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Vascular endothelial growth factor (VEGF) acts as a hierarchi-
cally high switch of the angiogenic cascade by interacting with
its high affinity VEGF receptors and with neuropilin co-recep-
tors. VEGF, 45 binds to both Neuropilin-1 (NP-1) and VEGFR-2,
and it is believed that ligand binding forms an extracellular
bridge between both molecules. This leads to complex forma-
tion, thereby enhancing VEGFR-2 phosphorylation and subse-
quent signaling. We found that inhibition of VEGF receptor
(VEGFR) phosphorylation reduced complex formation between
NP-1 and VEGFR-2, suggesting a functional role of the cytoplas-
mic domain of VEGFR-2 for complex formation. Correspond-
ingly, deleting the PDZ-binding domain of NP-1 decreased
complex formation, indicating that extracellular VEGF ¢ bind-
ing is not sufficient for VEGFR-2-NP-1 interaction. Synectin is
an NP-1 PDZ-binding domain-interacting molecule. Experi-
ments in Synectin-deficient endothelial cells revealed reduced
VEGFR-2-NP-1 complex formation, suggesting a role for Synec-
tin in VEGFR-2-NP-1 signaling. Taken together, the experi-
ments have identified a novel mechanism of NP-1 interaction
with VEGFR-2, which involves the cytoplasmic domain of NP-1.

Angiogenesis, the growth of new blood vessels from a pre-
existing vascular network, plays a pivotal role during embryonic
development and in numerous diseases including cancer,
chronic inflammation, and vision-threatening retinopathies.
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Vascular endothelial growth factors (VEGF)? are a family of
mitogenic and chemotactic factors for endothelial cells (EC),
which act as hierarchically high inducers of the angiogenic cas-
cade (1). VEGFs signal through the high affinity receptor tyro-
sine kinases VEGFR-1, VEGFR-2, and VEGFR-3, which are
almost exclusively expressed by EC. In addition to the VEGF
receptors, two other molecules, namely Neuropilin-1 (NP-1)
and Neuropilin-2 (NP-2), have been identified as co-receptors
for VEGF (2). During development, NP-1 is expressed by arte-
rial EC (3), whereas NP-2 is expressed by venous and lymphatic
EC (4). NP-1 enhances the affinity of VEGF, .5 to VEGFR-2 (2)
and increases its phosphorylation, thereby enhancing down-
stream signaling (5). Correspondingly, overexpression of NP-1
leads to the formation of excess capillaries and blood vessels (6,
7). Targeted disruption of NP-1 results in embryonic lethality
and vascular defects such as impairment of neural vasculariza-
tion, transposition of large vessels, and insufficient develop-
ment of vascular networks in the yolk sac (7, 8).

The mechanistic analysis of the co-receptor function of neu-
ropilins for VEGEFR signaling has concentrated on the extracel-
lular domain of the neuropilins. It was suggested that VEGF, .-
binds to VEGFR-2 and NP-1 to form a bridge between the
extracellular domains, which results in the formation of com-
plexes (9). However, recent work employing VEGF variants that
either bind only NP-1 or bind only VEGFR-2 has suggested that
the extracellular ligand-bridging model is not sufficient to
account for a signal enhancing function of NP-1 in the absence
of extracellular ligand binding (10). Likewise, although
VEGEF,,, has been shown to bind NP-1 (11), stimulation with
VEGEF,,; is not sufficient to promote complex formation
between VEGFR-2 and NP-1, suggesting a further mechanism
in complex formation between NP-1 and VEGFR-2.

Previous research has shown that the intracellular domain of
NP-1 does not contain sequences predicted to have enzymatic
activities (12). Nevertheless, the transmembrane and cytoplas-
mic domains share over 90% amino acid identity across species
(13, 14), suggesting an evolutionary conserved role for these
domains. We therefore hypothesized that the intracellular
domain of NP-1 may be functionally involved in complex for-
mation. This hypothesis was also supported by the observation
that blockade of VEGFR-2 phosphorylation negatively inter-
fered with VEGFR-2-NP-1 complex formation. The experi-
ments of this study revealed that the PDZ-binding domain in
the cytoplasmic domain of NP-1 is required for stable VEGFR-
2-NP-1 complex formation. The identification of Synectin in
this intracellular association supports an intracellular VEGFR-
2-NP-1 association involving Synectin as a bridging molecule.

2The abbreviations used are: VEGF, vascular endothelial growth factor;
VEGFR, VEGF receptor; NP-1, Neuropilin-1; NP-1, Neuropilin-2; PDZ, post-
synaptic density, disc large, ZO-1; ERK, extracellular signal-regulated
kinase; EC, endothelial cells; HUVEC, human umbilical vein endothelial
cells; PAEC, porcine aortic endothelial cells; PTK787/2K222584, PTK/ZK; RT-
PCR, reverse transcription-PCR; siRNA, small interfering RNA; FCS, fetal calf
serum.
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EXPERIMENTAL PROCEDURES

Materials—Antibodies against NP-1 (C-19), VEGFR-2
(C-1158) and phospho-Tyrosine (PY99) used for Western blot
analysis were purchased from Santa Cruz Biotechnology. The
antibody directed against NP-1 used in immunofluorescent
analysis was obtained from Miltenyi Biotech. The antibody
directed against VEGFR-2 (3G2) used for immunoprecipitation
of human VEGFR-2 was provided by the Tumor Biology Center
Freiburg (Freiburg, Germany), the antibody used for immuno-
precipitation of mouse VEGFR-2 was purchased from Santa
Cruz Biotechnology (C-1158), and the antibody used for immu-
nofluorescence analysis was obtained from R&D Systems. The
low molecular weight VEGFR-inhibitor PTK787/ZK 222584
was kindly provided by Novartis and used at a final concentra-
tion of 100 nMm. VEGF, ¢ was purchased from R&D Systems and
used at a final concentration of 25 ng/ml.

Cell Culture—Human umbilical vein endothelial cells
(HUVEC), endothelial cell growth medium, endothelial cell
basal medium, and corresponding supplements were pur-
chased from Promocell, Heidelberg, Germany. HUVEC were
cultured in endothelial cell growth medium containing 10%
FCS. For growth factor starvation, cells were incubated in endo-
thelial cell basal medium supplemented with 5% FCS for 16 h.
HUVEC were used between passages 2 and 6. Porcine aortic
endothelial cells (PAEC) were cultured in Nutmix (Invitrogen)
containing 10% FCS. For growth factor starvation, PAEC were
incubated in Nutmix without FCS for 16 h. Mouse EC were
isolated and cultured as described previously (15).

SiRNA  Transfection of HUVEC—The Synectin-specific
siRNA (a) sense, 5'-AAAGGAACCCGGAUGAGCULtt-3' and
antisense, 5'-AGCUCAUCCGGGUUCCUUUtg-3' and (b)
sense, 5'-CCUGCUGGAGAGUUACAUGtt-3" and antisense,
5'-AUGUAACUCUCCAGCAGGtc-3" and control non-si-
lencing siRNA were purchased from Ambion and transfected
into HUVEC as described previously (16). Down-regulation of
Synectin was analyzed by RT-PCR 24 h following transfection.

RNA Isolation and RT-PCR—RNA isolation and RT-PCR
were performed as described previously (16).

Expression Vector, Retroviral Constructs, and Adenoviral
Constructs—PAE cells were transfected using a retroviral
expression system pLIB (Clontech), which was modified and
kindly provided by Dr. Ralph Graeser (Tumor Biology Center,
Freiburg, Germany). Full-length human VEGFR-2, human
NP-1, and the human NP-1 lacking the PDZ-binding domain
(NP-1APDZ) were cloned into modified pLIB. Together with
pVSVQG, the constructs were transfected into human embry-
onic kidney Ampho 293 cells. Virus-containing supernatants
were then used for transfection of PAEC. HUVEC were trans-
fected with an adenoviral expression system (Invitrogen). Full-
length NP-1 and NP-1APDZ were cloned into pDEST accord-
ing to the Gateway system manufacturer’s protocol, and
HUVEC were transfected with 100 infectious units/cell.

VEGF 45 Binding Assay on PAEC—Specific binding exper-
iments using iodinated VEGF, 4 binding to PAEC expressing
recombinant NP-1 or NP-1APDZ were performed as
described previously (10) and analyzed using the GraphPad
prism-4 software.
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VEGFR-2 Phosphorylation Assay and Co-immunoprecipita-
tion Experiments—HUVEC or PAEC were grown to 90% con-
fluence before being starved overnight. Cells were stimulated
with VEGF, ., for various time points. After stimulation, cells
were washed and lysed (150 mm NaCl, 50 mm Tris/HCl, pH 7.4,
1% Nonidet P-40, 10 mm EDTA, 10% glycerin, 1% protease
inhibitor mixture (Serva)). For experiments with VEGFR inhib-
itor, cells were preincubated with 100 nm PTK787/ZK 222584
1 h prior to stimulation with VEGF, .. For immunoprecipita-
tion, extracts were incubated with an antibody against
VEGFR-2 and protein-G-Sepharose overnight at 4 °C. The
Sepharose beads were spun down and washed twice with ice-
cold phosphate-buffered saline, 0.1% Nonidet P-40. The beads
were boiled in sample buffer and loaded on an 8% SDS-PAGE,
blotted onto a polyvinylidene fluoride membrane, and probed
with antibodies directed against phospho-Tyrosine, VEGFR-2,
and NP-1. Western blot analysis was performed using horse-
radish peroxidase conjugated secondary antibodies. Bound
antibody was visualized using the ECL kit of Amersham Bio-
sciences according to the instructions of the vendor.

RESULTS

VEGFR-2 and NP-1 Associate upon Stimulation with
VEGF,,s—Endothelial cell expressed NP-1 serves as a co-re-
ceptor for VEGF, ., forming complexes with VEGFR-2 upon
stimulation with VEGF, .. (2). To further characterize the
kinetics of this interaction, we performed co-immunoprecipi-
tation experiments following VEGF, . stimulation for various
periods of time. VEGFR-2 immunoprecipitation from primary
human umbilical vein endothelial cells (HUVEC) followed by
Western blot analysis revealed enhanced VEGFR-2-NP-1 com-
plex formation after prolonged stimulation with VEGF, 45 (30
min versus 5 min). This did not parallel the phosphorylation
level of VEGER-2, which was strongest after 5 min of stimula-
tion (Fig. 14). Immunocytochemical receptor trafficking anal-
ysis showed vesicular co-internalization of VEGFR-2 and NP-1
upon stimulation with VEGEF, 4 (Fig. 1B).

VEGER-2 Phosphorylation Is Required for Association
between NP-1 and VEGFR-2—The observed increase of stable
VEGEFR-2-NP-1 complex formation over time suggested that
complex formation itself may be dependent on the activation
status of VEGFR-2. We therefore performed VEGF, ..-depend-
ent complex formation experiments in the presence of the
VEGF receptor blocker PTK787/7K222584 (PTK/ZK).
PTK/ZK inhibits VEGFR phosphorylation but does not affect
the binding of VEGF, ( to its receptor (17). It thereby facilitated
the selective analysis of VEGFR-2-NP-1 complex formation
during suppressed VEGFR-2 phosphorylation without affect-
ing the binding of VEGF, ;. Surprisingly, treatment of primary
HUVEC with PTK/ZK prior to stimulation with VEGF .. led to
a decrease in VEGFR-2-NP-1 complex formation (Fig. 1C).
Western blot analysis of phospho-VEGFR-2 confirmed the
effectiveness of PTK/ZK in inhibiting VEGFR-2 phosphoryla-
tion. To further validate these findings, we performed the same
experiment with NP-1- and VEGFR-2-co-transfected PAEC.
As in HUVEC, PTK/ZK inhibited the complex formation in
PAEC (Fig. 1D). Taken together, these results indicate that for-
mation of VEGFR-2-NP-1 complexes is not only dependent on
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FIGURE 1. Induction of complex formation between VEGFR-2 and NP-1
following VEGF, ¢ stimulation and inhibition of VEGF-induced VEGFR-2-
NP-1 complex formation by the VEGFR receptor blocker PTK/ZK.
A, VEGFR-2 immunoprecipitation (/P) of HUVEC stimulation with VEGF, 4 fol-
lowed by Western blot analysis revealed complex formation between NP-1
and VEGFR-2, which increased with the length of stimulation. B, double
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ligand binding but also affected by the activation status of
VEGER-2.

The Cytoplasmic Domain of NP-1 Contributes to VEGFR-2-
NP-1 Complex Formation—The observed contribution of
VEGEFR-2 phosphorylation suggested an intracellular contribu-
tion to VEGFR-2-NP-1 complex formation. Blockade of
VEGFR-2 phosphorylation may inhibit receptor internaliza-
tion, as evidenced by reports showing that VEGFR-2 phospho-
rylation is required for receptor internalization (18-20). In
turn, the cytoplasmic domain of NP-1 is highly conserved
across species, suggesting an evolutionary pressure to maintain
a functional role. To examine whether the cytoplasmic domain
of NP-1 is involved in VEGFR-2-NP-1 complex formation, a
mutant of NP-1 lacking the cytoplasmic domain (NP-1AC) was
cloned and expressed in PAEC expressing VEGFR-2. The
expression of NP-1AC in PAEC was confirmed by Western blot
analysis, and live staining for NP-1 validated that NP-1AC was
expressed at the cell surface (data not shown). NP-1AC and
VEGEFR-2 expressing PAEC were stimulated with VEGF, .- and
lysed, and complex formation was examined by immunopre-
cipitation and Western blot analysis. Significantly reduced
complex formation of NP-1AC and VEGFR-2 was observed
upon stimulation with VEGF, . when compared with PAEC
co-expressing full-length NP-1 and VEGFR-2 (data not shown).

Based on these findings, a series of NP-1 cytoplasmic domain
truncation mutants was cloned and co-expressed with
VEGFR-2 in PAEC. When analyzing these mutants for
VEGEF, ., ligand-induced complex formation, deletion of just
the last three amino acids in the cytoplasmic domain of NP-1
(PDZ-binding domain) proved sufficient to significantly inhibit
complex formation between VEGFR-2 and NP-1 (Fig. 24).
Binding experiments confirmed that NP-1APDZ bound
VEGEF, ¢ with the same affinity as full-length NP-1 (Fig. 2B). To
extend these findings to primary EC, NP-1 and NP-1APDZ
were expressed in HUVEC. As in PAEC, deletion of the PDZ-
binding domain in the C-terminal tail of NP-1 proved sufficient
to significantly reduce ligand-induced VEGFR-2-NP-1 com-
plex formation (Fig. 2C). Collectively, these data solidly estab-
lish a role of the PDZ-binding domain in NP-1 in contributing
to VEGFR-2-NP-1 complex formation following VEGF, 4
stimulation.

Effect of Synectin on the Expression of VEGFR—The only pro-
tein reported binding to the cytoplasmic domain of NP-1 was
identified in a yeast two-hybrid screen (21) and termed Neuro-
pilin-1-interacting-protein. Neuropilin-1-interacting-protein
is also known as Synectin, GIPC1, or Semcap-1. Synectin is a
cytoplasmic protein that binds the PDZ-binding domain of

staining for VEGFR-2 (green) and NP-1 (red) and subsequent confocal analysis
showed that VEGFR-2 and NP-1 were internalized together upon stimulation
with VEGF, 45 (white arrowheads). Nuclei were stained with Hoechst (blue).
Scale bar, 10 um. G, HUVEC were incubated with PTK/ZK for 1 h and stimulated
with VEGF, 45 for the indicated time points. Thereafter, cells were lysed, and
protein extracts were immunoprecipitated with an anti-VEGFR-2 antibody.
VEGFR-2 immunoprecipitation revealed that PTK/ZK effectively led to a
reduction of stable complexes between NP-1 and VEGFR-2 after stimulation
with VEGF,¢s. D, PAEC expressing VEGFR-2 and NP-1 were treated with
PTK/ZK prior to stimulation with VEGF,ss. VEGFR-2 immunoprecipitation
revealed that PTK/ZK effectively led to a reduction of stable complexes
between NP-1 and VEGFR-2 after stimulation with VEGF, .
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FIGURE 2. The PDZ-binding domain of NP-1 and Synectin are involved in the complex formation between
NP-1 and VEGFR-2. A, PAEC-VEGFR-2-NP-1 and PAEC-VEGFR-2-NP-1APDZ were stimulated with VEGF, ¢ for the
indicated time points. Western blot analysis of cell lysate confirmed similar expression levels of NP-1 and NP-1APDZ
in both cell lines. Actin was used as an internal loading control. Thereafter, the remaining lysate was immunopre-
cipitated (IP) with an anti-VEGFR-2 antibody. Subsequent Western blot analysis revealed that VEGFR-2 and
NP-1APDZ formed fewer complexes than VEGFR-2 and full-length NP-1. B, Scatchard analysis of VEGF, 45 showed a
similar binding of increasing concentrations of bound '**|-labeled VEGF, 45 to PAEC-NP-1 or to PAEC-NP-1APDZ.
C, following transfection of HUVEC with NP-1 or NP-1APDZ, cells were stimulated with VEGF 4 for the indicated time
points. Western blot analysis confirmed similar expression levels of NP-1 and NP-TAPDZ in the transfected cells.
Actin was used as an internal loading control. Thereafter, the remaining lysate was immunoprecipitated with an
anti-VEGFR-2 antibody. Subsequent Western blot analysis revealed that VEGFR-2 and NP-1APDZ form fewer com-
plexes than VEGFR-2 and full-length NP-1 in transfected HUVEC. D, HUVEC were transfected with siRNA directed
against Synectin. mRNA was isolated 24 h following transfection, and RT-PCR of Synectin was performed to confirm
silencing of Synectin on the mRNA level. RT-PCR for VEGFR-2 was performed to check whether silencing of Synectin
changed its expression on the mRNA level. TATA box-binding protein (TBP) was used as an internal loading control.
No difference between scramble siRNA and Synectin siRNA transfected cells could be detected. E, following silenc-
ing of Synectin, HUVEC were stimulated with VEGF, 45 and lysed. Western blot analysis confirmed that silencing of
Synectin did not affect NP-1 expression. Actin was used as an internal loading control. Thereafter, the remaining
lysate was immunoprecipitated with an anti-VEGFR-2 antibody. Subsequent Western blot analysis showed lower
protein levels of VEGFR-2 following silencing of Synectin. Reprobing with NP-1 showed that less NP-1 associated
with VEGFR-2 after silencing of Synectin. F, analysis of the association between NP-1 and VEGFR-2 in Synectin-
deficient EC. Arterial EC were freshly isolated from wild type and Synectin-deficient mice and were stimulated with
VEGF, ¢ for the indicated time points. Western blot analysis of the cell lysate confirmed similar expression levels of
NP-1 in both wild type and Synectin-deficient EC. Actin was used as an internal loading control. Thereafter, the
remaining lysate was immunoprecipitated with an anti-VEGFR-2 antibody. Subsequent Western blot analysis
revealed that VEGFR-2 and NP-1 formed fewer complexes in Synectin-deficient EC when compared with wild type
EC. G, comparative analysis of VEGF-induced ERK phosphorylation in wild type and Synectin-deficient EC. Early
passage (passage 3) arterial EC from wild type and Synectin-deficient mice were stimulated with VEGF 45 (25 ng/ml)
for the indicated time points. Thereafter, the cells were lysed, and equal aliquots were run on parallel gels. Blotted
gels were probed with phospho-ERK and ERK antibodies, respectively (1:1000; Cell Signaling). ERK phosphorylation
following VEGF stimulation was reduced in Synectin-deficient EC when compared with EC isolated from wild type mice.
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more than 25 receptors and adhe-
sion molecules including the
GTPase-activating protein RGS-
GAIP (regulator of G-protein sig-
naling G, interaction protein) (22),
the receptor tyrosine kinases TrkA
and TrkB (23, 24), and the integrin «
6A subunit (25). A recent report has
established an essential role of Synec-
tin for developmental and adult for-
mation of arteries (15). Given that
Synectin is expressed in all cells and
tissues, the arterial phenotype of Syn-
ectin-deficient mice suggested an
involvement of one or more arterial
EC selectively expressed interaction
partners. The identified contribution
of the PDZ-binding domain of NP-1
in VEGFR-2-NP-1 complex forma-
tion and the established arterial-spe-
cific expression of NP-1 (3) strongly
suggested that Synectin may play a
direct role in VEGFR-2-NP-1 com-
plex formation. To test this hypothe-
sis, HUVEC were transfected with
siRNA to silence endogenous Synec-
tin expression. Silencing of Synectin
expression was confirmed by
RT-PCR (Fig. 2D). Synectin-silenced
HUVEC were stimulated with
VEGF, ¢ for 30 min and lysed, and
VEGEFR-2 was probed by immuno-
precipitation and analyzed by West-
ern blot analysis. Silencing of Synectin
expression led to an apparent
decrease of VEGFR-2-NP-1 complex
formation (Fig. 2E). However, total
protein levels of VEGFR-2 were also
reduced (Fig. 2E), suggesting that
Synectin  silencing may affect
VEGER-2 expression. RT-PCR analy-
sis of VEGFR-2 mRNA expression
revealed that VEGFR-2 mRNA levels
were not affected, suggesting that
Synectin may play a role in the post-
transcriptional control of VEGFR-2
stability (Fig. 2D). This appeared to be
in contrast to a recent study demon-
strating no effect of Synectin on
VEGER-2 protein expression in endo-
thelial cells (26), although another
study has established a role of Syn-
ectin in the stabilization of insu-
lin-like growth factor I receptor
(27). Taken together, the experi-
ments suggested a role of Syn-
ectin for VEGFR-2-NP-1 complex
formation.
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Complex Formation of NP-1 and VEGFR-2 Is Dependent on
Synectin—To circumvent the limitations of the siRNA-medi-
ated Synectin silencing experiments, freshly isolated EC from
Synectin-deficient mice were used to study the role of Synectin
in complex formation between NP-1 and VEGFR-2. Synectin-
deficient EC expressed VEGFR-2 and NP-1 in similar abun-
dance as wild type EC (Fig. 2F). The difference between Synec-
tin-deficient EC and EC transfected with Synectin siRNA could
be due to long term compensatory effects. Co-immunoprecipi-
tation experiments upon stimulation with VEGF, ¢ in Synec-
tin-deficient EC when compared with wild type EC revealed
reduced VEGFR-2-NP-1 complex formation in mutant EC (Fig.
2F). Correspondingly, Synectin-deficient EC responded less to
VEGEF, 4, as evidenced by reduced ERK phosphorylation fol-
lowing short term stimulation with VEGEF, 4 (Fig. 2G).

DISCUSSION

The data of this study support the concept that the extracel-
lular VEGF, ., ligand-bridging model between VEGFR-2 and
NP-1 is not sufficient to account for the complexity of VEGF
ligand interactions with the VEGF receptors and the neuropilin
co-receptors. Instead, the experiments provide conclusive evi-
dence for a functional cytoplasmic interaction between NP-1
and VEGER-2. The findings in Synectin-deficient mouse EC
establish a role of Synectin in the cytoplasmic contribution to
VEGFR-2-NP-1 complex formation and support, in combina-
tion with the data obtained in HUVEC and PAEC, an interde-
pendency model of complex formation and VEGFR-2 phospho-
rylation. The demonstration of a functional role of Synectin in
VEGFR-2-NP-1 complex formation also provides a mechanis-
tic model linking the arterial expression pattern of NP-1 (3)
with the arterial branching morphogenesis phenotype of Syn-
ectin-deficient mice (15).

The results of this study are the first to unambiguously
ascribe a distinct biochemical role to the cytoplasmic domain of
NP-1 and pave the way toward a novel understanding of the
VEGEFR-2 co-receptor role of NP-1. Future experiments will
need to decipher the contribution of extracellular and intracel-
lular VEGFR-2-NP-1 interactions to downstream signaling
events and endothelial function. Previous experiments have
already hinted at a functional role of the PDZ-binding domain
of NP-1. For example, silencing of NP-1 in zebra fish leads to
vascular malformations, which cannot be rescued by NP-1
mRNA lacking the last three amino acids of NP-1 (28). As such,
the identification of an intracellular association between
VEGFR-2 and NP-1 involving a Synectin bridge also suggests
that neuropilin vascular functions go beyond a simple enhancer
function of VEGER signaling.

Acknowledgment—We thank the Nikon Imaging Center at the Uni-
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