Skip to main content
. Author manuscript; available in PMC: 2008 Sep 9.
Published in final edited form as: J Am Chem Soc. 2005 Dec 14;127(49):17488–17493. doi: 10.1021/ja054935x

Table 2.

Calculated deuterium quadrupole coupling constants (kHz) for small molecules.

Molecule
Method Aa
Method Bb
MP4c
B3LYPd
Expt.c
H2O 316.2 304.5 320.3 307.9
−138.6 −132.6 −139.3 −133.1

−177.6
−171.9
−180.9

−174.8
HF
355.6
346.8
363.0

354.2
CH4
196.0
190.2
197.6

191.5
HCCH
223.6
217.1
224.2

203.5±10
HCCCN
219.7
213.0
225.4

203.5±1.5
C6H6 198.4 192.1(187.6)e 202.9(192.2) 186.1±1.8f
−92.5 −89.6(−88.1)e −95.8(−90.7) −88.9±2.3f
−105.9 −102.5(−99.6)e −107.2(−101.5) −97.2±2.3f
η=0.068 η=0.067(0.061)e η=0.056 η=0.046±0.017
a

B3LYP/6−311++G(2df,2pd)//B3LYP/6−311G**, this work (method/basis set for the property//method/basis set for the geometry).

b

B3LYP/aug+cc-pVTZ//B3LYP/6−311G(2df,2pd), this work.

c

Gerber and Huber30. Note that different basis sets were used for H2O, HF and CH4 and the other two molecules.

d

Bailey31, B3LYP/6−31G(df,3p)//experiment. The numbers in parentheses are the scaled values.

e

Values in parentheses have been corrected for zero-point vibrational effects; see Results and discussion.

f

Jans-Bürli et al.37. Our calculations confirm that these authors interchanged the x and y components of the tensor; this table shows the correct assignment. Bürgi et al.38 obtain a value near 180 kHz for the zz component in solid C6D6; re-analyzing the data of Pyykkö and Lähteenmäki39 also yields 179.3±2.8 kHz.