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ABSTRACT

ChIP-Seq, which combines chromatin immunopreci-
pitation (ChIP) with ultra high-throughput massively
parallel sequencing, is increasingly being used
for mapping protein–DNA interactions in-vivo on a
genome scale. Typically, short sequence reads from
ChIP-Seq are mapped to a reference genome
for further analysis. Although genomic regions
enriched with mapped reads could be inferred as
approximate binding regions, short read lengths
(~25–50 nt) pose challenges for determining the
exact binding sites within these regions. Here,
we present SISSRs (Site Identification from Short
Sequence Reads), a novel algorithm for precise
identification of binding sites from short reads gen-
erated from ChIP-Seq experiments. The sensitivity
and specificity of SISSRs are demonstrated by
applying it on ChIP-Seq data for three widely studied
and well-characterized human transcription factors:
CTCF (CCCTC-binding factor), NRSF (neuron-
restrictive silencer factor) and STAT1 (signal trans-
ducer and activator of transcription protein 1). We
identified 26 814, 5813 and 73 956 binding sites for
CTCF, NRSF and STAT1 proteins, respectively,
which is 32, 299 and 78% more than that inferred
previously for the respective proteins. Motif analysis
revealed that an overwhelming majority of the iden-
tified binding sites contained the previously estab-
lished consensus binding sequence for the
respective proteins, thus attesting for SISSRs’ accu-
racy. SISSRs’ sensitivity and precision facilitated
further analyses of ChIP-Seq data revealing interest-
ing insights, which we believe will serve as guidance
for designing ChIP-Seq experiments to map in vivo
protein–DNA interactions. We also show that tag
densities at the binding sites are a good indicator
of protein–DNA binding affinity, which could be used
to distinguish and characterize strong and weak

binding sites. Using tag density as an indicator of
DNA-binding affinity, we have identified core resi-
dues within the NRSF and CTCF binding sites that
are critical for a stronger DNA binding.

INTRODUCTION

Chromatin immunoprecipitation (ChIP) is a powerful
and widely used experimental technique to determine
whether proteins including, but not limited to, transcrip-
tion factors bind to specific regions on chromatin in vivo.
ChIP requires cross-linking of living cells using formalde-
hyde, followed by shearing of chromatin into short
fragments of desired length (usually 0.2–1 kb) using soni-
cation. The protein-bound DNA fragments are then
immunoprecipitated using an antibody specific to the pro-
tein of interest. Finally, the protein–DNA cross-links are
reversed, and the DNA is purified and assayed to deter-
mine the sequence bound by that protein. Until recently,
ChIP-chip (1,2), which combines ChIP with DNA micro-
arrays, was the most widely used technique to map
protein binding sites on DNA on a genome scale. ChIP-
Seq (3–6), which combines ChIP with next generation
massively parallel sequencing technology, is on its way
to replacing ChIP-chip as the commonly used approach
for genome-wide identification of protein–DNA interac-
tions in vivo. ChIP-Seq’s coverage, high resolution and
cost-effectiveness, combined with its ability to sequence
several million bases in a short span of time (1–2 days)
allow us to map and understand protein–DNA interac-
tions on a genome-scale.
In ChIP-Seq, the DNA fragments obtained from ChIP

are directly sequenced using the next generation genome
sequencers such as Illumina Genome Analyzers. Although
the lengths of the input DNA could be anywhere between
�200 bp and �1 kb, typically, only the first �25–50 nt
from the DNA ends are sequenced. The resulting short
reads are mapped back to a reference genome, and only
those reads that map to an unique genomic locus in the
reference genome are considered for further analysis.
Mapped reads are commonly referred to as tags
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(henceforth, ‘reads’ and ‘tags’ are used interchangeably).
Typically, genomic regions with high tag densities are
interpreted as binding site locations (3–5). Although this
approach helps identify binding ‘regions’ accurately, short
read length poses challenges for determining the exact
binding sites within these regions. Given that the lengths
of the sequenced DNA fragments could be few hundred
base pairs, such a heuristic, which uses the general frame-
work of clustering of reads to identify binding site loca-
tions, does not take full advantage of the inherent
properties of the ChIP-Seq data. Consequently, the reso-
lution of the identified binding sites could be as much as
the length of the input DNA, if not longer. However, the
binding sites for transcription factors are often clustered in
critical regulatory regions, and are in close proximity to
each other. To understand the structure of regulatory
elements and to delineate the contribution of each binding
site/factor, accurate, sensitive and precise approaches
for target site identification are needed. Moreover, the
method needs to be robust yet flexible enough so that it
allows the user to control for elements such as antibody
specificity and sequencing errors, which could affect the
data quality, and thus the accuracy and resolution of
identified binding sites.
Here, we present SISSRs (Site Identification from

Short Sequence Reads), a novel algorithm for genome-
wide identification of binding sites from short reads
generated from ChIP-Seq experiments. SISSRs exploits
the direction of reads to first estimate the average length
of DNA fragments, and then uses the fragment length,
direction of reads, a background model and other user-
set control parameters to narrow down the binding site
resolution to within few tens of base pairs. The sensitivity
and specificity of SISSRs are demonstrated by applying
it on ChIP-Seq data for three widely studied and well-
characterized human transcription factors: insulator
protein CTCF (CCCTC-binding factor) (7–11), NRSF
(neuron-restrictive silencer factor) (also known as REST,
for repressor element-1 silencing transcription factor) (12–
15) and transcription activator protein STAT1 (signal
transducer and activator of transcription protein 1) (16–
19). Using SISSRs, we identified a total of 26 814, 5813
and 73 956 binding sites for CTCF, NRSF and STAT1,
respectively, which is 32, 299 and 78% more than that
inferred previously for the respective proteins (3–5).
Motif analysis revealed that SISSRs-inferred binding
sites contained the previously established consensus bind-
ing sequence for the respective proteins, thus authenticat-
ing SISSRs accuracy.
The coverage and precision of SISSRs facilitated anal-

yses of ChIP-Seq data revealing interesting insights, which
we believe will serve as guidance for designing ChIP-Seq
experiments to map in vivo protein–DNA interactions.
We also show that the tag densities at the binding sites
are a good indicator of protein–DNA binding affinity,
which could be used to distinguish and characterize
strong and weak binding sites. Using tag density as
an indicator of DNA-binding affinity, we identified core
residues within the NRSF and CTCF binding sites that
are critical for a stable NRSF binding.

METHODS

Datasets

ChIP-Seq data for human transcription factors CTCF in
CD4+ T cell (3), NRSF in Jurkat T lymphoblast cell (4)
and STAT1 in interferon g-stimulated (IFN-g) HeLa S3
cell (5) were used in this study. The dataset and an imple-
mentation of the SISSRs algorithm are freely available at
http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/sissrs/.

DNA fragment length estimation

By default, SISSRs estimates the average DNA fragment
length from the ChIP-Seq reads. For every tag i in the
sense strand, the nearest tag k in the antisense strand,
downstream of i, is identified. Let j be the tag in the
sense strand immediately upstream of k. Note that i and
j could be the same tag. The mean DNA fragment length
F is given by ð2=nÞ

Pn
i¼1 dði, jÞ þ ðdð j, kÞ=2Þ, where n is the

number of sense tags for which there exists a k and a j tag,
and dði, kÞ6 500 (a pictorial illustration of this approach
is presented as Supplementary Figure 1). Here, d(x, y)
denotes the distance (in base pairs) between tags x
and y. It is assumed that sonicated DNA fragments are
of length at most 500 bp. This is a reasonable assumption
given that it is expected that ChIP-Seq will be used for
high-resolution mapping of binding sites. SISSRs provides
an option to change this setting, albeit at the cost of
decreased resolution. Alternatively, if the average frag-
ment length is known, SISSRs allows users to set the
average fragment length to this value.

SISSRs algorithm

SISSRs uses the direction and density of reads and the
average DNA fragment length to identify binding sites.
The entire length of the genome spanned by mapped
sequence reads/tags is scanned using a window of size w
(default: 20 bp) with consecutive windows overlapping by
w/2. For each window i, the net tag count ci is computed
by subtracting the number of antisense tags mapped to
window i from the number of sense tags mapped to the
same window. As the reads are scanned by the moving
window, every time the net tag count transitions from
positive to negative, the transition point coordinate t is
defined as the midpoint between the last seen window
with positive net tag count and the current window,
which has a negative net tag count. Each one of these
transition points is a candidate binding site, which needs
to satisfy the following conditions in order to be confirmed
as a true binding site: (i) number of sense tags p in the
region defined by coordinates [t�F, t] is at least E,
(ii) number of antisense tags n in the region defined by
coordinates [t, t+F] is at least E, and (iii) p+n is at
least R, which is estimated based on the user-set false
discovery rate (FDR) D. Each confirmed binding site is
assigned a score, also referred to as binding site tag
density, equal to p+n, which is the number of directed
reads supporting the binding site. By default, parameter
E is set to 2, which could be set to a desired value by
the user.
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Adopting a strategy similar to that used by Robertson
et al. (5), for each integer value V> 2E, SISSRs estimates
the FDR as the ratio of the number of 2F-bp regions with
V or more tags that the background model indicates
should occur by chance, to the number observed in the
real data. For each dataset, the number of tags R neces-
sary to characterize a binding site is defined as the smallest
V corresponding to FDR<D for binding sites defined
using V. For the estimated DNA fragment length F, the
expected number of tags (�) within a window of size 2F
is given by F times of the number of tags in the dataset
divided by the mappable genome length M, which was
estimated to be about 80% of the genome length. The
probability of observing a binding site supported by
at least R tags by chance is given by a sum of Poisson
probabilities as

1�
XR�1

n¼0

e���n

n!

Since M could be different for different experiments
depending on the reference genome being used, SISSRs
gives users the option to set their own value for M. If a
negative control dataset (such as IgG) is available, SISSRs
provides users the option to use this dataset as back-
ground in place of the random model.

If a high sensitivity is desired, SISSRs provides an
option to identify those binding sites that have tags
mapped to only the sense or antisense strand (site A in
Figure 6B). To identify such sites, SISSRs employs a two-
pass approach (a pass each for sense and antisense tags)
in which the sense and antisense tags are scanned from
left-to-right and right-to-left, respectively. For instance,
in the left-to-right pass, for each sense tag i SISSRs
checks if (i) the distance between i and the next sense
tag j is at least F, and (ii) the distance between i and the
next antisense tag k is at least 2F. If tag i satisfies both
the conditions, then the genomic coordinate F/2 bases
upstream of i is reported as a binding site if the total
number of sense tags mapped to the F-bp region upstream
of i (including i) is at least R. The same strategy is applied
on the right-to-left pass with the antisense tags. Since
binding sites are identified using reads mapped to only
one strand, it is impossible to identify the exact binding
site location. Genomic coordinate F/2 bases upstream of
i is a reasonable approximation of the exact binding site
location, given the data.

Binding sites inferred in this study used default SISSRs
parameters: estimated average DNA fragment length,
E=2, and R as estimated using the random background
model for D=10�3. The value of R was estimated to be 6,
6 and 12 tags for CTCF, NRSF and STAT1 datasets,
respectively.

Genome-wide distribution of binding sites

Genome-wide distribution of identified binding sites was
determined with reference to RefSeq genes downloaded
from UCSC genome browser (20). The 5-kb region
upstream of transcription start is defined as the gene
promoter.

Motif analysis

MEME (21) with default parameters was used to identify
statistically overrepresented consensus motifs within the
inferred binding sites. Since the running time of motif
finding algorithms are prohibitively long for large sets,
we decided to use only the top X% of the binding sites.
Due to the huge differences in the number of sites for the
three proteins, there was not a good choice of X we could
use as a compromise between being sufficiently large to
include as many binding sites, and small enough for
MEME to find motifs in reasonable time. For example,
X=10% would have selected only 581 binding sites for
NRSF but 7396 binding sites for STAT1 (few NRSF sites
and too many STAT1 sites). Because of this dichotomy,
we decided to use a different value for X for each of the
three proteins. MEME analysis was performed only on
high-scoring binding sites (sites with high tag density):
top 10% of CTCF sites (2622) with 60 or more tags, top
20% of NRSF sites (1160) with 46 or more tags and top
5% of STAT1 sites (3825) with 60 or more tags. Position-
specific scoring matrices (PSSMs) resulting from MEME
analysis were used as input to MAST (22) to locate match-
ing instances with P< 10�3.

Resolution of identified binding sites

The resolution of a binding site is assessed by calculating
the distance (in base pairs) between the inferred binding
site and the middle of the nearest canonical motif
occurrence.

RESULTS

Overivew of SISSRs algorithm

A schematic overview of SISSRs algorithm is presented as
Figure 1. First, the direction of mapped reads is used
to estimate the average length F of the sequenced DNA
fragments (see Methods section and Supplementary
Figure 1 for details). Next, a w-bp window is used to
scan the mapped reads, with consecutive windows over-
lapping by w/2. As the moving window scans the reads,
the ‘net tag count’ for each window is computed by sub-
tracting the number of antisense tags from the number of
sense tags mapped to that window. At each instance, the
net-tag-count profile makes a positive-to-negative transi-
tion, SISSRs identifies a candidate binding site. Candidate
binding sites satisfying a set of estimated as well as user-set
thresholds are confirmed as true binding sites (see
Methods section for details). A background model similar
to that used by Robertson et al. (5) is employed to make
sure that each of the identified sites is not by chance.
Alternatively, a negative control dataset, such as IgG,
may be substituted for the default background model.
Every inferred binding site is represented by a genomic
coordinate t, and is assigned a score (referred to as ‘tag
density’) equal to the sum of the number of sense tags
mapped to the genomic region [t�F, t] and the number
of antisense tags mapped to the genomic region [t, t+F].
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ChIP-Seq datasets and binding sites

SISSRs was applied on recently published ChIP-Seq
data for human transcription factor or insulator-binding
protein CTCF (CCCTC-binding factor) in CD4+ T cell
(3), NRSF in Jurkat T lymphoblast cell (4) and STAT1 in
interferon g-stimulated (IFN-g) HeLa S3 cell (5). CTCF
is an 11-zinc finger protein, which is known to play var-
ious functional roles—repressor, activator and insulator
(7–11). NRSF is a zinc-finger transcriptional repressor,
which binds to a DNA element called the neuron restric-
tive silencer elements (NRSE, also known as RE-1) to
repress many neuronal genes in stem and progenitor
cells, and in nonneuronal tissues) (12–15). STAT1 is a
well-characterized transcription activator that is specifi-
cally activated to regulate gene transcription when
cells encounter cytokines and growth factors. It shuttles
between cytoplasm and nucleus, which is controlled by its
phosphorylation states of key tyrosines (16–19). Upon
phosphorylation by receptor-associated Janus Kinase
(JAK) family of proteins, STAT1 proteins get retained

in the nucleus forming homo- and hetero-dimers that
bind to IFN-g-activation site (GAS) elements and inter-
feron-stimulated response elements (ISRE) in the DNA.

Using an FDR threshold of 10�3, we identified a total of
26 814, 5813 and 73 956 binding sites for CTCF, NRSF
and STAT1 proteins, respectively. The number of sites
identified in this study is 32, 299 and 78% more than
what was previously identified from the same datasets
for the respective proteins (3–5) (Table 1). The genome-
wide distribution of the inferred binding sites relative to
RefSeq genes is given as Figure 2.
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Figure 1. Schematic overview of SISSRs algorithm. (A) Sequenced short reads (typically �25–50 bp) from ChIP-Seq experiments are first mapped
onto the reference genome. The mapped reads are then used to estimate statistical parameters, which include the estimation of the average length F
of sequenced DNA fragments. (B) The entire reference genome along with mapped reads is scanned using overlapping windows of size w base pairs
(overlapping not shown in the figure for clarity), and the net tag count (ci) for every window i is calculated. Every transition point (t) is a candidate
binding site, and needs to satisfy a set of estimated as well as user-set thresholds in order to be classified as a true binding site.

Table 1. Data and results summary

CTCF NRSF STAT1

Number of mapped reads (million) 2.9 1.7 15.1
Estimated Fragment length (bp) 127 133 198
Binding sites identified by SISSRs 26 814 5813 73 956
Binding sites identified by

previous approaches
20 262 1946 41 582
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Accuracy of identified binding sites

To verify whether the inferred binding sites are indeed
true binding sites, we sought to examine whether these
sites contained previously established consensus binding
motifs for the respective proteins. First, we wanted to
identify the consensus motif de novo from the inferred
sites. For this, we used MEME (21) to identify statistically
overrepresented motifs within the 200-bp regions centered
on the genomic coordinates representing the inferred
binding sites. Adopting a strategy similar to that used
by Johnson et al. (4), we used only those binding sites
with high tag density (signal intensity): top 10% of
CTCF sites (2622) with 60 or more tags, top 20% of
NRSF sites (1160) with 46 or more tags and top 5%
of STAT1 sites (3825) with 60 or more tags. This analysis
revealed motifs that are similar to the previously estab-
lished consensus motifs for the respective proteins
(9,23–25), thus authenticating the accuracy of the inferred
binding sites. By ‘similar’, we mean that the conservation
levels of individual residues in the motif are similar to that
previously reported. While we found a single consensus
motif for CTCF sites, NRSF and STAT1 sites were asso-
ciated with more than one motif (Figure 3). Many NRSF
sites contained partial motifs (half-sites), which is consis-
tent with previous observations (4,26,27).

PSSMs of the motifs identified using MEME were then
used as MAST (22) input to identify matching motif
instances (P< 10�3) in the rest of the binding sites that
were not used in the MEME analysis. Overall, we found
that 95% of all CTCF sites contained the consensus
CTCF motif. About 92% of all NRSF sites contained
the full 21-bp consensus NRSF motif and/or one or
both of the half-sites with variable spacing between them
(4). A majority (64%) of the NRSF sites contained the
21-bp full-site, with 17% containing both the half-sites
(but with variable spacing between them compared to
the full site) and 17% containing just one of the half-
sites. In the case of STAT1, 75% of all binding sites con-
tained the classic GAS motif TTC(T/C)N(G/A)GAA.
About 54% of all STAT1 sites contained either the M1
or the M2 motif (Figure 3), while 21% of all STAT1 sites
contained both M1 and M2.

Resolution of identified binding sites

A simple but elegant strategy to infer binding sites from
ChIP-Seq data is to first identify genomic regions (typi-
cally, smaller than the length of the input DNA) enriched
with sequence tags, and then for each one of these regions,
pick the genomic coordinate within the region that has the
maximum number of overlapping tags or fragments as
the binding site (3–5). Although this approach identifies
the binding ‘regions’ accurately, short read length poses
challenges for determining the exact binding sites within
these regions. The genomic coordinate with the most
number of overlapping tags or fragments may not neces-
sarily be the exact binding site within the identified bind-
ing region. As a result, in the worst case, the inferred
binding site could be as far as the length of the binding
region away from the real binding site.
To assess this important attribute of binding sites iden-

tified by SISSRs, we plotted the frequency distribution
of the distance between the inferred binding site and
the middle of the nearest canonical motif occurrence
(Figure 4A). Three-fourths of all CTCF, NRSF and
STAT1 sites were within 18, 27 and 51 bp of the nearest
motif, respectively (90% within 32, 52 and 73 bp, respec-
tively). When only those high-scoring binding sites were
considered, the resolution was much higher than that for
all sites. Three-fourths of high-scoring CTCF, NRSF and
STAT1 sites were within 13, 12 and 26 bp of the nearest
motif, respectively (90% within 20, 19 and 45 bp, respec-
tively). Given that the core CTCF and NRSF motifs are
14- and 21-bp long, respectively, and the resolution is
computed with respect to the center of the motif, the
precision of identified binding sites is unprecedented.
Inverse correlation between the resolution and the aver-
age fragment length could explain why the resolution
is different for CTCF, NRSF and STAT1, as longer the
DNA fragment being sequenced, the lesser the chances of
identifying the precise binding site. This suggests that if
high-resolution mapping of binding sites is desired, it is
important that the sequenced DNA fragments are about
�150 bp in length.
Although SISSRs’ high sensitivity allows one to identify

many more binding sites, there are extreme situations in
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Figure 2. Distribution of binding sites across the genome. RefSeq genes were used as reference. The 5 kb region upstream of transcription start site
was defined as the promoter.
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which many potential binding sites are present within
a 50–200-bp region, and SISSRs or any other approach
will not be able to identify all the sites that are actually
bound within this small region as it may be unreasonable
to expect the individual protein–DNA complexes to
immunoprecipitate independently. To assess how preva-
lent this situation is, we used MAST (22) to examine the
distribution of the number of the consensus motifs within
the 200-bp region of all sites. We were quite surprised to
see that a good fraction (37–71%) of them contained more
than one motif (Figure 4B). The distributions were pretty

much the same even when only the high-scoring binding
sites were considered, except that the fraction of sites with
no canonical motif dropped to <8% in all three cases.
It is not clear whether the tags mapped to such loci corre-
spond to one or more binding events. As mentioned ear-
lier, the only way to identify each and every binding event
is to generate smaller DNA fragments during sonication,
although this may not resolve the situation shown in
Figure 4C as it is unreasonable to expect this 200-bp
region to be sonicated into nine unique fragments contain-
ing a binding site each.
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Figure 3. Accuracy of inferred binding sites. Consensus binding motifs for CTCF, NRSF and STAT1 binding sites are shown in the left panel.
The right panel shows the percentage of identified binding sites containing the consensus binding motif(s).
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Tag density at a binding site is an indicator of
protein–DNA binding affinity

DNA-binding proteins demonstrate various affinities to
different DNA-binding elements. The longer the protein
occupancy on the DNA, the more likely they will be
pulled-down in larger numbers in ChIP experiments.
This would directly translate to more ChIP-Seq tags for
more stable protein–DNA complexes compared to less

stable complexes. As a consequence, more tags will be
detected at genomic locations corresponding to more
stable protein–DNA complexes.
In an attempt to understand whether the tag density at a

binding site is an indicator of strong or weak DNA bind-
ing, we first tried to determine the tag density landscapes
of CTCF, NRSF and STAT1. Interestingly, we found that
the distribution of the tag density exhibits a power-law
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behavior with many binding sites having low tag density
and a small fraction of them having high tag density
(Figure 5A). To understand what this means, we consid-
ered four mutually exclusive sets of 500 NRSF binding
sites each, and compared the consensus 21-bp motifs
from these sets. To our surprise, we noticed a positive
correlation between the average tag density (of all the
binding sites in the set) and the information content
of the first six residues in the 21-bp NRSF consensus
motif (Figure 5B). No noticeable changes were observed
for the nucleotide positions 7–21. This suggested that posi-
tions 7–21 (7–9 and 12–17, in particular) are critical for
DNA binding, and positions 1–6 with high information-
content contribute to stable DNA binding.
If positions 7–9 and 12–17 (spanning both the left and

the right half-sites) are indeed as critical as we claim them
to be, then it must be the case that the average tag density

of those NRSF sites that contain the 21-bp full-site should
be higher than that for those NRSF sites that contain
only the left or right half-site. To investigate this aspect,
we calculated the average tag density of sites containing
full site, and those containing only the left or the right half-
site. The average tag density of those NRSF sites contain-
ing the full site was 68.3, whereas the average tag density
of those sites containing only the right or the left half-site
was 12.7 and 14.1, respectively. Since higher tag density at
a binding site is a direct result of higher protein occupancy
on the DNA, a higher tag density at NRSF full-sites could
only mean that these sites provides for a stable protein
binding. This, in addition to the results from a recent
study in which it was shown that neither the left nor the
right half-site by itself is an effective repressor (27), indi-
cates that although NRSF could bind to half-sites, half-site
binding is not as strong or functional as full-site binding.
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Figure 5. Tag density at a binding site is an indicator of binding affinity. (A) Distribution of the number of tags within the 200-bp region centered on
binding sites exhibits a power-law behavior. (B) Motif analysis on four mutually exclusive sets of 500 NRSF binding sites each reveals a positive
correlation between the information content of first 6 nt of the NRSF consensus motif and the average tag density. See Supplementary Figure 2 for
an analysis of CTCF binding sites.
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A similar analysis on CTCF binding sites revealed a
11-bp ‘core’ CTCF-binding motif (positions 4–14 in
Supplementary Figure 2), whose conservation levels are
similar regardless of the tag density at the binding sites.
In particular, nucleotides C, G, and G at positions 5, 10,
and 13, respectively, are fully conserved across all binding
sites, suggesting that point mutations at these positions
are highly likely to prevent CTCF binding. Indeed, a
recent report used gel mobility shift assay to demonstrate
that the mutation of the cytosine in position 5 strongly
inhibits CTCF binding (28). Although CTCF has 11 zinc
fingers, it only needs a combination of four zinc fingers for
a strong binding to the DNA (28,29). In particular, it
was shown that zinc finger combinations 4–7 and 5–8
show higher DNA-binding affinity, with zinc fingers 4
and 7 recognizing the 30 and 50 ends of the core motif,
respectively (28). This finding combined with our results
(Supplementary Figure 2) suggest that positions 15–19
(at the 30 end of the CTCF consensus binding sequence)
with high information content contribute to stronger
DNA binding. This would mean that the DNA-binding
affinity of CTCF could depend on whether or not it
employs zinc finger 4 for DNA binding.

DISCUSSION

In this study, we presented SISSRs, a novel algorithm for
precise identification of binding sites from short reads
generated from ChIP-Seq experiments. We used SISSRs
to identify 26 814, 5813 and 73 956 binding sites for
CTCF, NRSF, and STAT1 proteins, respectively. Binding
sites identified by SISSRs are of high resolution, i.e. the
identified sites are within few tens of base pairs from
the center of the canonical motif (Figure 4A). For exam-
ple, >90% of CTCF sites were within 32-bp from the
motif center. The resolution of SISSRs-identified binding
sites is at least an order of magnitude higher than that of
those sites identified by previous approaches (3–5). While
SISSRs identifies the center of the binding site, previous
approaches identify binding ‘regions’ ranging from a few
hundred to a few thousand base pairs in length (Supple-
mentary Figure 3), which may contain more than one
binding site within them. This could be one of the reasons
that the binding regions identified by these approaches are
of low resolution (Supplementary Figure 4A), and the
number of canonical motifs within these binding regions
is relatively large (Supplementary Figure 4B).

SISSRs’ ability to identify binding sites with high
resolution helped it achieve unprecedented sensitivity
and specificity, as evidenced by its ability to identify
32–299% more binding sites than that by previous
approaches using the same dataset (3–5). We found that
82, 68 and 92% of CTCF, NRSF and STAT1 binding
regions reported by previous approaches overlap with
one or more binding sites identified in this study for the
respective proteins. The reason SISSRs did not recover all
binding sites reported by previous studies could be one or
both of the following. SISSRs was used with the option
that requires at least two directional tags on either side of
the binding site (Figure 1)—a stringent criteria compared

to that used by previous approaches, which did not con-
sider tag directions and just count the number of tags
mapped to a region. Although SISSRs provides an
option to identify binding sites with corresponding tags
mapped to only one strand (Figure 6B), we did not utilize
this option. Using this option and relaxing other con-
straints could improve the percentages listed above. It is
also possible that some of the sites identified by previous
approaches are false positives, which we do not expect
SISSRs to identify.
SISSRs is highly accurate, which is evident from the

fact that an overwhelming majority of the identified
sites contained the previously established consensus bind-
ing motifs. For example, 96% and 92% of all CTCF and
NRSF sites, respectively, contained the consensus binding
motifs. This immediately raises questions about those sites
that do not contain the consensus binding motif. Are these
false-positives? While it is entirely possible that those sites
without the canonical motif are false positives, one should
not discount the fact that the protein of interest may have
bound to the DNA indirectly via another protein
(Figure 6C), which may be hard to distinguish from
direct DNA binding. Also, one needs to keep in mind
that the mere presence of a consensus motif in the pre-
dicted region may not necessarily imply that the protein of
interest actually binds directly at this site unless it can be
determined that the binding is more-or-less independent of
other factors. This would mean that the accuracy of iden-
tified sites could be lower than that claimed above. This
does not reflect the accuracy of SISSRs, rather it reflects
the limitation of the ChIP technology, which cannot
distinguish between direct and indirect DNA binding.
SISSRs is robust, yet flexible enough that it allows the

user to control the elements such as antibody specificity
and sequencing errors, which could affect the quality of
generated data, and thus the accuracy and resolution
of identified binding sites. This is a very useful attribute
considering the fact that not all ChIP experiments gener-
ate high-quality data every single time, i.e. the background
noise (non-specific reads) usually varies for different ChIP
experiments. Non-specific reads, which may be due to
antibody non-specificity and/or sequencing errors, could
be controlled for by adjusting the size of the scanning
window. While larger window size reduces the impact of
non-specific reads and thus false positives at the cost of
resolution, smaller window size provides for increased
resolution but also increases the number of false positives
(Figure 6A). This noteworthy feature of SISSRs is extre-
mely useful especially when one needs to salvage informa-
tion from a low-quality data. SISSRs also allows users to
submit their own negative control dataset (such as IgG)
to be used as a background noise, in place of the default
random model.
SISSRs provides an option to identify those binding

sites with tags mapped to only the sense or the antisense
strand (Figure 6B). This situation arises when tags can-
not be mapped to certain regions in the genome, which
contain repetitive elements. Since a read aligning to a
repetitive element cannot be mapped to a unique genomic
location, such tags are usually left out from further
consideration, and as a result certain genomic regions
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enriched with repetitive elements are left unmapped.
SISSRs employs a simple procedure to identify those bind-
ing sites with tags mapped just to one side of the site (see
Methods section). Based on our analysis with the many
transcription factor binding proteins, we found that an
additional �1–2% of binding sites could be identified by
selecting this option (this option was not used to identify
sites reported in this study). SISSRs also provides an
option to mask out reads that fall within certain regions
in the genome. This is useful especially if one needs to
ignore tags that fall within, say, satellite repeat regions
or regions close to centromere. Since such regions are
suspected to contain disproportionately large number
of mapped reads, which could be due to amplification
biases or incorrect mapping of reads with one or two mis-
matches to regions having high sequence similarity with
repetitive regions that are usually masked out during
mapping, it is sometimes necessary to ignore reads
mapped to these regions.
Our observation that the enrichment of tags at

binding sites follows a power-law distribution raised an
immediate question as to whether the tag density at the
identified binding site is an indicator of the stability
or affinity of protein–DNA interaction. Since stable
protein–DNA interactions lead to a prolonged half-life

of the protein–DNA complex, and the corresponding frag-
ments are likely to be enriched in the ChIP sample, it is
reasonable to expect high tag density at stable protein–
DNA binding sites. The stability of the protein–DNA
complex could depend on many factors such as how acces-
sible the binding site is or how similar the binding site is to
the canonical site. We could not assess the former possi-
bility as it is outside the scope of this study. However, we
observed a good correlation between the tag density and
the information content of NRSF and CTCF binding sites
indicating that tag density is a good indicator of the
stability of protein–DNA binding. We have also identified
the core residues within the NRSF and CTCF binding
sites, which are critical for a stronger DNA binding.

In conclusion, although recent advances in sequencing
technology provide us with the ability to map protein–
DNA interactions on a genome-scale, development of
algorithms to identify the exact binding sites from short
reads generated by ultra high-throughput sequencing
techniques is still in its infancy. We believe that SISSRs
will serve as a useful tool for precise identification of
binding sites from millions of ChIP-Seq reads. Our experi-
mentation of SISSRs with ChIP-Seq data for three well-
characterized DNA-binding proteins revealed interesting
insights, which we believe will serve as a guidance for
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designing ChIP-Seq experiments. While a higher number
of reads may increase the sensitivity (Table 1) and resolu-
tion (Figure 4), it may not necessarily translate to accu-
racy (Figure 3), as accuracy may be depend on other
factors such as antibody specificity, and how stable the
protein–DNA complex is. The length of DNA fragment,
which has a direct impact on the resolution of identified
binding sites, should preferably be smaller (�120–150 bp)
if high-resolution binding sites are desired.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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