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Abstract

Copper cluster sites in biology exhibit unique spectroscopic features reflecting exchange coupling
between oxidized Cu’s and e~ delocalization in mixed valent sites. These novel electronic structures
play critical roles in O, binding and activation for electrophilic aromatic attack and H atom
abstraction, the 4e~/4H" reduction of O, to H,0O, and in the 2e /2H* reduction of N,O. These
electronic structure/reactivity correlations are summarized below.

Cu proteins play central roles in Fe, Cu, and O, metabolism, are related to a range of genetic
diseases and are important in biotechnology, detoxification, and the elimination of greenhouse
gases. Understanding Cu biochemistry on a molecular level provides mechanisms to improve
or inhibit these processes and enhance drug design. The Cu proteins involved in O, binding,
activation, reduction to H,O and the reduction of N,O to water and dinitrogen are summarized
in Figure 1. The term “coupled” is used here to refer to the antiferromagnetic (AF) “coupling”
between paramagnetic metal centers that can lead to a diamagnetic S;o;=0 ground state. If two
Cu(lly’s, S=1/2, directly overlap they will spin pair. If, however, they are far enough apart so
that their d orbitals do not directly overlap but have a bridging ligand this can provide a
superexchange pathway (i.e. a delocalized molecular orbital) between the two paramagnetic
Cu(ll)’s that results in their spin pairing, indirectly through overlap with the bridge. This is
described by the exchange Hamiltonian H =—2JSa-Sg which spin couples the two S=1/2’s on
Cup and Cug to form total spins S;o=1 and 0 where for AF coupling the S;,=0 is lower in
energy by 2J (J<0).

In this paper we will: 1) consider the unique spectral features of the coupled binuclear Cu
proteins, hemocyanin (Hc), catechol oxidase, and tyrosinase (Ty), that reflect a novel electronic
structure that allows their reversible binding of O, (a spin forbidden process) and its activation
for electrophilic attack on an aromatic substrate by Ty; 2) contrast this electronic structure to
that of the non-coupled binuclear Cu enzymes (i.e. no magnetic interaction between the two
Cu(ll)’s S=1/2) to evaluate the contribution of these differences in AF exchange coupling to
the reaction mechanisms, where the non-coupled binuclear Cu sites in dopamine o-
monooxygenase (DPM) and peptidylglycine a-hydroxylating monooxygenase (PHM) activate
O, for H-atom abstraction; 3) Extend these studies to the trinuclear Cu cluster site in the
multicopper oxidases, where the exchange coupling among the three coppers plays a central
role in the 4e /4H" reduction of O, to H,O; and 4) Consider how the interactions among the
coppers in the p4 sulfide bridged tetranuclear Cu, cluster promote the 2e /2H* cleavage of the
N-O bond by N,O reductase.
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1. Coupled Binuclear Copper Proteins

From spectroscopy and crystallography, Hc (reversible O, binding), catechol oxidase (O2
binding and catechol oxidation to quinone) and Ty (O, binding, oxidation and
monooxygenation of phenol to catechol) all have equivalent geometries (u-n2m?2 Cu(11),05,
side-on peroxide bridged binuclear Cu(ll) sites coordinated to the protein by 3 His ligands on
each Cu) and electronic structures (vide infra).1 Their range of functions increases from Hc to
Ty, which has been attributed to differences in substrate accessibility to their coupled binuclear
Cu sites.

1.1 Unique Spectroscopic Features — Novel Electronic Structure

To understand the unique spectral features of the oxygenated sites of these proteins we first
consider what is normal for a Cu(I1)-peroxide bond. Cu(ll) is d° and thus has one half occupied
valence d-orbital, either dxz—y2 for tetragonal or d,? for trigonal bipyramidal geometries.
Peroxide has a doubly degenerate highest occupied molecular orbital (HOMO) set which will
split in energy upon binding to Cu(ll), the n* being stabilized to deeper binding energy due
to o bonding to the half occupied d orbital and the =*, (vertical) not being very affected by
bonding as it is perpendicular to the Cu(11)-(0,%")plane (Figure 2A).2

In a peroxide bridged binuclear Cu(ll) complex as in the [(TMPA)Cu],0, dimer (trigonal
bipyramidal at each Cu(ll)), one further has to take symmetric and antisymmetric combinations
of the half occupied d,2 orbitals on the Cu’s and then allow for bonding with the occupied
peroxide n*; valence orbitals.3 As shown in Figure 2B only one contribution of d,? orbitals
has net o overlap with the peroxide n* orbital causing stabilization of the n* orbital and a
destabilization of the d,2 A + d,2 g molecular orbital. This leads to spin pairing of the two
electrons in the d,?2 orbitals of the two coppers and the antiferromagnetically coupled S=0,
singlet ground state. This also produces a peroxide n*; — Cu (d,2 a + d,2 g) charge transfer
(CT) transition as shown in Figure 3A. Resonance Raman (rR) excitation into this CT transition
produces an O-O stretching vibration at ~830 cm™1 (Figure 3B) which is characteristic of
peroxide bridging in a “normal” binuclear Cu(ll) complex.3

We now consider the unique geometric and electronic structure of oxy-Hc/Oxy-Ty. Again, we
take the symmetric and antisymmetric combination of the dxz—y2 half occupied valence orbitals
of the two coppers (here the ligand field of each Cu is square pyramidal) and allow for their
bonding interactions with the peroxide =* valence orbitals, but in the side-on peroxide bridged
structure of the oxy-Hc site (Figure 2C). Again the n* orbital is stabilized and the Cu
dy?—y?a + dy®—? g is destabilized due to o bonding. However, in the side-on bridged structure
there are two o-bonding interactions of the peroxide with each copper and this leads to a very
large bonding-antibonding interaction. Thus, a strongly AF stabilized singlet ground state and
anintense 022~ 1*; — Cu(dy®—,2a + dy®—,2 g) CT transition, which is shifted to higher energy,
are observed (Figure 3A, green vs. black). Importantly, rR excitation into this CT transition
shows a very low O-O stretching frequency (vo.o) at ~750 cm™1 (Figure 3B). The large
peroxide ¢ donation of electron density from the *; orbital (which is antibonding with respect
to the O-O bond) to the Cu(ll)’s should increase not decrease the strength of the O-O bond.
However, there is an additional bonding interaction that occurs in the side-on peroxide bridged
structure. The LUMO on the peroxide is the o* (Figure 2C) which bonds with the occupied
dy?—y? A + dy>—2 g combination of d-orbitals on the Cu’s which is the HOMO. This back-
bonding shifts some of the electron density into the 0,2~ o* orbital which is strongly
antibonding with respect to the O-O bond and leads to the very low vo_o.

In summary, the extremely covalent ¢ bonding between the two Cu(l1)’s through the p-n2:n?2
peroxide m* orbital leads to the AF coupled singlet ground state and the backbonding of
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electron density from the Cu (dy®—,2a + dy®—,? g) HOMO into the peroxide ¢* LUMO leads
to an extremely weak O-O bond activated for cleavage.

1.2 Reaction Coordinate for O, Binding

DeoxyHc/Ty with two d10 Cu(l) centers binds triplet O, reversibly to form oxyHc/oxy Ty which
has the AF coupled singlet ground state. Thus, this reaction is spin forbidden. To obtain a
reaction coordinate for reversible O, binding, we started with the u-n2m?2 structure, moved the
peroxide out of the molecular plane, and geometry optimized the rest of the structure. The
structure first butterflies, then goes to a p-n1n?2 asymmetric structure, and then to an end-on
bridged structure in the reversible loss of O, (Figure 4A). These structures maximize the metal-
ligand overlaps along this reaction coordinate. As the peroxide moves away from the coppers,
its negative charge decreases as does the positive charge on the coppers. Thus, electron density
is being transferred from the peroxide to the Cu(ll)’s. Importantly, both coppers are reduced
at the same rate even in the asymmetric u-nlm?2 structure. Thus, the reversible loss of peroxide
as O, involves simultaneous two electron transfer.

In Figure 4B we consider how the spin changes along this reaction coordinate. On the far left
is the AF stabilization of the singlet ground state of the side-on peroxide bridged structure
through its 7*; orbital. However, as the peroxide moves out of the molecular plane to the
butterflyed structure, the singlet/triplet splitting collapses and the triplet is in fact slightly lower
in energy. This is because the spin on each Cu covalently delocalizes into a different peroxide
o* orbital. These are close to orthogonal in the butterflyed structure which favors the triplet
ground state. From here, one electron of the same spin can be transferred from each o* orbital
to each Cu leading to loss of O in its triplet 32g‘ ground state.®

Thus, the stabilization of the triplet ground state of O, is lost by charge transfer from the remote
Cu’s and the singlet structure is then stabilized by the formation of an efficient superexchange
pathway (the n* orbital overlap) along the reaction coordinate.

1.3 Reaction Coordinate of Monooxygenation

In early literature we found that oxyTy had the same geometric and electronic structure as
oxyHc but that it differed for Hc in having substrate access and coordination directly to the
copper in a trigonal bipyramidal distorted structure. This led to the generally accepted
monooxygenation mechanism for oxyTy shown in Figure 5.1,6,7 phenolate substrate binds
directly to the side-on peroxy bridged oxyTy site (oxy-T). The trigonal pyramidal distortion
leads to electrophilic attack and hydroxylation at the ortho-position to produce a bound
catecholate (met-D). Two electron oxidation leads to the corresponding quinone product and
areduced (deoxy) site capable of O, binding for further turnover. The interesting issue now is
whether the side-on oxyTy structure directly reacts with the aromatic ring or whether phenolate
coordination leads to a bis-p 0xo structure (vide infra) and this does the electrophilic attack on
the ring.

The latter possibility was raised by the results of Tolman et al. who showed that the side-on
peroxy bridged structure could convert to the bis-p 0xo structure with certain chelating ligands
(Figure 6A).8 Cu K pre-edge X-ray absorption data showed that conversion of the side-on to
the bis-u oxo isomer leads to an increase in energy of the Cu 1s—3d transition by 1.9 eV
indicating that the Cu(ll) is oxidized to Cu(lll) in the bis-p oxo structure.9 The orbital
correlation diagram for this interconversion is given in Figure 6B. Starting from the side-on
bridged structure on the left, the O-O bond elongates from 1.4 A to 2.3 A in the bis-p oxo
structure (the Cu-O distance goes from 1.92 to 1.81A). The 0,2~ o* orbital thus drops in energy
to below the HOMO on the coppers resulting in oxidation to two Cu(ll1)’s and reduction of
the peroxide to the bridged oxide level.10 This produces a low energy intense u-0%2~ — Cu
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(dy2— A dx2 2 5) LUMO CT transition (Figure 3A, blue), and rR excitation into this
transmon now shows an intense vibrational peak at 600 cm™ corresponding to the Cu,(0),
symmetric stretch (Figure 3B). Thus, we now have two LUMO?’s that are frontier molecular
orbitals (FMO) capable of electrophilic attack on the occupied = orbitals of the aromatic ring
(Figure 6C). In the side-on bridged structure, there is a Cu LUMO with significant peroxide
n* character due to the strong donor interaction of the peroxide with the Cu. In the bis-p oxo
structure, the Cu based LUMO now has significant o* character due to the strong oxide ¢ donor
interaction.

From model studies, both the =* LUMO of the side-on peroxide and the c* LUMO of the bis-
u oxo structures are capable of electrophilic reactions with aromatic substrates. From Figure
7A, in the Karlin bidentate chelate ligand systemll, an O, intermediate is trapped at low
temperature with an electron withdrawing nitro substituent on the bridging ring. From rR data
(Figure 7B), this species shows a ~750 cm™ vibration characteristic of the side-on peroxo
bridged species with no |nd|cat|on of a 600 cm™1 feature characteristic of the bis-j1 0xo species
(upper limit of < 0. 1%) 2 As shown in Figures 7B and 7C, the ~750 cm ! feature decreases
as the 1320 cm™1 feature, characteristic of the C-O stretch of the hydroxylated phenolate
product, increases.

From Fli;ure 8, the Stack diamine ligated complex binds O as the side-on peroxo bridged
species. 3 Addition of exogenous phenolate leads to the loss of the ~750 cm™! vg_q vibration
and appearance of the 600 cm™1 feature characteristic of the bis-p oxo species. Thus,
coordination of the phenolate to the Cu likely through a trigonal bipyramidal rearrangement
into the equatorial plane, converts the side-on peroxide to the bis-p 0xo species. This goes on
to hydroxylate the phenolate to a mixture of catecholate and quinone products. Thus, both the
side-on peroxo (through a n* electrophilic mechanism) and the bis-p oxo (through a ¢*
electrophilic mechanism) binuclear Cu sites can hydroxylate aromatic substrates.

2. Non-coupled Binuclear Cu Enzymes

PHM and DBM, involved in peptidic hormone production and the control of neurotransmitters,
both catalyze substrate C-H bond hydroxylation by H-atom abstraction. 14 The active sites in
these enzymes are non-coupled in that they have two Cu(l1)’s which each show spectroscopic
features indicative of anisolated Cu(ll) S=1/2 center. This is consistent with the crystallography
on PHM which shows that the two Cu(ll)’s are 11}1\ apart with no bridging ligation (only
H,Os in the interdomain cavity between the Cu’ s) 5 Reasonable descriptions of the geometric
and electronic structure of each Cu(ll) center have been obtained through a combination of
crystallography, EXAFS, MCD spectroscopy and DFT calculations.16:17 As shown in Figure
9 Cuy is the catalytic center which has an axial Met, two equatorial His and two equatorial
H,O/OH sites for O reactivity. Cupy has 3 His and a water ligand in a D,y distorted tetragonal
geometry and supplies the extra e™ required for catalysis to CuT over a distance of 11A. There
has been much discussion as to how this ET might take place. 8

Thus the reaction of the non-coupled binuclear Cu enzymes requires O, activation by a single
Cu center, which until recently was thought to involve a Cup,(11)-OOH species.14 However
from spectroscopic and electronic structure studies on a Cu(ll)-hydroperoxide model complex,
this species is not activated for H-atom abstraction.19 From Figure 10A the FMO only has 2%
character on the distal oxygen for electrophilic attack and from rR studies on the model the
vo-0 is 843 cm~ reflecting a strong O-O bond not activated for cleavage. This led us to studies
of the alternative possibility of a 1e™ reduction of O, to generate a bound superoxo-Cup(I1)
intermediate From the rR data in Figure 10B the vg.g of an 12 O,Cu model complex is 1043
cm~1 which is characteristic of a Cu(l11)-O,~ species; from its FMO which has >60% O
character this species is strongly activated for electrophilic attack on H-C bonds. 20
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These predictions from model studies were strongly supported by electronic structure
calculations of this reaction coordinate.21 H atom abstraction by the 2e™ reduced Cup(I1)-
hydroperoxo species (Figure 11 blue) is endergonic and in particular has an activation barrier
of 37 kcal/mol. Alternatively H atom abstraction by the 1e™ reduced Cu-superoxo species
(Figure 11 red) is thermoneutral and has an activation barrier of only 14 kcal/mol, which is
consistent with the FMO predictions. This would generate a Cup(11)-OOH and substrate radical
species, which would readily react via direct OH transfer from the hydroperoxide to generate
the hydroxylated product and a Cup(11)-O-~ (i.e. cupric-oxyl) species. This high energy species
would drive a proton coupled ET from Cup to complete the reaction cycle.

A comparison of the reaction coordinates for the coupled binuclear Cu enzymes (Figure 5) and
non-coupled binuclear Cu enzymes (Figure 11) shows an extremely important role of the
differences in the AF exchange coupling (J) in the reaction mechanism. Rapid ET requires a
large electronic coupling between the donor and acceptor (Hpa) which in turn is related to Jo
(HDA)Z.21 Thus large AF coupling leads to rapid ET. This is the case for the coupled binuclear
Cu enzymes where the large value of J between the Cu’s via the bridging ligand leads to the
2e” reduction of O, to form a Cu,0, species capable of electrophilic aromatic attack.
Alternatively in these non-coupled binuclear Cu enzymes J is very small as Cuy, and Cuy are
separated by an 11A solvent-filled cleft. The reduction appears to proceed at one Cu via a
1e™ reduced Cup(I1)-O2™ species which is capable of H atom abstraction. Such a CupO,
species has been observed in the crystal structure of PHM22 and defined by rR in a model
complex.23 At a later stage of the reaction a high energy species is produced (the Cup(I1)-
oxyl) which provides the large driving force required for ET from Cup with its low J (therefore
Hpa) with Cup.

3. Trinuclear Cu Cluster in the Multicopper Oxidases (MCOs)

The MCOs couple four 1e~ oxidations of substrates to the 4e7/4H* reduction of O, to HZO.l
These can be divided into two classes: one as represented by laccase uses organic substrates
which weakly to strongly interact with the protein near the type 1 (T1) Cu (vide infra) and the
second represented by Fet3p has specific metal ion substrate binding sites near the T1 which
tune the metal ion potential and provide ET pathways to the T1.24 The minimum structure of
a MCO active site is shown in Figure 12A.

The T1 is a blue copper center capable of rapid ET through a Cys-His pathway over 13 A to
the trinuclear Cu cluster (TNC) where O is reduced to H,O. The TNC is comprised of a type
3 (T3) copper pair, where each Cu has three His ligands and the pair is strongly
antiferromagnetically coupled (i.e. with a singlet ground state) through an OH™ bridge, and a
type 2 (T2) center within 3.5 A of the T3 Cu’s having two His and a OH™ ligand external to
the cluster.2® The T2 Cu is not bridged to the T3 Cu’s and shows a normal Cu(ll) S=1/2 EPR
signal.

The electronic structure of the resting trinuclear Cu(ll) cluster is given in Figure 12B. This
shows that all three Cu’s have open coordination positions oriented inside the cluster. The
coordination unsaturation of this highly positively charged cluster results from charged
carboxylate residues within 8 A of the cluster which destabilize H,O/OH/O%~ binding in the
center of the cluster and thus tune its redox properties for O, reduction.28

O, intermediates were trapped to define the mechanism of O, reduction to H,O by the MCOs.
Initially, we studied a T1 depleted (T1D) derivative in laccase where the T1 Cu was replaced
by a redox inactive ng’“.27 Reduction of the TNC and reaction with O, led to the first
intermediate. From a combination of isotope ratio mass spectrometry, CD, and LT MCD (which
only probes paramagnetic centers), we determined that this was a peroxy intermediate with
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two coppers oxidized and AF coupled and one copper reduced.2’ The AF coupling required
bridging ligation and this was observed in EXAFS data on peroxy T1D, which showed two
Cu’s tightly bridged at 3.4 A. Since one Cu was reduced in this intermediate, we could not
directly study its interaction with the peroxide. So we prepared the peroxide adduct (PA) of
the oxidized TNC in T1D.28 PA showed the same FT-EXAFS feature at 3.4 A indicating a
similar peroxide binding mode but now all Cu’s are oxidized. On binding peroxide to the
oxidized TNC all the ligand field features of the T2 and T3 Cu(ll)’s are perturbed, indicating
an all bridged structure for the peroxide intermediate. This is consistent with the recent crystal
structure of the peroxide adduct of oxidized CotA29 and the QM/MM energy minimized
structure of the peroxide intermediate.30

Reaction of the fully reduced native enzyme (i.e. 4Cu(l)) with O, generates the native
intermediate (NI). As shown in Figure 13A, NI exhibits absorption features at 365 and 318 nm
as well as an absorption band at 600 nm associated with an oxidized T1 cu.31 Therefore NI
is at least one more electron reduced relative to the peroxide intermediate. Associated with
this, NI exhibits an unusual EPR signal (Figure 13C) with very unusual g-values below 2.0. It
is different from that of an oxidized T2 Cu(ll) and broadens when generated with 1702.32 Thus,
it had been assigned as an OH. bound to a reduced T2 Cu. The most direct spectroscopic probe
of reduced Cu is K-edge XAS as Cu(l) exhibits a characteristic feature at 8984 eV not present
in Cu(ll) complexes. It is also not present in N1.31 Therefore, Nl is a fully oxidized TNC, but
with an EPR signal very different from that of the fully oxidized TNC of the resting enzyme
(Figure 13C), and dioxygen has been fully reduced to the H,O level.

NI also has a characteristic derivative shaped MCD signal associated with the 365/318 nm
absorption bands known as a pseudo-A term (Figure 13A).31 This has proven to be a direct
probe of the geometric and electronic structure of NI. The field dependence of the MCD signal
at low temperature gave a saturation magnetization curve which fit to the Brillouin function
for an S = 1/2 ground state, associated with the unusual g-values. The temperature dependence
of the MCD signal at a fixed high magnetic field shows a very interesting behavior in Figure
13B. Normally MCD intensity of a paramagnetic S = 1/2 center decreases as 1/T. However,
the MCD intensity in Figure 13B first decreases then increases with increasing temperature
indicating Boltzmann population of an excited state at 150 cm~1 with an MCD signal different
from that of the S =1/2 ground state of NI.

NI has an FT-EXAFS feature indicating a Cu-Cu distance of 3.3 A, which corresponds to a
pair of Cu(l1)’s of the trinuclear cluster site having a singlet/triplet splitting of ~520 cm ™1,
Since we are dealing with a trinuclear Cu(ll) site, the singlet ground state of the pair couples
with the third Cu(ll) to give an Sy; = 1/2 ground state; the S = 1 excited state couples with the
S =1/2 to form Sy = 1/2 and 3/2 excited states. With a single bridge, this would produce a T2
EPR signal with g-values above 2.0 and an excited state at 520 cm™L. NI has a ground state
EPR signal with g-values below 2.0 and an excited state at 150 cm™. Thus we allow for
additional AF exchange interactions (i.e. bridging ligands) between additional pairs of Cu(ll)’s
of the TNC of NI. Allowing for a second bridge splits the excited Si; = 3/2 and 1/2 states, but
does not bring the Syo; = 1/2 first excited state below 440 cm™1 (~1.7J) and does not result in
ground state g-values below 2.0. Addition of a third bridge now causes the S = 1/2 excited state
to greatly decrease in energy (this is a result of “spin frustration” as all three S = 1/2 cannot be
AF coupled in a triangle) and the ground state g-values to decrease below 2.0 (due to
antisymmetric exchange in the all bridged trimer).33 Thus the experimental data on the ground
state and excited state of NI require all three Cu(l1)’s to be strongly exchange coupled through
bridging ligands.

There were two possible structures for NI where all Cu’s are oxidized and bridged by the
product of full O, reduction: a uz-oxo bridged structure, or a tris OH- bridged structure in
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which the third OH™ would derive from H,0 (Figure 14A top). Model complexes exist with

both structures and both exhibit MCD pseudo-A terms (of opposite sign) associated with the
hydroxo or oxo to Cu(ll) CT transitions of the trinuclear Cu(ll) cluster (Figure 14A bottom).

34 The mechanism for pseudo-A terms requires two perpendicular CT transitions being spin-
orbit coupled in a third direction at one center. For the tris OH™ system, this would involve CT
transitions from two OH™ ligands to one Cu(ll) center which provides the spin-orbit coupling.
For the pz-oxo structure, this involves oxo CT transitions to two Cu(ll) centers which are spin-
orbit coupled by the oxo bridge. From the temperature dependent MCD spectrum of NI shown
in Figure 14B, the CT transitions forming the pseudo-A term involve different Cu centers which
is only consistent with a pz-oxo, all-bridged structure for NI.

The above spectroscopic studies of O, intermediates in the MCQO’s have led to the molecular
mechanism of O, reduction to H,O in Figure 15. The reduction of O, by the fully reduced
MCO involves two 2e~ steps. From our kinetic studles the first is rate determining and the
second is fast, therefore it is effectively a 4e™ process. 1 The second step involves the 2e~
reductive cleavage of the O-O bond. It has a large driving force due to the 2e™ reduction
potential of peroxide and from mutagenesis studies it is proton assisted with a Glu near the T3
providing the proton for O-O bond cleavage. The NI is a fully oxidized form of the enzyme
but is different from the resting form as it has an internal puz-oxo bridge. These interconvert
and the rate of decay of NI to the resting is very slow due to the reorganization of the p3-0xo
bridge (from O,) to the external position on the T2 Cu(ll). This deca of NI is too slow to be
in the catalytic cycle, whereas the reduction of NI is fast (>1000s™ 1) and this is the
catalytically relevant fully oxidized form of the MCOQO’s. ET from the T1 to the TNC is fast
because the pz-oxo bridge provides an effective superexchange pathway to the T2 Cu.

4. ps-Sulfide bridged tetranuclear Cuz cluster in Nitrous Oxide Reductase

The tetranuclear Cuy cluster catalyzes the 267 /2H* cleavage of the N-O bond in NZO.36 From
the crystal structure, electrons enter at the mixed valent binuclear Cup center of one subunit
and are transferred over a 10 A super-exchange pathway to the Cuy cluster of a 2" subunit
where N,O reduction occurs at the Cu;/Cuyy edge (Figure 16A). The psSCuy cluster is held in
the protein by 7 His ligands, two on Cu;-Cuy;; and one on Cuyy,. In the resting crystal structures,
there are one or two H,O derived ligands at the Cu,/Cu,y edge. 36,

The initial goal of spectroscopy was to determme the electronic structure of the
crystallographically defined resting Cuz cluster.38 The Cugy cluster has a sulfide to Cu CT
transition at 640 nm which shows a pseudo-A term MCD spectrum. The temperature
dependence of the MCD shows that the ground state has S;=1/2, which can either reflect a
site with 1Cu'!/3Cu' or 3Cu'l/1Cu'. These possibilities could be distinguished with XAS at the
Cu K-edge, where from Figure 17A the Cuy feature at 8984 eV shows that 3Cus are reduced
in resting Cuz. 39 This Ieaves one-hole on the cluster and its distribution could be determined
by a combination of X and Q band EPR and S K-edge XAS. Figure 17B shows that the g
value from Q band lies on a Cu hyperfine line in X band requiring e delocalization over at
least 2Cus. These experimental results are supported by geometry optimized DFT calculations
(Figure 16B) which show dominant Cu, character but S|gn|f|cant delocalization of the hole
over the cluster depending on the nature of the edge Ilgand

The edge ligand could be detected by rR spectroscopy which also elucidated the requirement
of a proton for high activity of NoOR. A structural model consistent with the results involves
an OH™ edge ligand whose orientation is affected by H-bonding to a protonated Lys at the
Cuy/Cuyy edge. This protonated Lys appears to play a significant role in assisting catalysis.

We next focus on the redox state of Cuz required for catalysis. Reduction of the Cuz EPR
signal of the one-hole form directly correlates with the activity. Thus the fully reduced
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(4Cu') form of the Cug reacts with N,O in catalysi's.39 Geometry optimization of N,O at the
Cu,/Cuyy edge shows that it binds as a p-1,3 bridge, bent with an angle of 139%. From Figure
18A this bending greatly lowers the energy of the =* LUMO of N,O which leads to extensive
backbonding from fully reduced Cug into the N,O activating the cleavage of the N-O bond.39

Figure 18B evaluates the potential energy surface for N-O cleavage on the Cuy cluster. The
barrier is reduced from 61 kcal/mol in the gas phase to 18 kcal/mol on Cuz. This is because
the bent N,O reactant is destabilized and, in particular, the extensive backbonding lowers the
TS energy through stabilization of the Cup!'-O~ bond. Allowing for a protonated ligand to H-
bond to this oxo further lowers the TS to ~ 10 kcal/mol. Finally since the two e~ transferred
are donated from Cu, and Cu,y, it is interesting to evaluate the role of the additional Cus in the
cluster. Eliminating Cuy; and Cuy;; (and saturating the sulfide by protonation) eliminates much
of the backbonding into NoO and increases the barrier for N-O cleavage to 37 kcal/mol.40

The above considerations lead to the molecular mechanism for the 2e /2H* cleavage of N,O
shown in Figure 19. H-bonding from the protonated Lys lowers the barrier for N-O cleavage
which leads to the two-hole hydroxyl bridged species. This is rapidly reduced by Cup to the

one-hole species where protonation of the Lys again raises the potential and provides a proton
to complete the reaction cycle.40

Concluding Comments

Spectroscopic/electronic structural studies on copper proteins, their intermediates and models
have provided fundamental insights into their reactivities. Among major issues that remain are
the structural differences over the coupled binuclear copper proteins that lead to their different
reactivities in Figure 1, whether the side-on structure of oxy-Ty directly reacts with substrates
or converts to the bis p-oxo structure along the reaction coordinate of phenolate binding and
hydroxylation in Figure 5, the reactivity of the Cu(ll) O,- species in H-atom abstraction and
its relevance to the PHM mechanism in Figure 11, the fundamental differences of the trinuclear
copper cluster in the multi-copper oxidases relative to the coupled binuclear copper protein
sites in dioxygen reactivity and the factors involved in the proton assisted reductive cleavage
of the O-O bond, and trapping and defining the key intermediates in the reaction mechanism
of N,OR in Figure 19. The field of copper bioinorganic chemistry has come a long way, but
there is still much to understand.
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Electronic structure of (A) End-on Cu-0,2~ complex (B) End-on bridged [Cu»-0,%"] complex
and (C) Side-on bridged OxyHc.
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(A)The reaction coordinate of O, binding by Hc. View along the O-O (Top) and perpendicular
to initial Cu,05 plane (bottom). (B) Potential-energy surfaces for the interconversion of OxyHc
and DeoxyHc in triplet and Singlet state. R:d(X-X) is the distance between the center of the

O-0 and Cu-Cu vectors. R:d(X-X) <~0.6 and >~0.6 represents symmetric and non-symmetric

O, coordination, respectively.
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Molecular mechanism of Ty catalysis. The two possible structures of substrate bound oxy-T
are expanded.
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(A) Side-on peroxo (left), Bis-p-Oxo (right) correlation (B) electronic structure correlation (C)
FMO’s (ie. LUMO’s).
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Figure 9.
Geometry-optimized structures of the resting oxidized Cup, and Cupy sites in PHM.

Acc Chem Res. Author manuscript; available in PMC 2008 September 8.

Page 19



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnue\ Joyiny Vd-HIN

Solomon et al.

. (\.‘ zo&cu I1B°I

P— )

32%01 32%02 900 1000 1100
Raman Shift (cm™)

|

Figure 10.
Electronic structure of the Cu'l\,-OOH (A) and Cully-superoxo (B) species. Geometry-
optimized structure (left), acceptor FMO (LUMO) (middle), rR spectra in v, region (right).
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(A) Predicted and observed MCD signs for the two possible structures of NI and (B) ground
and excited state MCD spectra of NI, where bands are grouped together according to their

different temperature dependencies
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Figure 16.
(A) Crystal structure (PnN,OR) (B) Geometry optimized electronic structure
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(A) Backbonding interaction from fully reduced Cuz to N,O (B) N-O bond cleavage barrier
of Cugz (red/grey), Cu,SH (black), H-bond assisted (blue).
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