
A Component-Based FPGA Design Framework for Neuronal Ion
Channel Dynamics Simulations

Terrence S. T. Mak,
Department of Systems Engineering & Engineering Management, The Chinese University of Hong
Kong, Shatin, N.T., Hong Kong. (Current address of T. Mak: Department of Electrical and Electronic
Engineering, Imperial College, London, UK.)

Guy Rachmuth,
Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology,
Cambridge, MA, USA.

Kai-Pui Lam, and
Department of Systems Engineering & Engineering Management, The Chinese University of Hong
Kong, Shatin, N.T., Hong Kong.

Chi-Sang Poon [Fellow, IEEE]
(corresponding author; e-mail: cpoon@mit.edu) Harvard-MIT Division of Health Sciences and
Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.

Abstract
Neuron-machine interfaces such as dynamic clamp and brain-implantable neuroprosthetic devices
require real-time simulations of neuronal ion channel dynamics. Field Programmable Gate Array
(FPGA) has emerged as a high-speed digital platform ideal for such application-specific
computations. We propose an efficient and flexible component-based FPGA design framework for
neuronal ion channel dynamics simulations, which overcomes certain limitations of the recently
proposed memory-based approach. A parallel processing strategy is used to minimize computational
delay, and a hardware-efficient factoring approach for calculating exponential and division functions
in neuronal ion channel models is used to conserve resource consumption. Performances of the
various FPGA design approaches are compared theoretically and experimentally in corresponding
implementations of the AMPA and NMDA synaptic ion channel models. Our results suggest that
the component-based design framework provides a more memory economic solution as well as more
efficient logic utilization for large word lengths, whereas the memory-based approach may be suitable
for time-critical applications where a higher throughput rate is desired.

Index Terms
FPGA; neuronal ion channel; dynamic clamp; brain-machine interface; neuroprosthetic device

I. Introduction
Real-time simulation of neuronal ion channel dynamics is an important step in the
implementation of neuron-machine interaction, which is fundamental to several emerging
neuromorphic and biomimetic applications. For example, in electrophysiological studies of
neuronal membrane properties using the dynamic clamp technique [1] a digital computer is
used to generate virtual ion channel conductances which continuously interact with a biological
neuron in real time. Such software-based experimental applications are highly computation-
intensive and often require judicious choice of operating systems [2] and/or numerical

NIH Public Access
Author Manuscript
IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

Published in final edited form as:
IEEE Trans Neural Syst Rehabil Eng. 2006 December ; 14(4): 410–418. doi:10.1109/TNSRE.2006.886727.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

procedures [3] to improve the computational speed and flexibility. A hardware-based,
application-specific implementation of the dynamic clamp technique would circumvent the
limitations of general-purpose computers.

Another example of real-time neuronal ion channel dynamics computation is found in
neuroprosthetic devices using brain-machine interface (BMI). For example, a robotic arm
controlled by central brain activity has been shown to be capable of generating complex
motions [4], and such capability may find important applications in patients with Parkinson's
disease, essential tremor, dystonia, multiple sclerosis, muscular dystrophy and other motor
dysfunctions [5]. Future applications of such neuroprosthetic devices might incorporate brain-
implantable biomimetic electronics as chronic replacements for damaged neurons in central
regions of the brain [6-8]. One such technology is neuromorphic analog VLSI circuits [9].
Towards this end, we have previously proposed a neuromorphic Hebbian synapse design using
analog CMOS circuits operating in subthreshold regime [10,11]. However, the relatively long
design and fabrication cycles for analog CMOS circuits can be a bottleneck in the development
of such devices.

In recent years, Field Programmable Gate Array (FPGA) technology has emerged as a high-
speed digital computation platform [12]. The flexibility of the FPGA's programmable logic
combined with its high-speed operation potentially allows it to control neuroprosthetic devices
and dynamic clamp systems in real time. Additionally, FPGAs can be used to accelerate
prototyping of analog hardware models of brain processes by quickly building a simulation
platform to study the functional behavior of the proposed model in a much shorter design cycle.
The applicability of FPGAs for neuronal ion channel dynamics simulation was first proposed
in [13,14]. Specifically, FPGAs offer an advantage of high-speed signal processing which
could be orders of magnitude faster than software-based approaches to simulating biological
neuronal signals. This technology can potentially be an effective prototyping tool or permanent
platform for dynamic clamp experiments or neuroprosthetic device applications.

However, neuronal ion channel models involve computation-intensive functions which present
a challenge for FPGA implementation. Currently, FPGA development toolkits do not always
provide efficient build-in operators or basic building blocks for computation-intensive
functions such as exponentiation and division. To circumvent this difficulty, a memory-based
approach that stores the pre-computed function values in look-up tables was adopted in
previous implementations [13] and expounded upon in [14-16]. This simple approach has a
number of limitations that call for a more flexible and hardware-economical design
methodology.

In this paper, we propose a component-based FPGA design framework for the modeling and
simulation of ion channel dynamics. Under this framework, computational algorithms for
exponentiation and division are implemented using FPGA digital logics [17] instead of look-
up tables. These FPGA basic arithmetic components provide the computational primitives for
constructing any ion channel models readily. In Section II, the background of neuronal ion
channel dynamics and the alternative FPGA design approaches are reviewed. The component-
based FPGA design framework is presented in Section III, where two design alternatives for
achieving maximum speed or minimum resource consumption are introduced. Section IV
illustrates this design approach with component-based FPGA implementations of the NMDA
and AMPA excitatory synapse ion channel models. Section V concludes with a summary of
the findings.

Mak et al. Page 2

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

II. Background
A. Neuronal Ion Channel Models

The current Ii(t) flowing through an ion channel i at time t can be thought of as an ohmic
relationship with a time-varying conductance gi(t) and membrane potential Vm(t):

(1)

where Ei is the reversal potential of the i-th ion channel. The time-varying conductance gi(t)
can be modified accordingly to model voltage-dependent and ligand-dependent ion channels
[18]. Computational intensive functions, such as exponential function and division, are
frequently used in modeling the time-varying conductance.

The ion channel dynamics can be modeled by using first-order differential equation that
captures the evolution of the membrane potential,

(2)

where Cm is the membrane capacitance, gleak is the leak conductance of the membrane patch,
Vrest is the resting membrane potential, and ΣiIi(t) sums all the currents from different
membrane ion channels.

B. Memory-based Versus Component-based Approaches
For the memory-based approach, key computational steps of the above neuronal models are
pre-computed and stored in the FPGA internal memory such that during playback these values
can be retrieved readily at a high rate [14,16]. The ion channel equations are evaluated with
predefined parameters and with a time increment that is indexed in the look-up table. There
are two major advantages with memory-based model realizations: (i) small computational
delay, and (ii) design simplicity. However, the simplicity and high-speed memory retrieval
come with a cost, in that the size of the pre-computed look-up table grows exponentially with
increasing accuracy and input resolution requirements. On-chip memory could be easily
exhausted when dealing with large-scale neuronal models with multiple ion channels.

One obvious way to conserve memory is by decreasing the time and output resolutions. An
efficient way of restoring time resolution is to use linear interpolation on 2n intervals between
two stored values, say, yt and yt+1. By simply shifting the difference Δy = yt+1-yt leftward by
n bits and then adding Δy to yt iteratively, the intermediate y values between yt and yt+1 can be
approximated. Such an interpolation procedure requires only minimal additional FPGA logic
hardware, namely a shifter and adder. An alternative way is by using the bipartite or multipartite
table method in which two or more tables are introduced to reduce the required memory while
improving the error bound [19]. Nevertheless, memory consumption is still a limiting factor
when large-scale models with high resolution are involved.

In addition, with the memory-based approach it is difficult to change the model parameters in
run-time. This is because all functions are pre-computed in advance assuming predefined
parameters. This is a limitation for certain applications such as dynamic clamps, where the
ability to modify parameters at run-time is highly desirable.

For the component-based approach, basic model functions such as exponentiation and division
are evaluated with computational components and implemented using digital logics. Several
algorithms are available for mapping these functions to FPGA embedded logics to form basic
components [20,21]. The requirement for on-chip memory can be greatly reduced with this

Mak et al. Page 3

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

approach. Further, model parameters can be adjusted and adapted in real time. This is because
the model functions are evaluated directly at run-time using FPGA computational primitives.
A drawback of the component-based approach is the latency overhead but the computation
speed can be improved by introducing parallelism to the calculations.

Table I summarizes the differences between the memory-based and component-based
approaches for neuronal ion channel model implementation. For the memory-based approach,
large on-chip memory is required. For the component-based approach, there is a well balance
between memory and logic resources utilization. For computational speed, the memory-based
approach is generally faster than the component-based approach but the latter has a greater
flexibility in allowing optimal tradeoff between speed and resource utilization. For scalability,
availability of hardware resources would be the limiting factor for the memory-based approach
with respect to improving resolution and model complexity. Lastly, since the model simulation
results from the component-based approach is directly evaluated in run-time, this approach is
more adaptable to changing parameter settings.

III. Component-Based Approach
A. FPGA Design Flow

FPGA systems can be designed with high-level programming languages. Several commercial
design platforms and environments provide automatic compilation of high-level programming
languages, such as C, C++, Matlab, into FPGA digital logics. Alternatively, FPGAs can also
be programmed by using VHDL or Java under a low-level design scheme. Readers are directed
to [22] for a detailed survey on FPGA design flow. Our logic-level design makes extensive use
of Xilinx's System Generator (SG) that works under MATLAB's Simulink environment [23].
The latter provides a schematic design environment of logic gate blocks which are used to
implement the FPGA model. SG automatically synthesizes the Simulink model from the
schematic design to a bit stream file, which can be readily used to configure the FPGA
hardware. FPGA as a standalone simulation device can be properly interfaced with different
kinds of software, such as MATLAB and LabView. Analog signals can be converted to digital
by using an external Analog-to-Digital conversion (ADC) chipset before inputting to FPGA.

B. System Architecture
The basic equations (Eqs. 1-3) require iterative computations at each time increment (Δt), from
t =0 with the given initial conditions. A common technique for realizing this time-increment
requirement in FPGA design is to construct a counter block, to be triggered by an external
ENABLE pulse (the rising edge of which defines the instant t=0). This approach can effectively
mimic the time increment with little hardware needed. The trigger starts the counting at a
frequency specified by the FPGA clock, and can be used to provide a steady stream of values
of t at regular intervals for subsequent calculations.

Fig. 1 shows the data flow of an overall design with n ion-channel compartments. We use a
register R to store the membrane voltage Vm. The membrane leak conductance is regulated by
the differences between the membrane potential and the rest potential. The ion channel blocks
run in parallel and generate the net membrane current. The accumulator (1/s) effectively models
the conversion of electric charge into a voltage, acting as an R-C circuit emulating the effects
of Cm and gleak.

C. Implementation of Exponentiation and Division Using Factoring Approach
FPGAs offer programmable on-chip logics, embedded multipliers and interconnect fabric.
There are no readily adaptable hardware resources for the exponentiation (exp(X)) and division
(Y/X) operations required for the neuronal ion channel models (Eqs. 1-2). Traditional software

Mak et al. Page 4

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

routines provide accurate evaluations of these functions given enough time for iterative
operations. Most of these routines require repeated multiplicative operations, which are
hardware resource expensive in digital logics. Alternatively, a hardware-efficient routine
known as the factoring approach, or additive normalization, approximates the exponential and
division functions successively with only shift-and-add operations [17,20]. Specifically,
multiplication of 2i, where i is an integer, would become simple i-bit shifting operations in
digital logics, which are highly hardware-economical. Basic component or arithmetic units for
exponentiation and division can be implemented with the factoring algorithm in a cost-effective
manner (see Appendix).

D. Maximum Speed vs. Minimum Resource Consumption
FPGA hardware resources can be configured by the designer in various ways. Software support
with a full-spectrum library of different granular entities (e.g., basic logic gates, flip flops,
counters, multiplexers, adders, multipliers) is now widely available, along with a high-level
hierarchical design platform and graphic interface. This helps tremendously our component-
based modeling approach with flexible design options to achieve either maximum speed or
minimum resource consumption.

To take full advantage of available hardware resources, functional operators may be executed
in parallel in order to gain greater speed. This is known as the maximum speed design [24].
The drawback of this approach is that extra hardware resources are required. Alternatively,
execution in a sequential order can reduce the required number of hardware operators, as some
of them may be used for different operations at different time stamps. This minimum resource
consumption design option is useful when hardware resources are scarce or when implementing
large-scale or complex ion channel models. Table II compares the advantages and
disadvantages between the maximum speed and minimum resource consumption schemes.

IV. Implementation Examples and Testing Results
In this section, we illustrate the above design principles with the FPGA-based modeling of two
types of synaptic ion channels: N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA) receptor-gated ion channels (Fig. 2). Both ion
channels are present in glutamatergic excitatory synapses and play an important role in synaptic
plasticity such as long-term potentiation and depression [25-27]. AMPA channels, which carry
the bulk of the excitatory synaptic current IAMPA(t), can be modeled by using Eqs. (1) and the
time-varying conductance gAMPA(t) can be modeled by using an alpha function as follows
[18]:

(3)

NMDA channels with excitatory current INMDA(t) are the major source of Ca+2 influx into the
postsynaptic cell. They have the interesting property that their gating is jointly controlled by
neurotransmitter binding and by a voltage-dependent blockage of the channel by Mg+2 ions.
This bivariate gating function is characterized by the membrane reversal potential Esyn and
other parameters:

(4)

where gn is the maximal channel conductance, τ1 and τ2 are the channel's activation and
deactivation time constants, [Mg+2] is the extracellular magnesium concentration, η and γ are
constants. Because of their unique dependence on both presynaptic and postsynaptic activation,

Mak et al. Page 5

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

NMDA channels are generally thought to be a biophysical implementation of the Hebbian
adaptation rule [10,25,26,28].

A. Component-Based FPGA Implementations of APMA and NMDA Ion Channel Models
For convenience of analysis, the binary operators for addition/subtraction, multiplication,
division via FPGA logic hardware implementations are denoted as ⊕(x,y), ⊗(x,y), Ø(x,y),
respectively; the unary operator for exponential is exp(x). Also, T⊗ refers to the latency for
multiplication and Texp refers to the latency for exponentiation. Parallelization of independent
processes Pi and Pj is denoted as Pi || Pj, such that processes Pi and Pj are independent.

Computing IAMPA(t): Using the above notations, Eqs. (1,3) for calculating IAMPA(t) may be
rewritten as:

(5)

(6)

where Pi denotes the i-th independent process, which can be realized by using dedicated
hardware resource. Fig. 3 shows the maximum speed (a.) and minimum resources consumption
(b.) hardware mapping strategies for the implementation of Eqs. (5,6). For the maximum speed
design, multiplications are parallelized to obtain the speed-up. Alternatively, multiplication
operators are time-shared to conserve hardware resources. It is the designer's discretion to
decide which approach is appropriate.

Computing INMDA(t): Reformulating Eq. 4 for calculating INMDA(t) gives:

(7)

(8)

(9)

Table III compares the computational delay and resource requirements for the maximum speed
and minimum resource consumption implementations of the IAMPA(t) and INMDA(t).

Table IV shows the experimental results for the tradeoffs between computational delay and
resource consumption for these two design alternatives implemented on the Xilinx Virtex-II
FPGA the Xilinx Virtex-II FPGA. The metric for computational delay is the number of clock
cycles required to finish the task. For modern FPGAs, such as the Xilinx Virtex-II, dedicated
multipliers and RAM are also embedded into the FPGA fabric, which can highly improve the
computational efficiency. Therefore, counts of these three important hardware resources, (i)
slice (or logics), (ii) RAM and (iii) multipliers become the metric of resources evaluation. The
experimental results for the computational delay and resources binding for the memory and
multipliers are generally in good agreement with the theoretical bounds. However, the number
of binding multipliers are double that expected from the above theoretical analysis. This is
because the evaluation of exponential functions itself requires a multiplier, which is not counted
in the theoretical analysis. Addition and division are realized by using logic slices. It can be
seen that the NMDA circuit requires substantially more logic units than the AMPA circuit, as
predicted by the theoretical bound. Further, the computing speed for the maximum speed design
is double the other design, while most of the logic slices requirements are 87% more than the
other design.

Mak et al. Page 6

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

B. Resources Utilization of Memory-based and Component-based FPGA Designs
Both the memory-based and component-based approaches require look-up tables of certain
sizes which are mapped into FPGA internal memory, such as block RAMs (BRAMs). It is
possible to use the number of BRAMs being occupied as a metric for memory consumption.
However, the size of BRAMs varies for different FPGAs and technologies. For example, the
Xilinx Virtex-II XC2V2000 has a total of 1008 kbits memory and each BRAM has 18 kbits.
Greater BRAM capacity is now available for more powerful FPGAs such as Virtex-5
XC5VLX330, the latest from Xilinx's, with 10368 kbits. Alternatively, we can directly compare
the sizes of the look-up tables in bits for each implementation use.

The size of a look-up table is dependent on both the word length (number of bits) of the output
signal (L) and the required word length precision of the input (N). Both L and N may directly
affect data precision and the quality of the computational results. We compare the sizes of look-
up tables required for the two approaches by varying L and N. The comparison results are
presented in Table V-VI, in which the numbers are in bits. The memory-based approach
requires a much larger look-up table. The table size is two to three orders of magnitude more
than the component-based approach. Also, its look-up table size increases exponentially with
increasing N. This may be a problem for a moderate-size FPGA, i.e. Xilinx Virtex-II, which
can only support a design with N up to 14 bits and L up to 12 bits, by exhausting all memory.
In contrast, for the component-based approach the look-up table size increases linearly with
both L and N. In this case, memory will not become a bottleneck as in the memory-based design.

Another important on-chip resource is logic gates, each of which is realized using a 4-input
look-up table known as slices. In contrast to look-up tables, the logic gates consumption is
mainly dependent on the word length. The results are shown in Fig. 4. The memory-based
approach consumes less logic slices than the component-based approach for word lengths
smaller than 16. This is because more primitive logics are needed to realize the algebraic
components in the component-based approach, whereas logics are required only for memory
retrieval and proper scaling for the output in the memory-based approach.

However, when the word length is longer than 16 bits (for the case of AMPA) and 14 bits (for
the case of NMDA), logic slices consumption grows explosively for the memory-based
implementation. This is because, to obtain such word length accuracy, a large look-up table is
needed. A total of 256 and 1024 BRAMs are required for the AMPA and NMDA circuit,
respectively. A large amount of logic units are also needed to construct the communication bus
architecture and the necessary data representation conversion. For word lengths over 24 bit,
the memory requirement is > 1Mbits, which represents a significant portion of FPGA
embedded memory capacity currently available. On the other hand, logics usage for
component-based approach increases linearly with increasing word length.

A well-known drawback of the component-based approach is the computation delay overhead.
In the present design framework, the exponentiation and division operations require only
addition and shifting operations, which are relatively economical time-wise. Still, when
compared to the memory-based approach, which directly retrieves pre-computed results form
RAM, the maximum speed component-based approach takes a longer time as reflected by the
number of clock cycles needed (Table VII). The computational delay for the component-based
approach depends on the word length, as more iteration loops are required for higher accuracy
requirement. In contrast, memory retrieval time is not necessarily dependent on bit accuracy,
as all signals are retrieved in parallel. Results show that the memory-based approach could be
3 to 4 times faster than the component-based approach.

Specifically, since the FPGA is driven by a global clock signal, the computational speed of the
model is dependent on the frequency of the digital clock f and the implementation strategy for

Mak et al. Page 7

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

the model equations. The amount of time it takes to evaluate the model equations can be
expressed as p/f, where p is the number of clock cycles needed. For a Xilinx Virtex-II XCV2000
FPGA, the maximum frequencies for the memory-based and component-based approaches are
70 MHz and 68 MHz respectively due to differences in signal flow critical paths. The model
using the memory-based approach requires 4950 clock cycles to generate an output, which
means that each presynaptic pulse generates a postsynaptic signal in 70.7 μs. For the
component-based approach, the model requires 18315 clock cycles or equivalently, 269.3 μs
to generate a postsynaptic signal. Software computation of the model equations on a Pentium-4
desktop computer with 2.8 GHz clock rate takes ∼4.7 ms, making FPGA faster by 66 and 17
times with the memory-based and component-based approaches respectively.

Overall, the component-based model provides a more memory economic solution, as well as
more efficient logic utilization for large word lengths (> 16). Although there is a cost in
computational delay for the arithmetic evaluations, the savings in hardware resources may be
critical for model scaling. Thus, multiple ion channel models may be simulated in parallel on
one chip without overshooting either the memory or logic slice limit. In contrast to
multiplexing, which switches different inputs and outputs and reuses the same logics, parallel
implementation could better utilize the available input/output ports for higher performance.
On the other hand, the memory-based approach may be suitable for time-critical applications
where a higher throughput rate is desired.

C. Simulation Results
Fig. 5 shows the comparison between biological recordings (EPSCs) mediated by either
NMDA channels alone or both AMPA and NMDA channels in a cultured hippocampal neuron
from a neonatal rat. The FPGA simulation results from the memory-based approach and the
maximum speed component-based approach both adequately mimicked in real time the actual
NMDA and AMPA currents from the experimental data in [29]. Both memory-based and
component-based approaches adopt a 16-bit output resolution. Especially, memory-based is
with 8-bit addresses resolution. However, close-up views of both simulation curves (Fig. 5c,
d) reveal significant truncation errors from the memory-based approach (but not the
component-based approach) when compared to a reference curve generated by using a
simulation software with floating point precision on a digital computer. The truncation errors
are attributed to the limited resolution of the lookup table Next, we used double precision
floating point arithmetic as a reference to systematically evaluate the relative errors of both
FPGA approaches, defined as the normalized errors averaged (±standard deviations) for the
first 5000 time stamps of the simulation runs for: (i) component-based approach (Comp) with
16-bit input and output; (ii) memory-based approach (Mem8) with 8-bit memory address and
16-bit output; (iii) memory-based (Mem14) with 14-bit memory address and 16-bit resolution.
Fig. 6 shows the relative errors of the three implementations for varying tpeak and τ1, which
are parameters in Eqs. (3,4), respectively. For tpeak> 600 or τ1 > 600 the relative errors of Mem8
and Mem14 are much larger than Comp. The relative error of Comp increased with tpeak but
decreased with τ1. This is because when tpeak increases, the AMPA current will decrease and
hence the relative error will increase for a given truncation error, whereas the NMDA current
increases with τ1. For Mem8, there were large variances in the relative errors for the AMPA
simulation but not the NMDA simulation, the reason being that AMPA current is very sensitive
to tpeak while NMDA current is less sensitive to τ1.

V. Conclusion
A component-based FPGA design framework for digital simulation of neuronal ion channel
dynamics has been presented. The FPGA realization computes with comparable accuracy as
digital computer implementations while operating at much higher speeds. The programmability

Mak et al. Page 8

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

and high-speed capability of the FPGA system allow it to prototype analog circuit designs with
a much shorter design cycle. The proposed component-based design strategy overcomes the
inflexibility and memory limitations of the memory-based design approach. This technology
can potentially be used as a valuable tool for dynamic clamp experiments or for controlling
neuroprosthetic devices, or for chronic replacement of damaged neurons in central regions of
the brain in future.

Acknowledgements
This work was supported in part by NIH grant EB005460. T. Mak was a recipient of a US Office of Naval Research
Global travel award and a Croucher Foundation scholarship. G. Rachmuth was a recipient of a US National Defense
Science and Engineering Graduate Fellowship.

VI. Appendix

A. Exponentiation Using Factoring Approach
Consider exponentiation function eX, which can be approximated by product of n factors with
judicious choice of sj, such that

(10)

where X ≥ 0 and sj ε {0,1}.

Suppose we have a table storing log(1+2-j) for j=0,1,2,…,n. Thus, sj can be determined by
comparing Xj and log(1+2-j) for all j=0,1,2,…,n. If Xj is larger than log(1+2-j) for some j, sj
will be one and otherwise sj will be zero. Successively, the product term will converge to eX.
The algorithm is shown as follows

The input domain of factoring algorithm assumes that X ε (0,1.38]. It is necessary to reformulate
the exp function to fit the input number range of the neuronal modeling. For the ion channel
models, the input X for exp function is -t/τ, which is a negative number. A method is needed
to transform the input into an acceptable domain for factoring algorithm.

By rearranging the index term, the exp function can be formulated as a product of two terms.
One of the terms can be simply evaluated by multiplications of constant and the other is with
input at the acceptable domain of factoring algorithm. We let X equals to −A−B, where A, B
are positive integers. Therefore, we have

(11)

Since A is an integer, the first term, e-A-1 can be evaluated by simple multiplications. The second
term can be evaluated by using factoring algorithm, as 1–B is a positive number less than one.

In addition, the comparison between look-up-table and factoring approaches for eX is shown
in Table VIII. The mean and standard deviation of their corresponding normalized error are
shown that the floating point exponentiation function from Matlab is used as a reference. The
column address is the memory addresses resolution in bits and the iteration column is the
number of operation cycles of the algorithm.

Mak et al. Page 9

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

B. Division Using factoring Approach
Factoring is also an effective approach for division approximation, such as (Y/X) [17]. Division
can be considered as a reciprocal computation, as reciprocal is a special case of division with
(Y=1). Similar to the exponentiation, division can be formulated as product of n factors as
follows,

(12)

where sj = -1. Similarly, the algorithm approximates the reciprocal with successive evaluation

of partial results, .

Eventually, pj·X converges to one, while pj converges to Y/X. The algorithm is shown as follows

Factoring Algorithm for Exponentiation

1 x0=X, y0=1, g(i)=log(1+2-i), i=1,2,…,n
2 for i=1 to n
3 a = xi – g(i)
4 if a > 0
5 xi+1 = a
6 yi+1 = yi + yi·2

-i

7 else
8 xi+1 = xi
9 yi+1 = yi
10 end if
11 end for

Factoring Algorithm for Division

1 x0=X, y0=1, i=1,2,…,n
2 for i=1 to n
3 a = xi - xi·2

-i

4 if a > 1
5 xi+1 = a
6 yi+1= yi - yi·2

-i

7 else
8 xi+1 = xi
9 yi+1 = yi
10 end if
11 end for

References
1. Sharp AA, O'Neil MB, Abbott LF, Marder E. Dynamic clamp: computer-generated conductances in

real neurons. Journal of Neurophysiology 1993;69:992–995. [PubMed: 8463821]
2. Dorval AD, Christini DJ, White JA. Real-Time linux dynamic clamp: a fast and flexible way to

construct virtual ion channels in living cells. Annals of biomedical engineering 2001;29:897–907.
[PubMed: 11764320]

3. Butera RJ, McCarthy ML. Analysis of real-time numerical integration methods applied to dynamic
clamp experiments. Journal of Neural Engineering 2004;1:187–194. [PubMed: 15876638]

4. Taylor DM, Tillery SIH, Schwartz AB. Direct Cortical Control of 3D Neuroprosthetic Devices. Science
2002;296:1829–1832. [PubMed: 12052948]

5. Isaacs RE, Weber DJ, Schwartz AB. Work toward real-time control of a cortical neural prothesis. IEEE
Trans Rehabil Eng 2000;8:196–8. [PubMed: 10896185]

Mak et al. Page 10

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

6. Berger TW, Baudry M, Brinton RD, Liaw JS, Marmarelis VZ, Park AY, Sheu BJ, Tanguay AR Jr.
Brain-implantable biomimetic electronics as the next era in neuralprosthetics. Proceedings of the IEEE
2001;89:993–1012.

7. Simpson M, Sayler G, Patterson G, Nivens E, Bolton E, Rochells J, Arnott J, Applegate B, Ripp S,
Guillorn M. An integrated CMOS microluminometer for low-level luminescence sensing in the
bioluminescent bioreporter integrated circuit. Sensors and Actuators B 2002;72:134–140.

8. Song YK, Patterson WR, Bull CW, Beals J, Hwang N, Deangelis AP, Lay C, McKay JL, Nurmikko
AV, Fellows MR, Simeral JD, Donoghue JP, Connors BW. Development of a chipscale integrated
microelectrode/microelectronic device for brain implantable neuroengineering applications. IEEE
Transactions on Neural Systems and Rehabilitation Engineering 2005;13:220–226. [PubMed:
16003903]

9. Mead CA. Neuromorphic electronic systems. Proceedings of the IEEE 1990;78:1629–1636.
10. Rachmuth, G.; Poon, CS. Design of a neuromorphic Hebbian synapse using analog VLSI. presented

at Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference
on; Capri, Italy. 2003.

11. Rachmuth, G.; Poon, CS. Design of a neuromorphic Hebbian synapse using analog VLSI. presented
at First International IEEE EMBS Conference on Neural Engineering; Capri, Italy. 2003.

12. Cheung PYK, Constantinides GA, deSousa JT. Introduction: Field Programmable Logic and
Applications. IEEE Transactions on Computers 2004;53:1361–1362.

13. Graas EL, Brown EA, Lee RH. An FPGA-Based Approach to High-Speed Simulation of
Conductance-Based Neuron Models. Neuroinformatics 2004;2:417–436. [PubMed: 15800372]

14. Mak, TST.; Rachmuth, G.; Lam, KP.; Poon, CS. Field Programmable Gate Array Implementation of
Neuronal Ion Channel Dynamics. presented at The 2nd International IEEE EMBS Conference on
Neural Engineering; 2005.

15. Weinstein, RK.; Lee, RH. Design of High Performance Physiologically-Complex Motoneuron
Models in FPGAs. presented at The 2nd International IEEE EMBS Conference on Neural
Engineering; 2005.

16. Weinstein RK, Lee RH. Architectures for high-performance FPGA implementations of neural models.
Journal of Neural Engineering 2006;3:21–34. [PubMed: 16510939]

17. Ercegovac, MD.; Lang, T. Digital Arithmetic. Morgan Kaufmann; 2004.
18. Koch, C.; Segev, I. Methods in Neuronal Modeling: From Ions to Networks. MIT Press; 1998.
19. Schulte MJ, Stine JE. Approximating Elementary Functions with Symmetric Bipartite Tables. IEEE

Transactions on Compututers 1999;48:842–847.
20. Chen CY, Chen RL. Pipelined Computation of Very Large Word-Length LNS Addition/Subtraction

with Polynomial Hardware Cost. IEEE Transactions on Computers 2000;49:716–726.
21. Mencer O, Semeria L, Morf M, Delosme JM. Application of Reconfigurable CORDIC Architectures.

The Journal of VLSI Signal Processing (Special Issue on Reconfigurable Computing). 2000
22. Todman TJ, Constantinides GA, Wilton SJE, Mencer O, Luk W, Cheung PYK. Reconfigurable

Computing: Architectures, Design Methods, and Applications. IEE Proceedings on Computers and
Digital Techniques 2005;152:193–207.

23. Hwang, J.; Milne, B.; shirazi, N.; Stroomer, J. System Level Tools for DSP in FPGAs. presented at
11th International Conference on Field-Programmable Logic and Applications; 2001.

24. Dehon, A.; Wawrzynek, J. Reconfigurable computing: what, why, and implications for design
automation. presented at Design Automation Conference; 1999.

25. Kitajima T, Hara K. A model of the mechanisms of long-term potentiation in the hippocampus.
Biological Cybernetics 1990;64:33–39. [PubMed: 2149518]

26. Zador A, Koch C, Brown TH. Biophysical model of a Hebbian synapse. Proceedings of the National
Academy of Sciences USA 1990;87:6718–6722.

27. Zhou Z, Champagnat J, Poon CS. Phasic and long-term depression in brainstem nucleus tractus
solitarius neurons: differing roles of AMPA receptor desensitization. The Journal of Neuroscience
1997;17:5349–56. [PubMed: 9204919]

28. Hebb, D. The Organization of Behavior. New York: Wiley; 1949.

Mak et al. Page 11

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

29. Renger JJ, Egles C, Liu G. A Developmental Switch in Neurotransmitter Flux Enhances Synaptic
Efficacy by Affecting AMPA Receptor Activation. Neuron 2001;29:469–484. [PubMed: 11239436]

Mak et al. Page 12

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 1.
Dataflow diagram for ion channels dynamics simulations using FPGA.

Mak et al. Page 13

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
Biological synapse model with excitatory neurotransmitter glutamate activating AMPA and
NMDA receptor gated ion channels to generate an excitatory postsynaptic potential (EPSP)

Mak et al. Page 14

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
Implementation of AMPA ion channel with (a) maximum speed and (b) minimum resource
consumption approaches

Mak et al. Page 15

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 4.
Comparison of logic consumption in terms of slice between memory-based and component-
based approaches that logic slices are the basic configurable logic unit in FPGA. (a)
Implementation of AMPA receptor (b) Implementation of NMDA receptor.

Mak et al. Page 16

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 5.
(a) Biological recording of individual NMDA channels and excitatory postsynaptic currents
(EPSCs) from AMPA and NMDA channels. (Data adapted from [29] with permission.) (b)
Simulation of FPGA circuits for the EPSCs from AMPA and NMDA channels separately
(upper panel) and together (lower panel). Both memory-based and component-based
approaches show nearly identical results which are qualitatively similar to the experimental
data in (a). (c) Close-up view for the simulation results with the memory-based approach. (d)
Close-up view of the simulation results with the component-based approach.

Mak et al. Page 17

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 6.
(a) Normalized error for AMPA computation for different tpeak. (b) Normalized error for
NMDA computation for different τ1.

Mak et al. Page 18

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mak et al. Page 19

TABLE I
Summary of Memory-Based Versus Component-Based Approaches

Memory-based approach Component-based approach
Hardware resources Requires additional logics and substantial memory storage Reasonably balanced between logics and memory
Computational speed Faster Slower
Scalability Exponential growth of memory with accuracy Linear growth of both logics and memory
Flexibility Fixed parameters only Adaptable to new parameters at run-time
Ease of design Easier Integration of components

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mak et al. Page 20

TABLE II
Summary of Maximum Speed Versus Minimum Resources Consumption

Maximum speed Minimum Resources Consumption
Hardware resources More logics and arithmetic operators Less logics and arithmetic operators
Computational speed Faster Slower
Scalability Poorer Better
Ease of design Easier Requires proper scheduling

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mak et al. Page 21

TABLE III
Theoretical Estimation of Computational Delay and Resources Consumption for the Maximum Speed and
Minimum Resources Approaches

Maximum Speed Minimum Resources Consumption
Function Delay Resources Delay Resources
AMPA 3T⊗ + Texp 2 ⊗ + exp+ ⊕ 4T⊗ + Texp ⊗ + exp +⊕
NMDA 3T⊗ +TØ +Texp+T⊕ 4⊗+Ø+3exp+2⊕ 7T⊗+TØ +3Texp +3T⊕ ⊗+Ø +exp+⊕
Vm T⊗ + 2T⊕ 2 ⊗ +3⊕ 2T⊗ + 3T⊕ ⊗ + ⊕

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mak et al. Page 22

TABLE IV
Experimental Results of Maximum Speed and Minimum Resources
Approaches

format Max speed Min Resources Consumption

AMPA Time (clock cycles) 8-bit 21 30
16-bit 27 38

Resourcesa 8-bit sl=228, rm=1, mu=4 sl=160, rm=1, mu=2
16-bit sl=391, rm=1, mu=4 sl=210, rm=1, mu=2

NMDA Time (clock cycles) 8-bit 37 68
16-bit 51 107

Resources 8-bit sl=1492, rm=3,
mu=12

sl=657, rm=1, mu=2

16-bit sl=1935, rm=3,
mu=12

sl=1002, rm=1, mu=2

a
sl is number of slices, which is the basic configurable logic unit in FPGA. rm is number of on-chip Block RAM (BRAM) and mu is number of embedded

multipliers

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mak et al. Page 23
TA

B
LE

 V
C

om
pa

ri
so

n
of

 M
em

or
y

C
on

su
m

pt
io

n
fo

r
M

em
or

y-
ba

se
d

an
d

C
om

po
ne

nt
-b

as
ed

 A
pp

ro
ac

he
s

M
em

or
y-

B
as

ed
C

om
po

ne
nt

-B
as

ed
N

N
M

D
A

A
M

PA
N

M
D

A
A

M
PA

L=
8

4
25

6
12

8
96

32
8

40
96

20
48

19
2

64
12

65
53

6
32

76
8

28
8

96
14

26
21

44
13

10
72

33
6

11
2

16
10

48
57

6
52

42
88

38
4

12
8

18
41

94
30

4
20

97
15

2
43

2
14

4

L=
12

4
38

4
19

2
14

4
48

8
61

44
30

72
28

8
96

12
98

30
4

49
15

2
43

2
14

4
14

39
32

16
19

66
08

50
4

16
8

16
15

72
86

4
78

64
32

57
6

19
2

18
62

91
45

6
31

45
72

8
64

8
21

6

L
is

 th
e

bi
t-l

en
gt

h
of

 th
e

ou
tp

ut
 v

al
ue

s.
N

 is
 th

e
in

pu
t r

es
ol

ut
io

n.
 V

al
ue

s a
re

 n
um

be
r o

f b
its

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mak et al. Page 24
TA

B
LE

 V
I

C
om

pa
ri

so
n

of
 M

em
or

y
C

on
su

m
pt

io
n

fo
r

M
em

or
y-

ba
se

d
an

d
C

om
po

ne
nt

-b
as

ed
 A

pp
ro

ac
he

s

M
em

or
y-

B
as

ed
C

om
po

ne
nt

-B
as

ed
L

N
M

D
A

A
M

PA
N

M
D

A
A

M
PA

4
20

48
10

24
96

32
8

40
96

20
48

19
2

64
N

=8
12

61
44

30
72

28
8

96
14

71
68

35
84

33
6

11
2

16
81

92
40

96
38

4
12

8
18

92
16

46
08

43
2

14
4

4
32

76
8

16
38

4
14

4
48

8
65

53
6

32
76

8
28

8
96

N
=1

2
12

98
30

4
49

15
2

43
2

14
4

14
11

46
88

57
34

4
50

4
16

8
16

13
10

72
65

53
6

57
6

19
2

18
14

74
56

73
72

8
64

8
21

6

L
is

 th
e

bi
t-l

en
gt

h
of

 th
e

ou
tp

ut
 v

al
ue

s.
N

 is
 th

e
in

pu
t r

es
ol

ut
io

n.
 V

al
ue

s a
re

 n
um

be
r o

f b
its

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mak et al. Page 25

TABLE VII
Comparison of Computational Delay for Memory-based and Component-
based Approaches

Memory-Based Component-Base

All-bit 8-bit 12-bit 16-bit

AMPA 8 15 19 23
NMDA 10 23 29 37

Values are the number of clock cycles to finish the functional evaluation

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mak et al. Page 26

TABLE VIII
Table-look-up (LUT) and Factoring (Fact) Approaches

Address (bit) Iteration (cycle) Error (mean) Error (std)

Fact 14 14 3.07e-5 1.76e-5
Fact 16 16 7.72e-6 4.39e-6
Fact 20 18 4.87e-7 2.75e-7
LUT 28 - 3.34e-4 2.02e-4
LUT 210 - 3.79e-5 5.06e-5
LUT 214 - 3.62e-6 3.16e-6

Solutions from the Matlab build-in functions are used as references for the error computation of the LUT and FACT methods

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2008 September 8.

