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ABSTRACT

Triplex-forming oligonucleotides constitute an inter-
esting DNA sequence-specific tool that can be used
to target cleaving or cross-linking agents, transcrip-
tion factors or nucleases to a chosen site on the
DNA. They are not only used as biotechnological
tools but also to induce modifications on DNA with
the aim to control gene expression, such as by site-
directed mutagenesis or DNA recombination. Here,
we report the state of art of the triplex-based anti-
gene strategy 50 years after the discovery of such a
structure, and we show the importance of the actual
applications and the main challenges that we still
have ahead of us.

INTRODUCTION

The beauty and the elegant simplicity of the structure of
the DNA double helix dictate life. The discovery of the
double-helical structure of the deoxyribonucleic acids by
Watson, Crick, Wilkins and Franklin in 1953 (1-3) was an
important milestone of modern biology. DNA is formed
by two complementary strands where, through hydrogen
bonds, an adenine pairs with thymine and guanine with
cytosine-forming AT and G+C base pairs, the stairs of the
DNA ladder (Figure 1). The succession of base pairs
defines the genetic information and gives the information
to the cell to accomplish its vital functions. Four years
later, Felsenfeld et al. (4) found that a chain of polyribo-
adenylic acid (polyrA) and two chains of polyribouridylic
acid (polyrU) could form in the presence of Mg(Il) a
three-stranded structure. In fact, in the DNA major
groove there are acceptor and donor groups that can
form hydrogen bond interactions with a third strand
(Figure 1C). This was the starting point for a number
of studies, showing that double helices containing only
purines in one chain could bind a third polynucleo-
tide containing either pyrimidines [e.g. poly(rUC) binds

poly(TC) * poly (dGA)] (5) or purines (e.g. polyG binds
polyC ¢ polyG) (6). The hydrogen bond interactions
involved in triple-helix formation are different from
the hydrogen-bonding pattern that holds together the
Watson—Crick base pairs and they are referred to as
Hoogsteen hydrogen bonds (7). But it was not till 30
years later, with the discovery that short oligonucleotides
can bind in the major groove of the DNA duplex to form
a triple-helical structure, that the implications and the
potential of this structure were fully understood. Simulta-
neously, Dervan and co-workers (8) and Héléne and
co-workers (9) showed that short oligonucleotides could
be used to induce a DNA cleavage at a specific site on
DNA through triplex formation. At the same time, Fresco
and co-workers (10) and Wells and co-workers (11) con-
tributed to this discovery by studying different triple-
helical structures, suggesting a role in the control of
gene expression.

Triplex-forming oligonucleotides (TFOs) are major
groove ligands that target unique DNA sequences by form-
ing DNA triple helices thanks to specific hydrogen bonding
interactions between the TFO and the oligopurine strand
of the duplex (Figure 2A). The use of TFO is limited to the
presence of oligopyrimidine ¢ oligopurine sequences in
the DNA target and by the stability of the triple-helical
structure. However, triple-helix target sites (TTS) are
over-represented in the human genome and especially
at promoter regions (12,13). According to Orozco and
coworkers, even if TTS are not directly targeted by tran-
scription factors, they may be important for gene function-
ality by acting as spacing fragment to help the correct
positioning of transcription factors. Recently, it has been
reported the example of an H-DNA structure (an intramo-
lecular triplex) that modulates transcription in the human
¢-MYC promoter (14). Nevertheless, TFOs constitute an
interesting DNA sequence-specific tool for many applica-
tions, since they are very specific DNA binders and are easy
to synthesize. They have been used, for example, to target
cleaving or cross-linking agents, transcription factors or
nucleases to a chosen site on the DNA. Moreover, they
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Figure 1. Chemical structure of DNA: (A) general structure of sugar-phosphate backbone; (B) space-filling model of cristal structure of a B-DNA
dodecamer 5-CGCGAATTCGCG-3" (PDB 1BNA). The phosphoester backbones are in orange, whereas oxygen, nitrogen and carbon atoms are
respectively in red, blue and green; (C) DNA base pairs bearing hydrogen bond donors (D) and acceptors (A).

have been used as tools for site-directed mutagenesis in
order to induce modifications on DNA and to control
gene expression, for example in mice (15). Finally, TFOs
have found great application as biotechnological tools in
various assays, for example to test translocation of pro-
teins on DNA (16) or topoisomerase activity (17).

Today in the genomic era, sequence-specific DNA
ligands, such as TFOs, have acquired all their importance
(18). The identification of genes that play a key role in the
progression and maintenance of specific diseases, such as
oncogenes or tumour suppressors in cancers, calls for the
use of agents able to act on specific DNA sequences. In
addition to triplex-forming oligonucleotides, two other
molecules are known to recognize DNA in a sequence-
specific manner: zinc fingers and minor groove binders
(MGBs) (Figure 2B and C).

Zinc fingers are derived from natural ligands that bind
in the DNA major groove: the zinc-finger proteins (19)
(Figure 2B). Zinc fingers can be synthesized by the tran-
scription/translation machinery of the cell from intro-
duced vectors to produce a protein able to target a
DNA sequence. The binding activity of the zinc finger
can be covalently linked to a transeffector (20), such as a
transcription factor (21) or a catalytic domain of a protein
[nucleases (18-24) or methylases (25-28)]. This strategy
suffers from the difficulties in selecting the best zinc fingers

with high specificity (not all three base pairs are recog-
nized) and the cellular toxicity (29).

A number of small molecules bind specifically to the
minor groove of the DNA helix. MGBs include carbox-
yamide ligands of N-methyl pyrrole (Py) and N-methyli-
midazole (Im) that form hydrogen bonds and adapt to the
curvature of the DNA helix (Figure 2C) (30). A major
limitation of the MGBs is their chemical stability and
the length of the target DNA sequence (8-10bp). Many
efforts are carried out to increase the length of the target
DNA to at least 16 bp.

In this review, we focused on the anti-gene approach
based on the triplex strategy. Even if it has not been
applied in therapy yet, its great potential has been
widely demonstrated, both for therapeutical and biotech-
nological aspects. Many recent reviews have covered spe-
cific applications of triple helices (31,32). Here, we aim to
report the state of the art of the triplex-based anti-gene
strategy 50 years after the discovery of such structure and
we intend to show the importance of actual applications
and the main challenges that we still have ahead of us. We
start by reviewing the general features of triplexes. Next,
we review the most revealing in vitro applications, to con-
clude with the experiments in cells and in vivo that mostly
underline how a triple helix can be used as a tool to study
biological processes or interfere with them.



A
Y strand —>» -
R strand —>
B 55— G C G 3
3er C G C |l —5
Zinc finger
motif

Nucleic Acids Research, 2008, Vol. 36, No. 16 5125

MOT GIOOVE o mgor groove 1 A
e I‘ ’| H
CHy Q-mH=M 1 P'J
<fT bt (as \“l ﬁ"c Nee=HN G\ N‘@
= W
e/ -——H—N
e Gromve RO rOovE .;'-1
Cc
3
5
5
In
3
@ =py O=Im
3 3
#NH H #NH
J /ZFT ;
H™ SN H N/H 4
(IJH3 &Hs Cr(

Figure 2. Specific recognition of DNA sequences by synthetic anti-gene molecules (TFOs, polyamides and zinc-finger proteins). (A) Triplex structure.
The third strand is in yellow, whereas the oligopurine and the oligopyrimidine strand are respectively in red and blue. The triplet motifs of a
pyrimidic triplex are represented, TA*T and CG*C+ respectively from left to right. (B) Crystal structure of a zinc-finger motif isolated from EGRI1
(Early Growth Response protein 1, PDB 1P47). Zinc cation is coordinated to two histidine and cysteines aminoacids respectively represented in
yellow and green. This zinc-finger protein binds to the DNA sequence 5CGCGGGCGC-3' (EGR-site). The interaction between one zinc finger and
the 5-CGC-3' DNA sequence is represented by red arrows. Six zinc-finger motifs interact with the double strand EGR-DNA binding site. (C) Crystal
structure of a polyamide dimer (HydroxyPyrrole-Imidazole-Pyrrole) on a B-DNA decamer 5-CCAGATCTGG-3’ in red and black, respectively
(PDB 1CVX). Formula of pyrrole and imidazole are represented in pink besides the schematic representation of an MGB hairpin on its double

strand DNA target.

TRIPLEX MOTIFS

As illustrated in Figure 2A, the bases of the third strand
form hydrogen bonds (Hoogsteen or reverse Hoogsteen)
with the purine bases already involved in Watson—Crick
base pairs forming base triplets. The rules of triplex for-
mation are well described (33). Three classes of triple
helices exist that differ in sequence composition and rela-
tive orientation of the backbone of the third strand to that
of the oligopurine strand of the duplex (34) (Figure 3). In
the TC triplex, the third strand is parallel (i.e. in the same
5" to 3 orientation) to the oligopurine strand of the oligo-
purine ¢ oligopyrimidine duplex, forming TeA*T and
CeG*C+ triplets in the Hoogsteen configuration. The
pK, of the imino group of cytosine, which must be proto-
nated, is well <7 making TC triplex formation pH depen-
dent (35). In the GT triplex, the third strand can be either
anti-parallel to the purine strand of the duplex by forming
reverse Hoogsteen C*G*G and Te<A™T triplets or parallel
by forming Hoogsteen C*G*G and T*A*T triplets. In the
GA triplex, the third strand is oriented anti-parallel to the

purine strand of the duplex and forms reverse Hoogsteen
C*G*G and T-A*A triplets.

The understanding of the structural features of triplexes
is essential for the study of their biological functions and
applications. In this context, a number of triplex struc-
tures have been investigated by NMR spectroscopy com-
bined with molecular modelling (36—44).

The binding of the TFO to the target duplex generally
results in a thermodynamically weaker interaction than
the one observed between the two strands of the duplex
itself (45). Moreover, the low stability of triplexes under
physiological conditions is partly due to unfavourable
charge repulsion between the three negatively charged
DNA strands. As a consequence, high, non-physiological
levels of multivalent cations, such as Mg>" (46,47) or
polyamines play a role in triplex stabilization (48,49). In
the case of the purine-rich third strands, competing struc-
tures such as G-quadruplexes structures or GA homodu-
plexes can interfere with triplex formation. The former is
stabilized by monovalent cations, such as K(I) (50), while
the latter by divalent Mg(II) (51).
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Figure 3. Orientation of the three triplex motifs.

While triplex formation is straightforward under con-
trolled conditions in vitro, the nuclear environment of
living cells presents substantial obstacles. The third
strand oligonucleotide must be nuclease resistant, over-
come the charge repulsion between the third strand phos-
phates and those of the duplex target, not be blocked in a
stable secondary structure, form a triplex in physiological
pH, surmount entropic barriers to formation of a struc-
ture imposing constraints on both members of the com-
plex and form a complex stable enough to interfere with
the biological processes that act on DNA.

TFOs need to overcome these limitations in order to be
effective. To address the issues mentioned above, chemical
modifications have been incorporated in the bases (mainly
C and T) (34,52), in the backbone [phosphoramidates
(PN, 53), phosphothioates (PS, 54) and peptide nucleic
acids (PNA, 55), or in the sugar (e.g. RNA, 56), morpho-
lino (57), LNA (58)] (Figure 4). We list here some of the
mainly used modifications.

Nucleobase modifications

Base modifications (Figure 4A) have been studied in an
attempt to stabilize triple-stranded structures. Among
well-known base modifications, S5-methylcytosine (mC)
was shown many years ago to ameliorate the pH restric-
tions on TFOs in the pyrimidine motif (59). Thymidine has
also been replaced by deoxyuridine (U) (60) or 5-propynyl-
deoxyuridine (pU) (61). More recently, the stabilizing
properties of the positively charged C5-propargylamino-
2'-deoxyuridine (UP) have been described (62—64). Such
stabilization, as well as for pU, is largely independent of
salt concentration but does show a pH dependence. Other
similar modifications have been studied and in all cases the
stabilizing effects of the propynyl or propargylamino mod-
ifications are likely to arise principally from favourable
base stacking interactions (64—66).

We will not list here all purine bases that have been
modified, in particular to decrease the competitive self-
structures (34,52,67) [some examples are §-aminopurines
and 2’-deoxy-6-thioguanosines (68,69)].

3 5’
5’ _B—> 3’
3 Y 5

reverse Hoogsteen

5’

The recognition of mixed purine/pyrimidine sequences
by TFOs remains a challenge. In the last years, two main
approaches, which involve a number of chemical modifi-
cations have been proposed to overcome this sequence
limitation. One of these strategies is the universal base
approach, which consists into conjugating intercalating
agents to the 5'- or 3’-end or to internal positions of the
TFO in order to stabilize the triplex containing base-
pair interruptions in the purine motif (67). An alterna-
tive approach is the specific base strategy, which calls
for the synthesis of new modified bases able to form
hydrogen bonds with one or both partners of the A-T
or the G—C Watson—Crick inverted base pairs in the
major groove (70-73). When two short oligopurine
sequences are present alternatively on the two strands of
double-stranded DNA, two covalently linked TFOs have
been used (74,75).

Sugar modifications

Modifications in the sugar moiety have also been devel-
oped. RNA is the most obvious example of substitution
on the deoxyribose sugar moiety. Let us not forget that
the first example of triple helix was observed with ribo-
nucleotides polymers (4). The observation that RNA third
strands formed more stable triplexes than their deoxy
counterparts (56) prompted the synthesis and charac-
terization of TFOs containing a number of ribose ana-
logues. 2’-methoxylation (2'-OMe) (76,77) stabilizes the
C3’-endo conformation of the sugar, which favours triplex
formation because of least distortion of the duplex
target (78). This modification allows also to avoid degra-
dation by RNA nucleases. The 2’-aminoethylribose ana-
logue (2'-AE) combines the C3’-endo character with a
positive charge, as the amine is protonated at physiologi-
cal pH (79).

It is well established that conformational restriction
may lead to favorable complex formation because of an
entropic advantage. Another successful approach has been
to conformationally restrict the sugar part of one or more
of the nucleotides of the TFO in the C3’-endo conforma-
tion, by covalently blocking the sugar using locked nucleic
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Figure 4. Chemical modifications introduced in TFOs. (A) Base modifica

acid (LNA) monomers (0O2’, O4’-methylene-linked nucleic
acid) (80). LNA monomers have previously been shown to
significantly enhance triplex stabilities (53,81), although
TFOs composed entirely of LNA monomers do not
form triplexes (82). O2,04'-cthylene-linked nucleic acid
(ENA) induces slightly lower thermal stabilities of tri-
plexes than LNA, even though fully modified ENA-
TFOs are able to form stable triplexes even at pH 7.2.
This kind of modifications has been differently combined
and further modified in order to evaluate triplex stability
(55,65). Morpholino groups confer also interesting

tions; (B) sugar modifications and (C) backbone modifications.

stabilizing properties to TC triplexes in the absence of
Mg(II) (57).

Most recently, a new LNA-type TFOs were described.
These six-membered bridged nucleic acids analogues
(called 2/-4-BNANC) contain an N-O linkage, where the
amino nitrogen can be easily substituted (83). These mod-
ified TFO in the TC motif have greater affinity for the
duplex target than the corresponding LNA and ENA
and improved resistance to nuclease degradation. In addi-
tion, a fully modified 2'-4-BNANC[NH] TFO still forms a
stable triplex at neutral pH.
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Backbone modifications

Several backbone modifications, such as PS and PN,
have been conceived in order to change the electrostatic
properties of the negative phosphodiester backbone of
natural DNA molecules and achieve greater degrees of
nuclease resistance and cell membrane permeability (34).
These cationic backbone modifications can produce both
zwitterionic and fully modified cationic TFOs, thus result-
ing in favourable electrostatic interactions (84,85).

As described in this section, the large set of modifica-
tions available allows for a great improvement in triplex
formation and stability, thus rendering the anti-gene strat-
egy useful for various applications. The following sections
of this review will try to give an overall view of the appli-
cations that have been performed and that can be
envisaged.

IN VITRO APPLICATIONS OF TFOS AS GENE
MODULATORS

Site-specific recognition of duplex DNA by TFOs offers a
useful approach for the modification of gene structure and
functions both in vitro and in vivo. In fact, triplex forma-
tion can lead to site-specific modulation of gene expres-
sion, modulation of protein binding, targeting of DNA
damage, mutagenesis and enhancement of homologous
recombination, thus providing a tool for gene-specific
manipulation of DNA (31,86-89). At the same time, tri-
plex technology has wide applications in molecular
biology and biochemistry as a tool for delivering DNA-
damaging drugs to a specific site, for sequence-specific
labelling of DNA duplexes, for recognition and purifica-
tion of DNA and for the study of complex DNA—protein
interactions.

The efficient and specific modulation of gene expression
relies on one hand on the ability of the oligonucleotide to
bind with high affinity to the duplex target and to remain
bound long enough in order to efficiently interfere with
one of the DNA metabolic processes, on the other hand,
on the specificity of recognition. This section will present
an overview of the in vitro applications of triplex approach
as gene modulators. Some examples will be reported with
particular attention to more recent discoveries.

Modulation of transcription

The presence of a TFO in the major groove of a DNA
duplex leads to major modifications in the capacity of the
target duplex to be recognized by specific proteins and
produces major changes in the functionality of the DNA
(90-93). TFOs have been shown in vitro to alter gene
expression during the transcription process (Figure 5A
and B), by interfering either with the binding of transcrip-
tion factors (94,95) or with the formation of the initiation
complex (96). It can also arrest transcription elongation
by binding to the transcribed position of the targeted gene
(97). It has been shown that the affinity of the TFO for the
target leads to a complex which has comparable, or even
greater, stability than the complex formed by DNA and
the transcription factors.

A RNA

Figure 5. Examples of use of triplexes to modulate gene expression:
(A) physical block of transcription or replication elongation; (B) block-
age of transcription and replication initiation and (C) targeting of
DNA modifying agents such as cross-linking and cleaving agents.

A great number of examples describing the efficient
transcription elongation inhibition have been reported.
TFOs are used alone or conjugated to psoralen and
other DNA damaging agents (98,99).

Transcription inhibition has been described for plasmid-
harbored genes (87,100,101), for foreign sequences in the
cellular genome (102), and in several endogenous genes
including c-myc (103,104), ets2 (105), tiel (94), HER2/
neu (98), ber/abl (107), the inflammatory mediators
TNF-a (108), MCP-1 (109), or GMF/CSF (110) and the
cell adhesion molecule ICAM-1 (111). A recent example of
inhibition of transcription by triplex strategy has been
reported on tie-I promoter, where the formation of a
stable triplex prevents the binding of Ets transcription
factors that are essential for the promoter activity (94).
In this case, PS TFOs inhibit promoter activity and tiel
expression in vitro and in endothelial cells.

Increasing expression of genes that are transcribed at
low levels can be used as a practical treatment for some
genetic diseases, such as B-globin disorder or sickle cell
anemia. Song et al. (112) demonstrated that psoralen
can be used to activate gene expression up to 4-fold
when targeted to sites upstream the promoter. These
authors designed a psoralen-TFO adapter to deliver an
artificial enhancer to a disabled gene in order to recruit
a transcription factor and activate transcription. However,
they showed that the majority of the activation effect



observed is due instead to the psoralen cross-link itself. In
analogy, Xu et al. (113) reported that a TFO conjugated
to psoralen activated the transcription of the y-globin gene
and a 4-fold increase in gene expression has been demon-
strated in cells. In this case, the mutation introduced in the
transcription factor binding site is directly responsible for
gene activation. It is also possible to activate the transcrip-
tion process when the triplex structure is formed in a
repressor site, thus leading to a stimulation of the expres-
sion of the gene of interest (102,112). The activation of
transcription has also been demonstrated in vivo with hair-
pin TFO in Saccharomyces cerevisiae (114). Furthermore,
it has been demonstrated that hybrid molecules containing
a triplex-forming sequence, linked through a phosphoroa-
midate bond to several minimal transcriptional activation
domains derived from Herpes simplex virus protein 16
(VP16) can specifically recognize its DNA target at phy-
siological salt and pH conditions. Bound to the double-
stranded target DNA in a promoter region, the TFO-
VP16 is able to activate gene expression (115).

Inhibition of replication

Some examples of inhibition of the replication process
(Figure 5C) have also been reported (116,117). DNA poly-
merase elongation can be inhibited by in vitro triplex-
formation upstream (118) or downstream (119,120) the
initiation site. It has also been shown that a conjugate
oligothymidine—acridine targeted toward the initiation
site of SV40 can inhibit viral replication in cells (121).
Even if the mechanism of this inhibition has not yet
been completely elucidated, it is possible that the triple
helix acts by inhibiting the interaction with helicases asso-
ciated with the replication complex (122).

The interaction of triplex structures with proteins has
also been studied. Several proteins, other than transcrip-
tion factors and helicases have been recognized to interact
specifically with triplex structures (123-127).

Site-specific mutagenesis

TFOs have been used to induce site-specific DNA damage
(15,128-130), thereby enhancing the frequencies of muta-
tion (131-133) and recombination (134-136) in vitro and
in vivo. Regarding site-directed mutagenesis and recombi-
nation by triplex-forming oligonucleotides, two recent
reviews described the latest discoveries in detail
(137,138). Here, we just briefly summarize the essential
findings. In order to trigger direct DNA damage on the
target duplex, oligonucleotides have been coupled to
DNA damaging agents. DNA damage from UV light,
alkylating agents and photoreactive molecules such as
psoralen has been shown to be recombinagenic but in a
non-site-specific way. However, once the DNA damage
agents are conjugated to TFO, these are able to induce
site-specific mutagenesis and recombination (31). For
example, the conjugation of psoralen to TFOs can mediate
the introduction of base pair-specific psoralen adducts
(and consequently mutations) in the target DNA (139).
It has also been demonstrated that a TFO itself, without
conjugation, is able to induce recombination if the third
strand is capable of high-affinity binding to the target

Nucleic Acids Research, 2008, Vol. 36, No. 16 5129

DNA and is able to stimulate recombination in a pathway
dependent on nucleotide excision repair (NER) (135).
These results indicate that, with efficient delivery, TFOs
may be useful in promoting site-specific recombination.

Diverse damaging agents have been coupled to TFOs:
(1) photoactivatable agents (140), (ii)) metal complexes,
such as Fe—EDTA (141), orthophenantroline (142,143)
or metalloporphirines (144) and (iii) enzymes such as
nucleases (145,146). The most commonly used is psoralen.
It has however some serious drawbacks, such as a limited
reactivity (restricted to 5'-TA or AT sites) (147,148), which
greatly reduces the target options for gene mutagenesis.
Nagatsugi et al. (120) recently demonstrated that a new
nucleoside derivative (2-amino-6-vinylpurine derivative)
exhibited triplex-mediated reactivity with high selectivity
toward cytosines at a GC target site. This derivative, con-
jugated to a TFO, has been used to achieve site-specific
modification in the supF reporter gene. TFO—chlorambu-
cil conjugates have also been used with success thanks to
the formation of a site-specific covalent guanine adducts
and applied to the HER-2-neu promoter sequence (149).
On the TFO side, PNAs (Figure 4) have been used with
success to trigger in vitro mutation and recombination
once conjugated to psoralen (130,150-152), benzophenone
or anthraquinone molecules (153-155). More recently,
Kim et al. (23) conceived dimeric bis-PNAs conjugated
to psoralen designed to form a triplex invasion complex
within the supF reporter gene and to direct site-specific
photoadduct formation by the conjugated psoralen.
After in vitro binding, these compounds have been
shown to induce mutations at frequencies in the range of
6.5-fold and in cells at frequencies of 3.5-fold higher than
the background.

Recently, it has been shown that site-specific DNA clea-
vage can be obtained by attaching a restriction enzyme to
a TFO, as Pvull (156). Other approaches, based on the use
of nucleases or restriction enzymes, have been used in the
1990s (146,157). Furthermore, it is important to underline
that the presence of the triplex structure on the DNA can
trigger DNA repair systems, such as the NER pathway,
and be processed (158).

Improving the intracellular efficacy of the anti-gene strategy

Despite the fact that triplexes are now well characterized
and validated for in vitro applications, the success of the
strategy in cells still encounters some limitations, such as
limited cellular penetration, target sequence accessibility
in the nucleus and intracellular instability of the oligonu-
cleotides. Fortunately, recent studies demonstrated that it
is possible to overcome these difficulties and to envisage
the use of the anti-gene strategy in vivo.

Because oligonucleotides are polyanions and thus do
not readily penetrate biological membranes, various stra-
tegies have been developed to increase their cellular
uptake. Viral delivery systems have been used in many
applications and clinical trials; however, the immune
response to viral proteins continues to be a daunting pro-
blem (159,160). Complex formation with cationic lipids or
polycations (such as polyethylenimine) is presently com-
monly applied to facilitate their uptake by cells in culture,
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but it is not very suited for use in vivo (161-163). Another
way to deliver TFOs into the cell relies on the use of
dendrimers, highly branched 3D molecules (164,165).
Dendrimers showed to enhance the uptake of oligonucleo-
tides in cells (166,167). An approach that was found to be
effective, both in vitro and in vivo, is conjugation of oligo-
nucleotides to hydrophobic compounds such as choles-
terol, alkyl chain or lipid, which have shown to have
higher cellular uptake than their unconjugated counter-
parts. Cheng et al. (168) recently demonstrated that
TFOs conjugated to cholesterol are not only able to pene-
trate efficiently the cellular and the nuclear membranes but
also to inhibit transcription. Furthermore, these choles-
terol-conjugated TFOs have been administrated to rats
showing the desired biodistribution with enhanced
uptake by liver cells, in particular hepatic stellate cells
(HSCs) and hepatocytes.

Since DNA in cells is typically bound to histones and
tightly packed into chromatin, the binding and activity of
TFOs must be determined in this context. Chromatin
structure is one of the major barriers since it may preclude
TFO access to target sequences. Many efforts to demon-
strate triplex formation in chromosomal environment
have been reported (106,131,169—175). It has been
shown that the frequency of mutagenesis induced by
TFOs conjugated to psoralen differs in quiescent and S
phase cells. This difference probably reflects the accessibil-
ity of the target sequence and thus the levels of targeted
cross-linking in the two-cell populations (176). Many stu-
dies are still carried out in order to show triplex formation
inside living cells, since other mechanisms, beside triplex
formation, could be involved in oligonculeotide-induced
gene inhibition. An additional barrier to the detection of
triplex formation in cells is the extremely low concentra-
tion of TFO in the nuclei because of its low-penctration
efficacy. Recently, Ye et al. (175) employed a TFO con-
jugated to psoralen into HSCs of fibrotic rats in order to
target the ol collagen gene. This gene is responsible for the
synthesis of collagen, which is involved in fibrosis. The
inhibition of collagen synthesis should therefore prevent
fibrosis. The extent of psoralen photoadducts was evalu-
ated using real-time PCR. The inhibition of gene tran-
scription demonstrated that there is a strong correlation
between triplex formation and transcription inhibition
of TFOs.

TFOs can be also conjugated to DNA anti-cancer drugs
in order to target these latter to specific sequences on
DNA and increase their specificity. Carbone et al. demon-
strated the efficacy of TFO—daunomycin (DNM) conju-
gates in inhibiting transcription of a gene involved in
tumour growth: c-myc gene (104,177). DNM belongs to
the family of the anthracyclins, which are among the most
commonly used and effective anti-cancer drugs.
Attachment of DNM to TFOs resulted in increased triplex
stability thanks to the intercalating activity of DNM.
Furthermore, DNM-TFO conjugates showed sequence-
specific inhibition of the targeted gene, without however
an effect of the anti-cancer activity of DNM. We recently
demonstrated that conjugation of DNM to TFOs allowed
to inhibit transcription of the target gene (MDRI) by a
specific role of the DNM moiety (178). Furthermore,

if these conjugates are employed in DNM-resistant
cell lines, the uptake of DNM itself is permitted by the
presence of the oligonucleotide, thus showing a mutual
action of the partners of these conjugates, the DNM and
the TFO. Recently, we have also shown that TFO conju-
gates of the anti-tumour camptothecin, a potent inhibitor
of human topoisomerase 1B, are able to induce topoiso-
merase [-mediated DNA cleavage in cells and to inhibit
specifically the expression of a transient reporter gene in
cells (100).

Interestingly, Christensen et al. (179) showed that it is
possible to increase the action of anti-cancer agents when
these latter are used in combination with TFOs without
conjugation. When used in combination, TFOs, directed
against the promoter sequence of c¢-myc, increased the
incorporation of the anti-cancer nucleoside gemcitabine
at the targeted site 4-folds due to induction of replication
independent DNA synthesis. Finally, cells treated with
these TFOs and gemcitabine showed a reduction in both
cell survival and capacity of anchorage-independent
growth.

Therapeutic potential of TFOs

Despite the great number of in vitro applications and an
example of site-directed mutagenesis in mice (15), the anti-
gene strategy did not lead to new therapeutical agents so
far. However, the improvements in the stability of tri-
plexes in physiological conditions and the examples
reported so far clearly demonstrate that the anti-gene
strategy can be very effective. Furthermore, bioinfor-
matics is giving an essential support to the future applica-
tions of TFOs in therapy. In fact, a wide analysis along
annotated regions of the genome allowed to demonstrate
that the largest relative concentration of TTS is found in
regulatory regions, especially in promoter regions (12,13).
This suggests a great potentiality for triplex strategy in the
control of gene expression. Softwares able to identify high-
affinity TTS have also been developed (180). While a cer-
tain number of practical problems (stability, sequence
restrictions, susceptibility to nucleases and delivery in
the cellular nucleus) have to be solved before to apply
the anti-gene strategy in therapy, some new biotechnolo-
gical applications are emerging as an important way to
exploit the potential of triplex formation. The following
section is devoted to the description of the use of TFOs as
biochemical tools.

TFOS AS TOOLS IN MOLECULAR BIOLOGY
AND BIOCHEMISTRY

While the applications described so far regard the use
of the triplex approach in the modulation of gene expres-
sion, the following section will examine how triplexes,
mainly the same conjugates as above, can be employed
as biotechnological tools. In this context, TFOs can be
employed in targeting of drugs to study, for example,
molecular mechanisms of protein and enzymes interacting
with DNA, site-specific labelling of DNA and in the
recognition and purification of DNA (Figure 6).
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Figure 6. Triplexes as biotechnological tools: to target a molecule of interest on a specific DNA sequence, such as fluorophores, enzymatic effectors
(transcription factors, restriction enzymes), cross-linking agents; to study the mechanisms of proteins that act on DNA, such as translocases; to sense
DNA topology: using immobilized TFOs, it is possible to trap negatively supercoiled plasmids versus relaxed plasmids.

First of all, targeting of therapeutic agents to specific
sites of DNA revealed to be a useful strategy to induce the
effect of these drugs in a sequence-specific manner. The
first example of this approach has been reported by
Matteucci et al. (181), who described a system where a
topoisomerase I inhibitor, camptothecin, has been coupled
to a TFO in order to target the inhibition of the enzyme at
proximity of the triplex. Topoisomerase I is a cellular
enzyme whose function is to relax the superhelical twist
in DNA by cleavage of one strand, rotation around the
cleaved position and religation of the DNA (182).
Inhibitors of this enzyme, such as camptothecin, trap the
enzyme in the cleavable complex where the DNA is
cleaved and covalently linked to the enzyme, thus leading
to durable lesions of DNA. When camptothecin is conju-
gated to a TFO, subsequent triplex formation at the target
sequence positions the drug selectively at the triplex site,
thereby stimulating topoisomerase [-mediated cleavage at
this site. The specificity and the efficacy of cleavage depend
markedly on the length of both the triple-helical structure
and the linker between the oligonucleotide and the poison
(183,184). Diverse analogues of camptothecin were stu-
died by this approach and it has been demonstrated that
even poorly active or inactive camptothecin derivatives
were able to stabilize the ternary complex (185). Other
topoisomerase I inhibitors have been used for this
approach, such as for example rebeccamycin (186) and
indolocarbazole (187). Most recently, we have used these

conjugates to position camptothecins at one specific site
on a ~19.2kb DNA to study, in a single-molecule set-up,
the physical parameters of the inhibition of topoisomerase
I by the drug (188).

The same principle has been applied to topoisomerase I1
inhibitors, such as anthracyclines, widely used and very
effective anti-cancer agents (189,190). The conjugation of
DNM to a TFO allows the delivery of the anthracycline to
a specific gene and has been applied to the PPT sequence
of HIV-1 in vitro, as well as to c-myc gene in cells (104,177)
(see Site-specific mutagenesis section). Recently, we
reported that new derivatives of etoposide (a topoisome-
rase II inhibitor widely used in therapy) have been coupled
to TFOs in order to increase the sequence specificity of
these drugs (191,192). The active topoisomerase II poi-
sons, once linked, induced cleavage at 13-14 bp from
the triplex end where the drug was attached. Thus, also
in this case, the use of triple-helical DNA structures
offered an efficient strategy for targeting topoisomerase
II-mediated cleavage to DNA-specific sequences. The use
of an etoposide analogue able to photocrosslink the DNA
target allowed to draw a model for the interaction of these
conjugated analogues in the ternary complex with topoi-
somerase II, where the inhibitor is not positioned as
expected in the catalytic site of the enzyme, but in an
outer part of topoisomerase II, most likely in a key
region that is important for the conformational changes
of the enzyme through the catalytic cycle. Thus, the triplex
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approach revealed its usefulness as a tool to unravel
mechanistic details of the complex process of topoisome-
rase poisoning.

Concerning the study of protein—-DNA interactions, the
triplex approach can help understand the detailed mole-
cular mechanism, as described for topoisomerase inhibi-
tors and their interaction with DNA and the enzyme.
Triplex directed site-specific psoralen interstrand cross-
link (ICL) has been used as a model substrate to explore
the molecular mechanism of psoralen ICL repair in
human cells. It is known that NER system is involved in
a mutagenic repair of psoralen ICLs in mammalian cells
(132,134,193,194). NER is a multistep process involving at
least 25 proteins, including the damaged DNA recognition
factors XPA and RPA. Recently, it has been demon-
strated that other proteins are also crucial for efficient
processing and error-free repair of psoralen ICLs, showing
how the triplex approach can be applied in the study of
repair pathways (88,195,196).

Reddy et al. (195) studied the recognition of psoralen-
cross-linked triplex structure by the HMGBI and
HMGB2 proteins and their interactions with the NER
damage recognition proteins, XPA and RPA, on these
lesions. Authors reported that the human HMGBI pro-
tein recognizes and binds to psoralen-cross-linked triplex
DNA with high affinity and specificity even in the presence
of the XPA-RPA complex. This binding is supposed to
modulate the repair of these mutagenic structures.

Another possible application is the recognition and
purification of nucleic acids. A big advantage is the fact
that pyrimidine triplex formation is pH-dependent and
thus tunable. Triplexes can be used in order to select a
sequence of DNA containing oligopurinesoligopyrimidine
sequences in a mixture of duplex DNAs (197). This has
been realized by attaching a TFO to an affinity column or
magnetic beads. In the presence of a mixture of duplexes,
for example plasmids containing a sequence able to form a
triple helix can be selectively recognized inside a bacterial
lysate (198-201).

This approach has been also used in order to recogn-
ize the interaction sites of proteins on DNA, since the
third strand can act as a competitor for the protein
(125,202,203). An important example is the identification
of topoisomerase II binding and cleavage site (204).
Triplexes have been used as a basis for assays for DNA
translocation (205,206). The principle of these assays is the
displacement of a fluorescent-labelled TFO by the trans-
locating enzyme. Maxwell et al. (17) exploited the obser-
vation that triplex formation is favoured by negative
supercoiling in order to develop methods for assay-
ing topoisomerases, based on the differential capture of
negatively supercoiled versus relaxed plasmids by immo-
bilized TFOs.

TFOs can also be used in order to label a target DNA.
Biotin has been employed individually in studies based on
triplex structures (198,207,208). Biotin has also been used
in combination with psoralen each attached to one extre-
mity of a TFO (209). These probes were directed to dif-
ferent target sites on plasmids and were photocrosslinked
to the target DNAs via the psoralen moiety. The yield of
triple helix can be evaluated by chemiluminescence using

avidin or streptavidin as protein tags and the covalent
adduct can be visualized by scanning force microscopy.
Grimm et al. (210) developed a simple synthetic method
for conjugation of an intercalating ruthenium diphenan-
throline dipyridophenazine complex with a TFO. Once the
triplex is formed with the target duplex (the PPT sequence
of HIV1), the ruthenium complex intercalates at the tri-
plex—duplex junction leading to an important increasing of
fluorescence that allows to follow the kinetics of duplex
and triplex formation by fluorescence spectrometry.

Escudé et al. (211) have shown that a TFO could be
circularized around its target, yielding the so-called ‘pad-
lock’ oligonucleotide. After sequence-specific recognition
of a double-stranded DNA target through triple-helix for-
mation, the ends of the TFO were joined through the
action of T4 DNA ligase, thus creating a circular DNA
molecule catenated to the plasmid containing the target
sequence. Padlock oligonucleotides have been used for
fluorescent  site-specific labelling (211-213). Géron-
Landre et al. (214) reported the ligation of a fluorescent
DNA fragment to a stem-loop TFO to visualize DNA.
This is the first report where a non-repeated sequence as
short as 15bp has been visualized by optical microscopy.
Thus, this method could be used for single molecule stu-
dies of DNA. The same group reported the use of radio-
active labelling applied to an analogous approach (215).

In 2003, Hausmann et a/. (216) introduced combinator-
ial oligonucleotide fluorescence in situ hybridization
(COMBO-FISH), which uses TFOs to label chromosomes
in a cell nucleus under non-denaturing conditions. More
recently, it has been demonstrated that pyrene-labelled
oligonucleotides are great probes that are able to discri-
minate single mutation in purine stretches. Such probes
have potential for use in fluorescence in vivo hybridization
under vital conditions and in living cells (217).

CONCLUSIONS

Fifty years later, we know now how to design short oligo-
nucleotides able to form stable triplexes on the oligopyr-
imidinecoligopurine sequences present in the genome. We
have also learned to deliver them and improve their cel-
lular stability, i.e. controlling the affinity for the duplex
target, salt concentration and pH dependence or overcome
intracellular barriers. Triplexes have become useful tools
that are widely used to target DNA modifying agents,
with the aim either to study biological processes or to
modulate them (it is the case of gene expression, mutagen-
esis and recombination); to label DNA, study enzymes
that act on DNA, purify DNA etc. An important step
forward in the anti-gene strategy will be the use of tri-
plexes in vivo as therapeutic agents for a wide variety of
diseases including cancer or viral infections, in which a
sequence can be identified as responsible of the disease.
Their high specificity leads also to a theoretical lack of
toxic effects.

On the other hand, other oligonucleotides-based thera-
pies are in use, such as anti-sense strategy (218); siRNAs
have also emerged as a very effective way to modulate
gene expression (219). However, both target the second



step of the genetic information flux without affecting the
real source, the DNA.

Based on the great progresses made these recent years
and summarized in this review, it is definitely possible to
overcome the practical problems that are still limiting the
anti-gene approach and to finally apply this approach in
therapy.

Finally, the importance of the triplex strategy resides
also in its wide applications in biotechnology, where
TFOs have shown to be versatile tools to deliver drugs
to a specific site in the genome, to study the molecular
mechanism of enzymes, to label DNA site-specifically
and to recognize and purify DNA.
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