1284–1288. [PubMed: 12764195]
- 15. Zhang Z, Okawa H, Wang Y, Liman ER. J Biol Chem 2005;280:39185–39192. [PubMed: 16186107]
- 16. Liu D, Liman ER. Proc Natl Acad Sci USA 2003;100:15160-15165. [PubMed: 14657398]
- 17. Liu B, Zhang C, Qin F. J Neurosci 2005;25:4835-4843. [PubMed: 15888659]
- 18. Liu B, Qin F. J Neurosci 2005;25:1674–1681. [PubMed: 15716403]
- Rohacs T, Lopes CM, Michailidis I, Logothetis DE. Nat Neurosci 2005;8:626–634. [PubMed: 15852009]
- 20. Berkowitz DB, Bose M. J Fluorine Chem 2001;112:13-33.
- 21. Xu Y, Prestwich GD. J Org Chem 2003;68:5320-5330. [PubMed: 12816494]
- 22. Prestwich GD, Xu Y, Qian L, Gajewiak J, Jiang G. Biochem Soc Trans 2005;33:1357–1361. [PubMed: 16246118]
- Xu Y, Lee SA, Kutateladze TG, Sbrissa D, Shisheva A, Prestwich GD. J Am Chem Soc 2006;128:885– 897. [PubMed: 16417379]
- 24. Kubiak RJ, Bruzik KS. J Org Chem 2003;68:960-968. [PubMed: 12558421]
- 25. Chen J, Prestwich GD. J Org Chem 1998;63:430-431. [PubMed: 11672027]
- 26. Lei X, Dutheuil G, Pannecoucke X, Quirion JC. Org Lett 2004;6:2101–2104. [PubMed: 15200295]
- 27. Abbas S, Bertram RD, Hayes CJ. Org Lett 2001;3:3365-3367. [PubMed: 11594835]

28. Note on stereochemistry. Both compounds 1 and 2 are inseparable mixtures of diastereomers at the C-F stereocenter, and the chiral phosphorus atom is racemic. Similarly, compounds 3, 4, 5 and 12–14 are inseparable E/Z mixtures.

JAm Chem Soc. Author manuscript; available in PMC 2008 September 7.

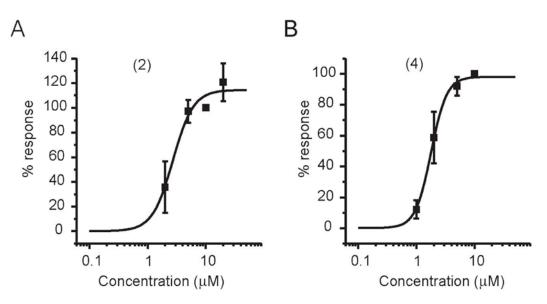
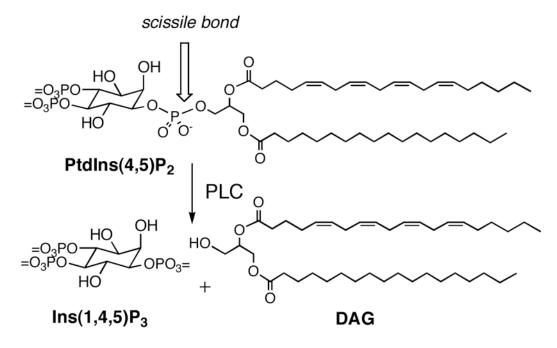
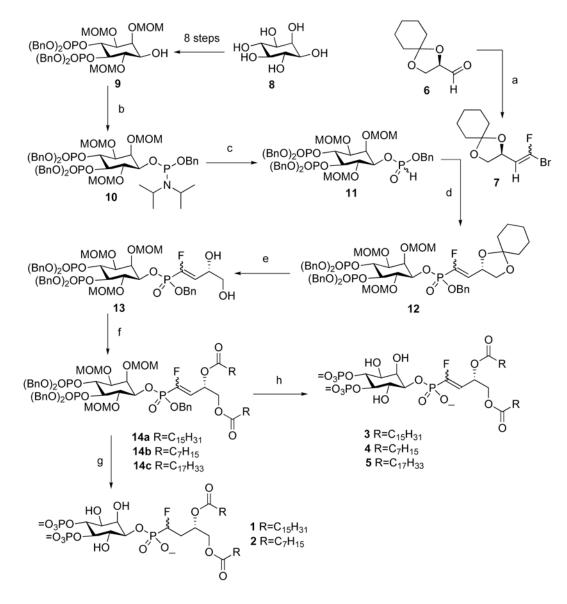

Zhang et al.

Figure 1.


PtdIns(4,5)P₂ and analogues **2** and **4** restore TRPM4 currents following desensitization. *A*. An excised inside-out patch from Chok1 cell expressing mouse TRPM4 (mTRPM4) shows activation and fast rundown of an inward current in the presence of 100 μ M Ca²⁺ and recovery by dioctanoyl-PtdIns(4,5)P₂ and analogues **2** and **4** (V_m = 80 mV). *B*. Initial magnitudes of the mTRPM4 currents, currents after rundown, and currents after recovery in response to 10 μ M each of PtdIns(4,5)P₂, **2**, and **4** (averages, n = 8).

Zhang et al.

Figure 2.


Dose-response for recovery of TRPM4 currents by **2** and **4**. After TRPM4 desensitization, recovery was assessed. Data were normalized to the response to 10 μ M of each analogue in the same patch. *A*. Averaged data (n = 5) for recovery of TRPM4 currents by **2** (EC₅₀ = 2.7 ± 0.6 μ M and $n_{\rm H} = 2.5 \pm 1.2$). *B*. Averaged data (n = 6) for **4** (EC₅₀ = 1.8 ± 0.1 μ M and $n_{\rm H} = 3.2 \pm 0.5$).

Scheme 1.

Phospholipase C catalyzes hydrolysis of $PtdIns(4,5)P_2$ to two second messengers, $Ins(1,4,5)P_3$ and diacylglycerol

Zhang et al.

Scheme 2.

Synthesis of phosphonates 1–5^a

^a(a) CFBr₃, PPh₃, Et₂Zn, THF, 76%; (b) (BnO)₂P(NPr₂-*i*)₂, *N*,*N*-disopropylethylammonium \cdot 1*H*-tetrazole, CH₂Cl₂, rt; (c) H₂O, 1*H*-tetrazole, rt, 1h, CH₂Cl₂, 76% for two steps; (d) Pd (OAc)₂, dppf, propylene oxide, THF, 70 °C, 62%; (e) 60% aqueous TFA, THF, 0 °C, 1 h, 86%; (f) EDCI, DMAP, fatty acid, CH₂Cl₂, rt; (g) H₂, Pd/C, MeOH, 6h; EtSH; (h) TMBr/TMSI (5:1), rt, 1.5 h; MeOH, 1 h.

J Am Chem Soc. Author manuscript; available in PMC 2008 September 7.