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Abstract
Background: A fundamental goal in chemical biology is the elucidation of on- and off-target effects
of drugs and biocides. To this aim chemogenetic screens that quantify drug induced changes in
cellular fitness, typically taken as changes in composite growth, is commonly applied.

Results: Using the model organism Saccharomyces cerevisiae we here report that resolving cellular
growth dynamics into its individual components, growth lag, growth rate and growth efficiency,
increases the predictive power of chemogenetic screens. Both in terms of drug-drug and gene-drug
interactions did the individual growth variables capture distinct and only partially overlapping
aspects of cell physiology. In fact, the impact on cellular growth dynamics represented functionally
distinct chemical fingerprints.

Discussion: Our findings suggest that the resolution and quantification of all facets of growth
increases the informational and interpretational output of chemogenetic screening. Hence, by
facilitating a physiologically more complete analysis of gene-drug and drug-drug interactions the
here reported results may simplify the assignment of mode-of-action to orphan bioactive
compounds.

Background
Specifying on- and off-target effects of drugs and biocides
constitutes a central goal in pharmacology, ecotoxicology
and chemical biology. Drugs are also used as potent
inhibitors generating specific perturbations in systems
biology. The overall chemotoxicity of compounds is typi-
cally measured as the growth reducing impact on organ-
isms. Mode-of-action information of a drug can be
obtained by quantifying changes in fitness of genome-
wide collections of knockout strains [1-5]. Knockouts that
render cells sensitive to a drug identify pathways that
buffer the cell against the chemical perturbation, thereby

providing clues about its mechanism of toxicity. Moreo-
ver, compounds with similar biological effects have simi-
lar chemogenetic profiles [6-8]. Thus, analysis of a
compendium of chemical genetic profiles facilitates the
identification of bioactive compounds with similar bio-
logical effects and the tentative assignment of biological
targets to novel drugs. This approach has been successfully
applied using both yeast [1-5] and bacteria [9,10]. In
genome-wide chemogenetic approaches the fitness of
knockouts is typically measured as changes in composite
growth (as colony size on agar or end-point in culture
density) or, alternatively, by competitive cultivations of
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pooled knockouts tagged with specific DNA sequences
[5,11]. Precise quantification of composite features of
growth on a smaller scale may also be achieved by long
term competition of individual, fluorescently labelled
strains against a reference strain labelled with a comple-
mentary fluorophore [12]. Here, we apply a high preci-
sion micro-cultivation approach [13,14] to investigate the
importance of providing a detailed resolution of growth
dynamics when scoring various drug effects, both as gene-
drug interactions and drug-drug interactions. We show
that resolving growth dynamics in the model organism
Saccharomyces cerevisiae is in many cases essential to
uncover the effects of drugs and for the functional inter-
pretation of drug action.

Results and discussion
Extraction of growth variables resolves composite growth
Living cells, tissues and populations follow a sigmoidal
growth curve that is defined by the three fundamental
growth variables growth lag (response time), growth rate
(doubling time) and growth efficiency (gain in biomass
given the available resources). However, current large
scale approaches that measure drug induced changes in

fitness considers a composite of these variables, as meas-
ured as cell density reached at a specified time-point, and
thus do not resolve growth perturbations into its individ-
ual components. This represents a potential problem as
the different growth variables may encapsulate distinct
and only partially overlapping features of cell physiology
(see below). Hence drugs affecting the composite growth
feature similarly at a specified time (T2) but the individual
growth variables differently, may mistakenly be suspected
of having similar modes-of-action (Fig 1A). The problem
is further exasperated by the dependence of the composite
variable on which time point is specified, as analysis per-
formed at different time points (T1, T2, T3) may lead to
radically different interpretations of a drug's mode-of-
action (Fig 1A). Here, we measure to what extent drugs
impact on individual growth variables, whether these
effects reflect drug mode-of-action and the degree of over-
lap between growth variables. Using a highly parallelized
micro-cultivation approach we precisely quantify drug
induced changes in growth dynamics and extract the three
growth variables using an automated procedure [13].
Growth rate is extracted as the slope in the exponential
phase converted into population doubling time (h),

Extraction of growth variablesFigure 1
Extraction of growth variables. A) Extraction of the composite growth measure (density reached) at various time-points, 
T1, T2 and T3, in absence of stress (A) and in presence of a compounds that impact on growth lag (B) growth rate (C) or 
growth efficiency (D). B) Extraction of growth variables. Growth rate is extracted as the slope in exponential phase converted 
into population doubling time (h), growth lag (h) is given by the intercept of the initial density and the slope, and growth effi-
ciency (OD units) is calculated as the total change in density for cells having reached stationary phase. Detailed descriptions of 
growth variable extraction may be found in earlier publications [13,14].
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growth lag (h) is given by the intercept of the initial den-
sity and the slope, and growth efficiency (optical density
units) is calculated as the total change in density for cul-
tures having reached stationary phase (Fig 1B). Detailed
descriptions of growth variable extraction may be found
in earlier publications [13,14]. It should be observed that
the extracted growth variables may be partially con-
founded by hard to measure features of cell death, espe-
cially at higher stress magnitudes. However, this influence
should be minor given our experimental design with
stress levels set to marginal growth impact.

Impact on wild type cellular growth dynamics constitutes 
a distinct chemical fingerprint
To investigate to what extent diverse bioactive com-
pounds affect yeast growth dynamics we screened a set of
38 drugs that target a range of cellular processes. The
chemicals encompassed both broad specificity com-
pounds, such as NaCl and CdCl2, and inhibitors of dis-
tinct biological processes, such as the ribonucleotide
reductase inhibitor hydroxyurea and the TOR pathway
inhibitor rapamycin. Cultivating yeast wild type cells in a
ladder of drug concentrations we observed a surprisingly
wide variety of effects on cellular growth dynamics (Fig
2A). Dose-response correlations for the three different
growth variables highlighted the functional diversity
among drugs (Fig 2B). For example, the osmotic stress
inducer NaCl and the cAMP phosphodiesterase inhibitor
caffeine preferentially affected growth rate at low concen-
trations, whereas the oxidizer diamide initially affected
growth lag and the heavy metals CdCl2 and MnCl2 prima-
rily reduced the growth efficiency (Fig 2B). Although the
growth rate was eventually reduced by essentially all drugs
in the array, this reduction was frequently detectable only
at extreme concentrations with severe impact on growth
lag or growth efficiency. For example, a 20% reduction in
diamide growth rate was accompanied by a 200% increase
in diamide growth lag. Furthermore, the concentration
dependence of the different compounds where strikingly
different; while the growth lag and growth rate changed
rather gradually at increasing concentrations for paraquat
and CdCl2, distinctly steep dose-responses where
recorded for the same growth variables in diamide and
NaCl. Thus, dose-response curves based on high-resolu-
tion phenotyping of a wild type yeast strains constitute
drug-specific chemical fingerprints.

To provide an overall view of the relative effect of the dif-
ferent bioactive compounds on wild type growth varia-
bles, we formed ratios (Logarithmic Environmental
Coefficients, LEC) that compare growth with and without
drugs. These LEC ratios were constructed at drug concen-
trations corresponding to a 30–75% reduction in the
growth variable most affected by a drug. Care was taken to
ensure that the concentration used accurately reflected the

dominant drug impact (the effect observed at low drug
concentrations) on cellular growth dynamics as defined
by the individual dose-response profiles. Comparing
LECrate against LECadaptation and LECefficiency for the 38 com-
pounds in the set it was clear that diverse drugs impacted
differently on cellular fitness (Fig 2C, D). For most drugs
it was evident that the approximation of any single growth
variable to fitness would overlook fundamental features
of drug action; e.g. some chemicals resulted in similar
reduction in growth rate but differed in their impact on
the other two variables. However, although it is clear that
different drugs tend to affect growth differently there is a
correlation between drug impact on growth lag and
growth rate (Fig 2C, linear correlation r2 = 0.19). No such
correlation was found between growth efficiency and
growth rate (Fig 2D, linear correlation r2= 0.01). Interest-
ingly, drugs which are structurally and chemically distinct
but nevertheless target the same biological process dis-
played striking similarities in impact on cellular growth
dynamics. One example is the well-established ergosterol
biosynthesis inhibitors ketoconazole, clotrimazole and
fenpropimorph which strongly reduced growth efficiency
with only minor defects in growth rate and a slightly alle-
viating effect on growth lag. A similar fingerprint was
found for the sphingolipid biosynthesis inhibitor aureo-
basidin A (ABA), suggesting that drugs targeting lipid
metabolism primarily reduce growth efficiency. Strong
effects on growth efficiency were also observed for the
heavy metals Cd2+ and Mn2+. Among the compounds that
primarily affected growth lag were the two redox active
agents DTT and diamide (Fig 2C, D). This suggests that
drug induced perturbations of cellular redox status
requires a time consuming reprogramming of the redox
regulation system but causes little permanent damage.
Finally, the two distinct DNA damaging agents present in
the screen, the ribonucleotide reductase inhibitor hydrox-
yurea and the DNA methylating agent MMS, belonged to
a small subset of compounds which specifically reduced
growth rate while actually enhancing the capacity to
quickly re-initiate growth. Taken together, the here
reported results suggests that the impact of a drug on cel-
lular growth dynamics is a consequence of its mode-of-
action and that the three fundamental growth variables
may be used as a high-resolution chemogenetic finger-
print of bioactive compounds.

Cellular growth dynamics and gene-drug interactions
A central theme in chemical biology is to link chemicals'
mode-of-action to the functionality of specific genes, i.e.
to screen for gene-drug interactions. We analyzed the
chemogenetic growth dynamics behavior of our 38 com-
pounds in a mini-array of 96 gene knockouts. These
mutants were selected as being generally stress sensitive
and as involved in a wide diversity of functions like tran-
scriptional regulation (e.g. GTS1, MIG2), detoxification
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Differential impact of bioactive compounds on cellular growth dynamicsFigure 2
Differential impact of bioactive compounds on cellular growth dynamics. A) Growth of yeast WT populations in the 
presence of increasing doses of bioactive compounds. Concentrations of NaCl (2 M, 1.5 M, 1.2 M, 0.9 M, 0.65 M, 0.45 M, 0.3 M, 
0.2 M), Diamide (1.9 mM, 1.5 mM, 1.2 mM, 1 mM, 0.8 mM, 0.6 mM, 0.45 mM, 0.3 mM), Paraquat (10 mg/mL, 5 mg/mL, 2.5 mg/
mL, 1.2 mg/mL, 0.6 mg/mL, 0.3 mg/mL, 0.2 mg/mL, 0.1 mg/mL) are represented with colours, red indicating the lowest concen-
tration, blue indicating the highest concentration. B) Dose response correlations of yeast WT populations considering growth 
lag (green), growth rate (red) and growth efficiency (blue), n = 2. C-D) Comparing the relative effects (LEC) of bioactive com-
pounds on yeast WT fitness variables. Color indicates specific functional groups (red = ergosterol biosynthesis inhibitors, 
green = DNA damaging agents, blue = heavy metals, orange = redox status distorters). For growth lags, a cut-off at a 24-fold 
increase has been applied. C) Growth lag vs. growth rate. D) Growth efficiency vs. growth rate.
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(e.g. PDR5), DNA repair (e.g. TOP1,RIS1) and translation
(e.g. TIF2, TIF3). Gene-by-drug interactions were precisely
quantified as Logarithmic Phenotypic Indexes (LPI) [13],
which provides a measure of non-multiplicative effects of
combining a chemical and a genetic perturbation. The
overlap between drug-gene interactions for the different
growth variables was found to be limited (Fig 3A). Only
for 21 (2%) of the 1080 recorded aggravating drug-gene
interactions could we score an interaction in all three
growth variables. The greatest overlap was observed
between growth rate and growth efficiency; 53% of
growth efficiency gene-drug interactions was also
observed as growth rate interactions. The lowest overlap
was observed between growth lag and growth efficiency;
only 10% of growth lag defects were also detectable as
growth efficiency defects. Thus, for many chemicals it was
essential to follow the whole growth dynamic to score sig-
nificant drug-gene interactions, and no single growth var-
iable by itself provided a complete view of the
chemogenetic interaction landscape. However, it should
be noted that there was a statistically significant overlap
between all variables, with the weakest overlap between
efficiency and adaptation (Fisher's exact test, p < 9E-5).
Second, we investigated whether the LEC values of a spe-
cific drug predict which growth variable most frequently
captured gene-drug interactions for that drug. Statistically
robust correlations (Fig 3B, C) was found considering
either growth efficiency (linear regression, r2 = 0.37) or
growth lag (linear regression, r2 = 0.16). Thus, drugs with
a strong impact on growth efficiency in the wild type
tended to show numerous growth efficiency gene-drug
interactions whereas drugs that impacted strongly on
growth lag frequently induced growth lag gene-drug inter-
actions.

Bioactive compounds may be functionally grouped on the
basis of similarities in growth rate chemogenetic profiles.
However, such approaches can typically only cluster a
minority of drugs known to be related. Our data on
growth dynamics suggested that the insufficient power of
clustering approaches partly can be explained by com-
pounds being mainly affected on growth variables that are
not resolved in the actual screen. To test this, repeated K-
mean clusterings of the drugs in the gene-drug mini-array
was performed, separately for each growth variable. The
compounds known to be functionally linked and sharing
mechanism of action, which we also could verify (Fig 2C,
D), were used as a golden standard in this test: i) ergos-
terol biosynthesis inhibitors (clotrimazole, ketoconazole,
fenpropimorph) ii) heavy metals (Cd2+, Mn2+) iii) redox-
status distorters (DTT, diamide) iv) DNA damage inducers
(MMS, hydroxyurea). Clustering the chemicals based on
the drug-gene interactions from mutants phenotypes on
the growth variable most affected in the wild type pro-
vided the most accurate functional grouping (Fig 3D): e.g.

in the case of the azoles growth lag is clearly the growth
variable that is most valuable in terms of clustering the
three ergosterol biosynthetic inhibitors from gene-drug
interaction data, and growth lag is also the most sensitive
of the growth variables (Fig 2C, D). Accurate grouping of
Cd2+ and Mn2+ was observed exclusively when clustering
on growth efficiency, the growth variable most affected by
these metal ions in the wild type. Hence, the growth vari-
able primarily affected by a drug in the wild type also
tended to be most revealing in terms of that chemical's
functional implications from data on gene-drug interac-
tions.

Interestingly, close scrutiny of the derived growth curves
revealed that gene-drug interactions frequently were
reflected not in aberrations of the three fundamental
growth variables, but in the emergence of growth multi-
modality (Fig. 2E). To distinguish and objectively quan-
tify the multimodality phenomenon, the growth curves in
our gene-drug mini-array were subjected to mathematical
modelling. A function was fitted to each growth curve by
kernel smoothing; this function was derivatized and isot-
onic regression techniques were used to identify the pres-
ence of more than one function maxima (Fig 3E).
Analyzing all individual gene-drug combinations we
found 6% of the growth curves to be distinctly multimo-
dal. Multimodality was never observed for unstressed
mutants in basal medium, nor for approximately half of
the 38 compounds. In contrast, the toxic arginine
homolog canavanine induced multimodality in 80% of
the knockouts whereas heat and clotrimazole displayed
40% multimodality (Fig 3F). The only additional com-
pounds that induced multimodal growth in more than
5% of the knockouts were paraquat, diamide and DTT,
drugs that all perturb cellular redox status. This implicates
redox imbalance as one mechanism underlying multimo-
dality. Our findings suggests that drug induced multimo-
dality is a hallmark of a distinct set of drugs and that
quantification of growth curve modality may increase the
power of chemical fingerprinting.

Cellular growth dynamics and drug-drug interactions
In contrast to gene-gene and gene-drug interaction screen-
ing, which both have been extensively pursued, the poten-
tial of drug-drug interactions in deciphering mechanistic
features of drug action have been poorly exploited. Only
rather recently have the potential of large scale drug-drug
screening received closer attention, particularly in the clin-
ical context of multi-drug therapeutics [10,15]. To investi-
gate drug-drug interactions in the light of the differential
drug impact on growth dynamics a subset of the here used
bioactive compounds was screened using a combinatorial
array design. The growth perturbing effect (LEC) of each
individual compound and each combination of com-
pounds was quantified. We applied a standard multiplica-
Page 5 of 10
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Gene-drug interactions in different physiological windowsFigure 3
Gene-drug interactions in different physiological windows. A) Venn diagram depicting the number of significant growth 
defects (LPI < 0, p < 0.001) within a gene-drug mini-array. B-C) Comparing the relative growth reducing effect (LEC) of bioac-
tive compounds on yeast WT populations to the number of knockouts displaying significantly reduced (LPI < 0, p < 0.001) tol-
erance to a specific compound. B) Considering growth efficiency (r2 = 0.37). C) Considering growth lag (r2 = 0.16). D) 
Frequency of clustering of bioactive compounds with similar mode-of-action (see results and discussion section). Repeated (n = 
10) K-mean clusterings, in groups (k = 10) was performed and frequency of co-occurrence indicated. E) Drug induced multi-
modal growth in tif3Δ in cerulenin. Black circles = observed OD values, red circles = derivatives (slopes) of observed OD val-

ues, red line = smooth estimate, , of the function that best fits the derivatives of the observed OD values, green circles = 

maxima in . F) Number of knockouts for which a specific drug displays multimodality.
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tive model to predict no synthetic drug interactions. In
this model, no interaction between two compounds
assumes that the growth defects arising from the com-
bined application of two compounds, LECxy, equals the
calculated sum of the growth defects of each individual
compound, LECx + LECy (Fig 4A). We observed frequent
aggravating and alleviating interactions for all three
growth variables (Fig 4B). In total, 32% of the drug-drug
interactions, alleviating or aggravating, would be over-
looked if growth rate were used as sole phenotypic meas-
ure. Moreover, whereas alleviation were substantially
more frequent considering growth lag (2.9 fold more
common) and growth rate (1.8 more common), aggravat-
ing drug-drug interactions dominated for growth effi-
ciency (2.6 fold more common). The high frequency of
growth efficiency drug-drug synergism is interesting con-
sidering that aggravating interactions are most informa-
tive for interpretations of drug mode-of-action. As one
example, the redoxcycler paraquat displayed an aggravat-
ing interaction with the heavy metals Cd2+ and Mn2+

exclusively on the level of growth efficiency (Fig 4C).
Heavy metals are indeed thought to exert chemotoxicity

primarily by inducing oxidative stress [16]. Interestingly,
many of the observed growth efficiency drug-drug interac-
tions could not be predicted on the basis of the effect of
the individual compounds on cellular growth dynamics
in the wild type (Fig 2). For example, the chemically
related Na+ and Li+ only weakly reduced growth efficiency
on their own, but featured a strongly aggravating growth
efficiency interaction when combined. This is in line with
the assumption that Li+ mimics Na+ with regards to the
effect on biological systems [17]. We also noted that addi-
tion of the protein synthesis inhibitor cykloheximide alle-
viated the effects of many drugs, e.g. DNP (Fig 4C),
indicating that drug toxicity, in many cases, is dependent
on an unperturbed protein production.

In previous chemogenetic screens, only partial consist-
ency between specific chemical synergies was revealed
[15]. The here reported phenotypic differences between
physiological windows suggest that some of the disagree-
ment may be because diverse phenotypic outputs are
grouped together. For example, colony based screening
assays analyze a composite of all the three growth varia-

Drug-drug interactions in different physiological windowsFigure 4
Drug-drug interactions in different physiological windows. Interactions within a mini-array of multi-replicated (n = 50 
for single compounds, n = 20 for compound combinations) bioactive compounds. A) Multiplicative model of synthetic chemical 
interactions. B) Overview of all drug-drug interactions. Dashed line indicates null interaction, i.e. 1:1 correlation between 
observed (LECxy) and expected (LECx + LECy) effects. C-E) Heatmap of drug-drug interactions depicted as observed (LECxy) – 
expected (LECx + LECy) effects. Red = alleviation, green = aggravation.
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bles in addition to a colony competition factor due to that
neighbours compete for nutrients in the same portion of
solidified medium. Given the here reported results, it is
not surprising that drug-drug interactions scored using a
colony size assessing screening system should diverge sub-
stantially from interactions derived using screening sys-
tems exclusively quantifying growth rate. In conclusion,
the differences in drug-drug interaction patterns observed
between different growth variables underscores the
importance and value of resolving all three growth varia-
bles when studying the chemotoxic effects of bioactive
compounds using cell arrays.

Conclusion
Taken together, the here reported results show that the
power of chemogenetic approaches may be increased by
resolving growth into its individual components. Increas-
ing physiological depth and thereby phenotypic space is
of pharmacological importance as elucidation of drug
function relies heavily on the ability to elicit a rich range
of phenotypes, especially in terms of quantifying off-tar-
get effects. Thus, by facilitating a physiologically more
complete analysis of gene-drug and drug-drug interac-
tions the here reported results high-light the potential of
high resolution micro-cultivation and the analysis of
growth dynamics for pharmacological use in characteriz-
ing orphan bioactive compounds.

Methods
Strains
Knockout strains in the BY4741 background [18] were
provided by the EUROSCARF stock centre http://
www.uni-frankfurt.de/fb15/mikro/euroscarf/index.html.
WT genotype: MATa;his3Δ1;leu2Δ0;met15Δ0;ura3, knock-
out genotype:MATa;his3Δ1;leu2Δ0;met15Δ0;ura3,
ORF::kanMX4.

Cultivation and drug concentrations
Pre-cultivation (two serial rounds) and cultivation in a
Synthetically Defined (SD) medium, with and w/o drugs,
were performed as earlier described [13]. For initial testing
of drug dose-response correlations, a ladder of concentra-
tions selected as to encompass concentrations used in
published studies, were chosen. On the basis of drug dose-
responses, concentrations for the gene-drug mini-array
and the drug-drug mini-array were set as to enable reliable
quantification of all three fitness variables. Concentra-
tions for the gene-drug mini-array were: o-Phenanthroline
0.2 μM, 2,3 Diphosphoglycerate 13 mM, 2,4 Dinitrophe-
nol 0.2 mg/ml, 4-NQO (Nitroquinolone) 0.8 μg/ml, 6-
Azauracil 200 μg/ml, AT-3 (1,2,4-Aminotriazole) 315
mM, AureobasidinA 2.5 μg/ml, Caffeine 0.65 mg/ml,
Canavanine 0.5 μg/ml, CdCl2 47.5 μM, Cerulenin 0.22
μg/ml, Clotrimazole 1.5 μM, Coldstress 19°C, Cyklohex-
imide 0.035 μg/ml, Diamide 1.4 mM, DMSO (Dimethyl-

sulfonyloxide) 1,5%, DTT 1.6 mM, Ethidium bromide 45
μg/ml, Fenpropimorph 0.05 mg/ml, Galactose 2% (as
sole carbon source), Heatstress 40°C, Hydroxyurea 8 mg/
ml, Hygromycin B 100 μg/ml, KCl 1.45 M, Ketoconazole
20 μM, LiCl 100 mM, Methyl Methane Sulphonate
(MMS) 0.0015%, MnCl2 10 mM, Myriocin 2 μg/ml, NaCl
0.85 M, Neomycin 2 mM, Paraquat 200 μg/ml, Rapamy-
cin 0.3 μg/ml, tert butyl-OOH 0.35 mM, Thiabendazole
0.06 μg/ml, Trifluoperazine 25 μM, Tunicamycin 1 μg/ml,
Sodium-ortho vanadate 1.45 mM).

Growth analysis
To quantify the effect of bioactive compounds on differ-
ent WT growth variables eight wild-types (WT) were culti-
vated in ten drug concentrations. WT growth in 30C
(except where otherwise stated) was measured using a
Bioscreen Analyzer C (Growth Curve Oy, Finland) as ear-
lier described [13]. Measurements of Optical Density
(OD) was taken every 20 min during a 48 h period (72 h
for the drug-drug mini-array) resulting in growth curves.
For each growth curve the growth variables growth rate,
growth efficiency and growth lag were calculated was as
earlier described [13]. Growth curves which, due to no or
very poor growth, could not be reliably dissected by the
automated procedure were manually inspected and best
estimate growth variable measures were extracted subjec-
tively if relevant. For each growth variable and each com-
pound a Logarithmic Environmental Coefficient, LEC,
was formed as:

where wtkj is the growth variable of the k:th growth curve
of the wildtype in drug j, wtknormal is the the growth variable
of the k:th growth curve of the wildtype in normal (no
stress) condition and r indicates the run. For growth effi-
ciency the wtkj and the wtknormalexpressions were reversed;
hence, for all growth variables a negative LEC indicates a
growth reducing effect of the drug.

To quantify the drug tolerance of gene knockouts (n = 2)
as compared to WT (n = 8) in the gene-drug growth curves
and growth variables were derived as above. For each
growth variable in each drug a Logarithmic Strain Coeffi-
cient, LSC, was formed as earlier described [13]. Briefly,
the LSC measure may be thought of as the log ratio LN
(WT/knockout). Furthermore, to distinguish drug toler-
ance from growth in no stress conditions a Logarithmic
Phenotypic Index, LPI, was formed for each knockout in
each drug, also as earlier described [13]. The LPI measure
may essentially be thought of as LSCdrug – LSCno stress,
hence a negative LPI indicates a reduction in the tolerance
of a specific gene knockout to a specific drug. We per-
formed tests of the null hypothesis that LPI equals 0 sep-
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arately for each knockout population and chemical
stressor and separately for each fitness variable. Statistical
significance was calculated using a threshold of three
mean standard deviations. In order not to reject the null
hypothesis only because of single extreme value, a two-
tailed, two sample Students T-test (α < 0.05, df = 2) was
also applied. These combined measures gave a signifi-
cance level of α < 0.001 (Gaussian distribution and equal
variance assumption). Genes included in the screen were:
FLO1, PIM1, TAT1, YBR074w, PHO3, YBR099c, APE3,
APM3, YCL010C, YCL047C, CVT17, YCR073W, SRB8,
YCR101C, YCR106W, YCR195C, YDL109c, YDL124w,
DLD1, YDL175c, UGA4, GDH2, RRI1, SHS1, YDR026c,
YDR101c, YDR132c, SWM1, GLO2, SUM1, YDR384c,
HAT2, PRB1, CAN1, VTC1, DOT6, FTR1, YGL010w, ATE1,
YGL131c, YGL144c, AMS1, APG1, GTS1, YGL196w, MIG2,
KIP3, EDC1, YGL242c, HFM1, HXK2, BNS1, YHL002w,
YHL029C, SOD2, PCL7, SPO22, UBP7, MPH1, HYR1,
YJL131c, TIF2, YJR044c, SOD1, MNN4, EAP1, YKR090w,
YKR104w, YBT1, AYT1, DAN2, APC9, YLR108c, PDC5,
TFS1, YLR422w, YLR426w, YAP1, MSC1, STV1, SIP18,
SIW14, YNL056w, TPM1, YNL099c, TOP1, GSH2, HST1,
NDJ1, MDH2, WHI2, PDR5, RIS1, EAF3, YPR139c and
TIF3.

Mathematical modeling of multimodal growth
For the gene-drug mini-array, multimodal growth was
analyzed for each growth curve separately. The measure-
ment of the OD-value yi = y(ti) at time point ti can be
described as y(ti) = f(ti) + εi y(ti) (1) where the function f is
the theoretical growth curve. The term εi describes the
deviation from the population mean due to biological
variation. The theoretical growth curve f is assumed to
consist of one or two sigmoidal parts; a sigmoidal part
being an interval on which the function f is first convex,
i.e. f" > 0, and then concave, i.e. f" < 0. Note that f being
sigmoidal means that the slope of the growth curve f' is
first increasing, so that (f')' = f" > 0, and then decreasing,
so that (f')' = f" < 0. Thus, that f consist of a single sigmoi-
dal part is equivalent to the slope of the growth curve f'
being unimodal. Similarly, that f consists of two sigmoi-
dal parts is equivalent to f' being bimodal. Thus we can
make the equivalent assumption on the theoretical
growth curve f that its derivative f' is either unimodal or
bimodal. Using the equivalence between sigmoidality of f
and unimodality/bimodality of f' we obtain an alternative
biological model.

Let  be the observed slopes in the OD values.

Then from (1) follows the biological model: y' (ti) = f' (ti)

+ εi (2). Here f' is the derivative of the mean growth curve.

Given measurements (yi, ti yi, ti) of OD values assumed to

follow the biological model (1), we want to estimate the

(unknown) mean growth curve f under the assumption
that it consists of one or two sigmoidal parts. Let F denote
the set of all functions that consist of one or two sigmoidal

parts. Then an estimate  of f can be obtained by mini-

mizing the least squares error between the observed OD
values yi and the mean OD values f(ti) over the set of all

functions in F. There is to our knowledge no analytic solu-
tion to this problem [19]. We therefore make a slight
modification of the estimation approach. Let F' denote
the set of functions that are unimodal or bimodal, i.e.
containing all derivatives f' of the mean growth curve f.

Then an estimate  of f' can be obtained by minimizing

the least squares error between the observed slopes of OD
values y' and the mean slopes of OD values f' (ti) over the

set of all functions in F' . However, there is no analytic
solution even to this problem. We therefore simplify the

approach further. First, we smooth the data  using a

kernel smoother [20,21] to obtain a smooth estimate 

of f' . We use  to obtain an estimate of the first mode as

the position m1 where  is maximal. Second, we fit a uni-

modal function  with mode at m1 to the data (ti  (ti))

as the function that minimizes the sum of squares

between  and [22,23]. We can decide on whether the

curve is bimodal or not by looking at the maximal differ-

ence  - ; if this maximal difference is positive we clas-

sify the curve as bimodal, if it is zero we classify it as
unimodal. From the growth curve estimating algorithm
we can get a multimodality parameter D such that D = 1
when the curve is classified as bimodal and D = 0 when
the curve is classified as unimodal. In order to minimize
the risk for obtaining false positives, we use bootstrap
techniques [24]. Thus, for each experiment we draw N
random samples from the residuals in the model (1)

which we add to the estimated theoretical curves  to

obtain N bootstrap growth curves; for each of these we
estimate the parameter D to obtain bootstrap estimates

. We use the proportion of  = 1 to obtain an

estimate p* of P(D = 1). If p* is close to one (p* ≥ 0.8) we
classify the growth curve as bimodal. Conservatively, an
experiment (gene-environment combination) is classified
as bimodal, when, and only when, both replicate growth
curves display bimodality.
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