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Summary
Tandem mass spectrometry (MS/MS) experiments often generate redundant datasets containing
multiple spectra of the same peptides. Clustering of MS/MS spectra takes advantage of this
redundancy by identifying multiple spectra of the same peptide and replacing them with a single
representative spectrum. Analyzing only representative spectra results in significant speed-up of MS/
MS database searches. We present an efficient clustering approach for analyzing large MS/MS
datasets (over ten million spectra) with a capability to reduce the number of spectra submitted to
further analysis by an order of magnitude. The MS/MS database search of clustered spectra results
in fewer spurious hits to the database and increases number of peptide identifications as compared
to regular non-clustered searches. Our open source software MS-Clustering is available for download
at http://peptide.ucsd.edu or can be run online at http://proteomics.bioprojects.org/MassSpec.
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Introduction
Tandem mass spectrometry (MS/MS) experiments often generate millions of spectra that can
be used to identify thousands of proteins in complex samples. Analyzing such large datasets
poses a computational challenge. The most common computational approach is to search
spectra against a protein database [1,2,3,4,5,6]. However, even fast algorithms which employ
tag based [7,8,9] database filtration (used by InsPecT [5] and the Paragon algorithm [6]) or
two-pass database reduction (used by X!Tandem [3]), still reach a computational bottleneck
when analyzing millions of spectra against large protein databases, particularly when mutations
and unexpected post-translational modifications (PTMs) are considered.

Typically in MS/MS analysis, each mass spectrum in the dataset is searched against a sequence
database. At times this can be very inefficient since MS/MS datasets contain many
redundancies (it is common for peptides to get selected for fragmentation more than once
[10]). When mass spectra are collected from several runs, such redundancies can add up to
hundreds and even thousands of spectra from the same peptide. Instead of repeating the
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identification process for each spectrum, it can be beneficial to perform this process once and
apply the results to all similar spectra. Tabb et al., 2003 [10] demonstrated how clustering can
speed-up the analysis of single runs (though at the cost of losing some peptide identifications).
This approach was later improved with the MS2Grouper algorithm [11] which was able to
reduce the number of spectra that have to be searched by 20% with a reasonable trade-off of
just 1% reduction in number of peptides identified when run on datasets of ≈ 50000 spectra.
Beer et al., 2004 [12] developed the Pep-Miner clustering algorithm and applied it to datasets
of ≈ 500; 000 spectra. They demonstrated how clustering improves analysis by reducing the
runtime and generating additional peptide identifications. However, Pep-Miner (developed at
IBM) is not publicly available, and little information was given on its clustering performance.
Pep-Miner also relies on retention time prediction for clustering quality assurance, which can
be diffcult to calibrate when multiple MS runs are being clustered, unless the runs are carefully
aligned [15].

Recently, researchers have tried to adapt new algorithmic ideas, first developed in the context
of Internet and database clustering, to MS/MS clustering. Ramakrishnan et al., 2006 [14] and
Dutta and Chen, 2007 [15] proposed to use metric space embedding for MS/MS database search
and clustering. While these promising approaches offer a potential solution to the problem of
clustering very large datasets, the applications of these new ideas were illustrated only with a
related task of filtering candidates for database searches [14] or for clustering with relatively
small spectral datasets [15].

Due to the nature of MS/MS clustering, the choice of pre-processing parameters, measures of
spectral similarity, and construction of cluster representatives are no less important than the
speed of the clustering algorithm. For example, a fast clustering algorithm generating low-
quality clustered spectra (as compared to the quality of the non-clustered spectra) is not very
useful for MS/MS database searches. We developed a simple and effiective MS-Clustering
algorithm which is designed to rapidly process large MS/MS datasets (even in the excess of
ten million spectra), while insuring the high quality of the resulting clusters. MS-Clustering
reduces the number of spectra that have to be searched by up to 90% without reducing the
number of identified peptides and proteins (and in many cases even increasing the number of
identifications). The number of spectra identified when a clustered dataset is searched is much
higher than the number of identifications made with a standard search of non-clustered data
(for large datasets the number can be doubled). This increase can be attributed to many weak
spectra that do not get identified in a database search, but get identified indirectly with
clustering because “spectrum vs. spectrum” analysis has some advantages over the traditional
“spectrum vs. peptide” analysis. Particularly, it is diffcult to predict the intensities of peaks in
a theoretical spectrum (comparison with a theoretical spectrum is the basis of several MS/MS
database search algorithms). Often a spectrum will show higher similarity to another
experimental spectrum of the same peptide than it shows to the peptide’s predicted theoretical
spectrum. Thus, the spectrum can get identified via its cluster membership even though it does
not get identified in a database search (this principle of similarity between experimental spectra
is the basis for the spectral library approaches to peptide identifications [16,17,18,19,20,21]).
For this reason clustering also reduces the number of false database identifications with low-
quality spectra (a low signal-to-noise ratio is a leading cause of erroneous database
identifications). By joining together both high-quality and low-quality spectra of the same
peptide, we decrease the probability of making erroneous identifications as a result of searching
the low-quality spectra separately.

Another benefit of clustering is that it can help focus a researcher’s efforts when selecting
candidates for advanced time-consuming searchers. For example, while it is possible to identify
spectra of peptides with mutations, single amino acid polymorphisms, and unexpected PTMs
using “blind” PTM searches [22], such searches against large databases become rather time-
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consuming. By restricting this advanced search to the set of unidentified clusters, we can reduce
the computational time required for advanced analysis. Finding large unidentified clusters can
also point us to interesting cases that are not identified in existing database searches such as
programmed frameshifts or DNA sequencing errors [23].

Materials and Methods
MS/MS Datasets

We used three MS/MS datasets generated from samples of different organisms to analyze our
algorithm’s performance (see references for complete details on the protocols used to generate
the data).

• Human [24] - 11.4 million spectra from 14 runs from samples of the HEK293 cell
culture. Spectra were acquired on an LTQ linear ion trap tandem mass spectrometer.
The sequence database used to identify proteins was human IPI (version 3.18, 26.7M
amino acids). In addition to performing experiments on all 14 runs, we selected a
single run (793000 spectra) and a subset of five runs (4 million spectra) for our
experiments, in order to evaluate how increasing the number of runs affects the
clustering and identification performance.

• Shewanella [25,23] - 14.5 million spectra from multiple samples of Shewanella
oneidensis MR-1. The majority of the spectra were generated on ion-trap mass
spectrometers, while approximately 2 million mass spectra generated by an FT-ICR
mass spectrometer. The sequence database used to identify proteins was downloaded
from NCBI (release 20070113, 1.45M amino acids).

• Dictyostelium [26] - 1.4 million spectra from samples of light-chain, heavy-chain,
and un-defined cells of Dictyostelium discoideum, acquired on an LTQ linear ion trap
tandem mass spectrometer. The sequence database used to identify proteins was
downloaded from Dicty-base.org (release 20060828, 7.36M amino acids).

• Yeast [27] - 179377 spectra from samples of Saccharomyces cerevisiae, acquired on
an LCQ-Dexa XP ion-trap mass spectrometer. We used 3 small runs with different
experimental settings: nanoLC-LC MS/MS (MudPIT), nanoLC-MS/MS with gas
phase fractionation by mass range selection, and nanoLC-MS/MS with gas phase
fractionation by ion abundance selection. The sequence database used to identify
proteins was downloaded from SGD (release 20070112, 4.94M amino acids).

Database Search
We used the InsPecT database search tool [5] to perform peptide identifications (release
20070613), using the default search parameters (precursor mass tolerance 2.5 Da, fragment
ion tolerance 0.5 Da). All searches were performed using a shuffled decoy database. When
computing Inspect F-scores, the files from each experiment were pooled together (rather than
analyzing them in a run-by-run fashion). The InsPecT F-score threshold values for accepting
identifications were selected to ensure a true positive peptide identification rate of 98% (i.e.,
only 2% of the peptide hits came from the decoy database).

Filtering MS/MS Datasets
Large MS/MS datasets contain many low-quality spectra that cannot result in reliable peptide
identifications [28,29]. Typically, when a whole MS/MS dataset is searched, only a small
fraction of the spectra (less than 20%) get identified. Many low-quality spectra have
characteristics that distinguish them from identifiable spectra (lack of complimentary b/y peak
pairs, lack of peptide sequence tags, etc.) which can be used by classification algorithms to
identify these spectra [28,30,29,31]. Removing such spectra is beneficial to clustering
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performance since it reduces the number of spectra that undergo pairwise comparisons.
Furthermore, filtering reduces the number of clusters generated by the algorithm that get
submitted for further analysis. We performed spectral quality filtering as a pre-processing step
using our in-house software MS-Filter (available from http://peptide.ucsd.edu). MS-Filter uses
an approach similar to the one described in ref. [29] and complements it by charge selection,
and precursor mass correction. The filtering procedure typically requires ≈ 5 milliseconds per
spectrum. We ran all experiments with the default quality threshold values. Though filtering
can lead to the exclusion of some identifiable spectra (less than 0.5%, as benchmarked at the
default values), filtering can actually increase the identification rates for a given true positive
rate. For example, when searching a single run from the Human samples, filtering increased
the number of spectra, peptides, and proteins identified by approximately 0.7% (see Table 1).
The additional identifications can be attributed to the fact that when many low quality spectra
are removed by the filtering, the number of spurious hits to the decoy database is greatly
reduced. Thus for a given true positive rate, the score threshold required to accept an
identification is lower with a filtering dataset than it is with an unfiltering one.

MS-Clustering Algorithm
Our MS-Clustering algorithm is similar in several aspects to the Pep-Miner algorithm [12] but
has a number of optimization steps that enable analysis of over 10 million mass spectra (an
order of magnitude increase in the maximum number of analyzed spectra compared to the
results reported for Pep-Miner). The three major components of our approach are a spectral
similarity measure, a method for the selection of a cluster’s representative spectrum, and a
clustering algorithm itself.

Spectral Similarity
In order to cluster mass spectra we need to determine the similarity between them. We use the
normalized dot-product, which has previously been found to work well by several groups that
have approached similar problems [16,32,10,12,11,14,21,20]. See supplementary material for
a description of a fast implementation of spectral similarity and a peak intensity scaling
approach that is geared towards clustering applications.

Cluster Representatives
Our algorithm generates a single spectrum representative for each cluster with more than one
spectrum (singleton clusters use the spectrum itself as the cluster representative). Having a
single representative is beneficial in two ways. First, it reduces the number of spectral similarity
computations performed by the clustering algorithm (computing spectral similarity of a
candidate spectrum to a cluster requires only a comparison with the cluster’s representative
and not the individual cluster members). Second, a single cluster representative can be
submitted for the analysis and the results can be assigned to all cluster members.

Since “all spectra are not created equal”, it helps to select representative spectra with the highest
signal-to-noise ratio in the cluster or to come up with a virtual spectra with high signal-to-noise
ratio. Such spectra can have a significantly higher signal-to-noise ratio than typical spectra in
the clusters (see refs [12,34] and analysis in supplemental material). We examined several
methods for selecting a cluster’s representative and chose to use a consensus spectrum [11,
18,21,20] as the representative. The consensus spectrum is constructed by consolidating the
peaks of all spectra in the cluster. Each consensus peak is assigned a mass that equals the
weighted average of the joined peaks’ masses and an intensity that equals the sum of the peaks’
intensities. We discuss the details of our method for constructing a consensus spectrum in the
supplemental material and compare the quality of the consensus spectrum with other methods
for selecting a cluster representative.
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Clustering Algorithm
Many popular clustering algorithms such as k–means [35,36] require an advance knowledge
of the number of clusters that are being sought. However, the nature of MS/MS datasets
precludes the use of such algorithms since it is nearly impossible to “guess” the number of
clusters. Furthermore, the sheer size of MS/MS datasets makes this approach very time-
consuming. A better MS/MS clustering method is to use a “bottom-up” approach like
incremental hierarchical clustering [35,36], which would start with clusters containing single
spectra and build the clusters up by merging clusters with similar spectra.

Figure 1 describes a simple hierarchical clustering algorithm. The algorithm starts with the list
Clusters consisting of all elements as singletons. There are r rounds of clustering with a
decreasing similarity threshold τ. In each round the algorithm tries to merge pairs of elements
in Clusters with a similarity that exceeds the threshold τ. This is done by sequentially comparing
each cluster c in Clusters with the clusters preceding it in the list. If there exists a cluster c′ that
is similar to cluster c in Clusters (similarity exceeds the thresholdτ), the spectra in c are
appended to spectra in c′ and c is removed from the list of clusters (Figure 2). After r rounds,
the final set of clusters is returned by the algorithm. Applying the algorithm to clustering of
mass spectra is straightforward. The elements being clustered are the spectra themselves, and
the function used to determine cluster similarity is the spectral similarity which is applied to
the clusters’ representative spectra (these consensus spectra are continuously updated as
clusters are merged).

Our algorithm does not necessarily join clusters with maximum similarity, rather it joins the
first ones it encounters that have a similarity above the threshold τ. However, since the
algorithm consists of several rounds with decreasing similarity thresholds, it approximates the
hierarchical clustering’s gradual joining of clusters, in which the most similar clusters are
merged first. By using this heuristic approach we are able to reduce the number of spectral
similarity computations compared to traditional hierarchical clustering algorithms.

We employ additional heuristics that further reduce the number of similarity computations,
and alleviate the computational cost associated with performing the clustering in several
rounds. One heuristic we use is to restrict the similarity computations to pairs of spectra that
have at least one peak in common amongst the sets of the five strongest peaks in each spectrum.
Using this heuristic we can avoid 94.5% of the unnecessary similarity computations (i.e.,
computing the similarity between pairs of spectra from different peptides) while overlooking
only 2% of the pairs of spectra from the same peptides. The reduction in running time required
for similarity computations achieved with this heuristic is in par with the reductions reported
for metric space indexing [14] or local sensitive hashing [15]. Additional analysis of the
heuristics we use is given in the supplemental material.

Results
Clustering Performance

The performance of the clustering algorithm depends on the similarity threshold used to
determine if two spectra should be joined. A low threshold leads to large heterogeneous
clusters, while a higher threshold results into a larger number of smaller, but more homogenous
clusters. Table 1 contains the results of experiments we ran to examine the tradeoffs of using
different threshold values. A single run with 793000 spectra from the Human dataset was
clustered using varying similarity values between 0.35 and 1 (with a similarity threshold of 1
no clustering is effiectively performed). Different thresholds should be chosen depending on
the objective we wish to maximize. To maximize the number of spectra identified, we would
prefer a low threshold of 0.35–0.4 which generates large, but possibly corrupt clusters. Using
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threshold 0.75 maximizes the number of peptides and proteins identified (though at the expense
of generating a larger number of clusters). We found that the similarity threshold of 0.55 offers
both an increase in the number of identifications compared to the search of the non-clustered
data (14.8% more spectra, 0.2% more peptides and and 1.5% more proteins at the same 98%
rate of true positive peptide identifications), and also relatively efficient clustering (a reduction
of 57% to the number of spectra submitted to database search).

Table 2 breaks down the identifications of spectra, peptides and proteins made in the searches
described in Table 1. When we examine the differences between the identifications made by
searching the clustered and non-clustered data we find that even when high similarity
thresholds are used, there are differences in the sets of identifications made by the two searches
(though the majority of identifications are common to both). One reason why some spectra are
identified only in the clustered search is that clustering greatly reduces the number of spurious
hits made to the decoy database. Many weak spectra are removed from the MS/MS database
search, since they cluster with stronger spectra. Consequently, this results in a smaller number
of spectra that have spurious hits to the database, which leads to a lower F-score threshold for
accepting identifications at a given true positive rate. For example, to maintain a 98% true
positive peptide identification rate, spectra in the non-clustered data must have a minimal F-
score of 3.34 to be accepted while spectra in the clustered dataset need only 3.21. There are a
couple reasons why there are spectra that get identified only when searching the non-clustered
dataset. First, some of the identifiable spectra are filtering out due to low quality. Second, in
many cases, especially with large clusters, the consensus spectra can have a lower signal than
the best spectrum in the cluster, which can lead to it being missed (due to its lower score), while
some of the individual cluster members are good enough to be identified (see analysis in
supplementary material). In any case, starting from a similarity threshold of 0.55, the total
number of identifications (spectra, peptides, or proteins) made when searching a clustered
dataset is higher than the number achieved without clustering.

There are some cases where clustering improves the signal-to-noise ratio beyond the best
individual members’ which leads to new identifications. Figure 3 gives an example of a cluster
of three spectra of the peptide TGSVDIIVTDLPFGK along with the consensus spectrum
created from them (TGSVDIIVTDLPFGK comes from a protein sequence for which six
additional peptide hits were found). Because the consensus spectrum aggregates peaks from
the different spectra, it was able to accumulate peaks for 14 b/y-ions while the other spectra
have peaks for at most 13 b/y-ions. However, more important is the fact that the consensus
spectrum has a significantly stronger signal, explaining 67% of the spectrum’s intensity,
compared to between 49% (spectrum I) to 42% (spectrum III) explained intensity for the cluster
members. These factors gave the consensus spectrum an InsPecT F-score of 5.9 which was
suffcient to make a positive identification, while the other spectra fell short with scores between
−0.3 and 3.0. When searched with Mascot [2], the three spectra had Mowse scores of 19 and
below, while the consensus had a score of 31.

As the clustering similarity threshold increases, we witness a growing number of fragmented
clusters i.e., several distinct clusters containing spectra of the same peptide. Though this might
pose a slight increase in the computational cost since there are more spectra to analyze, cluster
fragmentation is not really a problem when MS/MS data is concerned. In fact, in many cases
attempting to create “optimal” clusters where all spectra of the same peptide fall into a single
cluster can be counterproductive. Even with fragmented clusters, clustering still offers a
significant reduction in the search time, so creating even larger clusters will only offer a modest
improvement from that respect. However, an attempt to group all spectra from the same peptide
into a single cluster may backfire since it may bring some noisy and unrelated spectra into the
cluster yielding a noisier consensus spectrum. This can lower the number of peptides that
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ultimately get identified. In our experiments, a larger number of peptides and proteins were
identified when we use a larger number of tighter clusters (data not shown)

In many cases fragmented clusters stem naturally from the variation observed between different
experimental spectra of the same peptide [37]. Figure 4 shows two clusters of spectra of the
same peptide VDDPNAEDKR that were not grouped together into a single cluster (three
spectra are shown from each cluster). All spectra were identified confidently both by InsPecT
(average InsPecT F-scores for the spectra in cluster I was 8.1 and 4.2 for the spectra in cluster
II), and Mascot (average Mascot Mowse score of 74 for the spectra in cluster I and 52 for
cluster II). There are several differences in the fragmentation patterns between the spectra of
the two clusters, the most notable difference being that in cluster I the strongest peak is the
doubly charged y8 and the b5 is very weak, while in cluster II b5 is the strongest peak in all
three spectra. The spectra in cluster II also contain some additional noise peaks not present in
cluster I. These differences were suffcient to cause MS-clustering not to join these two clusters.
This example exposes a possible vulnerability of spectral libraries that use a single consensus
spectrum for each peptide. If the consensus spectrum is created using examples of only one of
the variants (e.g., cluster I), it is likely that spectra from the other variant (cluster II) will not
be similar enough to the consensus spectrum to be identified when they are searched against
the library.

Database Searches With Clustered MS/MS Datasets
We tested our clustering algorithm with samples of varying sizes from four different organisms.
Each dataset was searched in two methods:

1. Non-clustered - regular search of complete MS/MS dataset.

2. Clustered - a search of the consensus spectra generated by MS-Clustering using the
default settings (r = 3 rounds, a similarity threshold of τmin = 0:55).

Table 3 holds statistics on the sizes of the MS/MS datasets and the sequence databases, along
with the running time required for the clustering and database searches and the total speed-up
achieved by clustering. Table 4 holds statistics on the spectra, peptides and proteins that were
identified in the experiment.

Searching a clustered dataset typically resulted in a 2×–6× speed-up in running time. Note that
the database search we performed was a basic search that did not consider PTMs. With more
complex searches, the speed-up achieved with clustering would be closer to the ratio in which
clustering reduced the number of spectra submitted to analysis (10× in the case of the
Shewanella dataset, see Table 4). In all cases, searching clustered datasets yielded a larger
number of spectrum identifications than the non-clustered data. It ranged between a modest
9.6% gain (with the yeast samples) to almost 100% gain with the 14 runs from the human
sample. This increase was achieved despite the fact that the number of cluster consensus spectra
that were submitted for analysis was six times smaller than the original dataset size. Searching
clustered datasets generally increased the number of peptide and protein identifications,
especially with the larger datasets, while the smaller datasets tended to display slight loss in
the number of identifications.

The results in Table 4 illustrate an important and often neglected point that needs to be
addressed when analyzing large MS/MS datasets using a decoy database. The score thresholds
for spectra must be computed using the entire set of search results. Though it might be tempting,
especially from a computational standpoint, to determine p-values or F-scores independently
for portions of the dataset (e.g., analyzing each run independently when the data is collected
from the instrument), this will inadvertently lead to more false positives than expected. The
main culprit is that repeated runs of the same sample are highly dependent, with many of the

Frank et al. Page 7

J Proteome Res. Author manuscript; available in PMC 2009 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



peptide identifications appearing in multiple runs. This leads to a log-like discovery curve of
new peptides (searching 14 runs instead of single run only tripled the number of peptide
identifications obtained with the Human data). However, the false identifications are more
diverse between runs (since they are spurious database hits generally occurring with lower
quality spectra). Thus the growth rate of false identifications accumulated when results of
multiple runs are combined is greater than the growth rate of correct peptides. This observation
is illustrated well in the results for the human samples in Table 4. When searching a single run
from the human sample, the F-score threshold needed for 98% true positive peptide
identifications was 3.34. With this threshold 86682 of the 793000 spectra (10.9%) were
identified in the non-clustered search. When the results of the 14 runs from the human sample
were pooled together, in order to achieve a similar rate of 98% the F-score threshold had to be
raised to 3.74. With this higher threshold only 815764 of the 11.4 million spectra were
identified (7.2%). Had we used the score threshold of 3.34 with the 14 runs, we would have
identified 1.32 million spectra, however the peptide accuracy rate would have been only 95.9%.

Our clustering experiments support the common view that the existing peptide identification
approaches do not identify many spectra in MS/MS datasets. Of the 11.4 million spectra from
the human dataset submitted for clustering, 5.6 million passed the spectral quality filtering and
ended up being grouped into 1.85 million clusters (see Table 5). Only 267492 of these clusters,
containing 1.6 million spectra from the original non-clustered dataset were identified in the
database search. Thus the majority of the clusters (86.5%) and the majority of the spectra
(71.4%) remain unidentified after the database search. Table 5 also shows that there is a
significant difference between the distribution of cluster sizes in the entire dataset and the
distribution of sizes of the identified clusters, with the identified spectra on average belonging
to larger clusters. As we mentioned above, our algorithm is not aimed at producing the optimal
clustering (i.e., minimal number of clusters). On average, each of the 64318 identified peptides
has 4.16 clusters associated with it. It is interesting to note the large range of spectral counts
observed for the identified peptides. While most of the peptides have low spectral counts
(56.5% of the peptides have 1–5 spectra assigned to them), most of the identified spectra belong
to peptides with high redundancy (62.1% of the identified spectra belonged to 2223 peptides,
each with at least 100 spectra assigned to it).

Discussion
We presented a practical MS-Clustering algorithm capable of handling large datasets (over ten
million spectra) using a single desktop PC. MS-Clustering can lead to a tenfold reduction in
the number of spectra submitted to further analysis. With large datasets, searching clusters
often yields more peptide and protein identifications than a regular search without clustering
(see Table 4). These additional identifications can mostly be attributed to the fact that clustering
greatly reduces the number of low quality spectra that are submitted to analysis, which in turn
reduces the number of spurious database hits to the decoy database. When smaller datasets are
clustered (1 million spectra), clustering still gives 2–4 folds reduction in the number of spectra
that need to be analyzed, possibly with a small reduction in the number of peptides and proteins
identified (typically around 2%), it is not as useful for smaller datasets (below 0.5 million),
since this usually leads to some loss of peptide identifications.

Since clustering is usually much faster than a database search, reducing the number of spectra
that need to be submitted for analysis leads to a significant reduction in the running time (see
Table 3). Another benefit of clustering is its ability to single out interesting cases of unidentified
spectra that are worthy of further examination. For instance, spectra of peptides with mutations
and unexpected PTMs require time-consuming advanced search techniques. Instead of
scattering the resources on examination of all unidentified spectra in the dataset (which
typically involves the majority of the spectra), we can focus the efforts on the large unidentified
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clusters which represent the most likely candidates for these interesting peptides. This way we
can afford to apply more time-consuming searches to a smaller set of high quality candidates
(consensus spectra of large clusters have a high signal-to-noise ratio). In an essence, if searching
for these atypical peptides is analogous to searching for a needle in a haystack, clustering can
be used to reduce the haystack to an amenable size. Such a reduction can make the application
of time-consuming analysis methods such as “blind” PTM searches computationally feasible
even for large scale projects with tens of millions of spectra. When we applied clustering to a
large 14.5 million spectra dataset, we were able to reduce the number of unexplained spectra
left for further examination by over 10-folds (see supplemental material for more details).

With the increasing amount of experimental data being collected and validated, spectrum
libraries of identified mass spectra are emerging as a viable method for peptide identification
[16,17,18,19,21,20]. Spectral libraries contain spectra derived from clusters of spectra from
previously identified peptides that are compared with the query spectrum to determine a match.
The main drawback of spectrum libraries is that they are not applicable to spectra of previously
unidentified peptides. We propose to extend the notion of spectral libraries by introducing
spectral archives 1 that contain clusters of unidentified spectra as well. Recently proposed
spectral network approach allows one to identify uninterpreted spectra using other
uninterpreted spectra (as opposed to using a database) thus opening a possibility to use spectral
archives for peptide identifications. Clustering can be viewed as an instrument for constructing
spectral archives that can be further interpreted via spectral networks and shotgun protein
sequencing [34,33].

When examining the details of our clustering algorithm we note that it takes a heuristic
approach, and thus might not deliver optimal” clustering. However, in the mass spectra domain,
the payoff for having optimal clustering (as compared to suboptimal) is not high. Often times,
clusters get split due to natural variation observed in different instances of spectra of the same
peptide. There is no significant advantage to minimizing cluster fragmentation. Whether we
have a minimal number of clusters or a slightly larger number, it still represents large savings
in time compared to the case when no clustering is performed at all (see Table 4). Furthermore,
there can be advantages to having several small but more homogenous clusters instead of one
larger and more diverse cluster. It is more likely that the peptide in question will get identified
at least once when searching several consensus spectra of tighter homogeneous clusters,
compared to the case where we have only a single consensus spectrum from a large and noisier
cluster.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A pseudocode description of the approximate hierarchical clustering algorithm used by MS-
Clustering.
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Figure 2.
Illustration of cluster appending. The set Clusters is a linked list where each element is a list
of spectra. When the algorithm merges cluster c with a preceding cluster c′ it appends the list
of spectra in cluster c to the list of spectra in cluster c′ and then removes the entry for c from
the linked list of clusters.
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Figure 3.
Example of cluster for the peptide TGSVDIIVTDLPFGK. A cluster of three spectra is shown
along with the consensus spectrum that was created from them. For each spectrum the InsPecT
score is shown, along with the number of identified b/y-ions and the percentage of the
spectrum’s intensity that is explained by the peptide’s fragment ions. Only the consensus
spectrum had a suffciently high score to be positively identified in the database search using
InsPecT. All spectra have a precursor charge 2 with precursor m/z errors below 1 Da. The
figures’ x-axes represents the fragments’ m/z values and the y-axes represents the intensities.
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Figure 4.
Fragmented clusters. Spectra of the peptide VDDPNAEDKR from two clusters that were not
joined are shown (the figure contains 3 spectra from each cluster, originally cluster I contained
6 spectra and cluster II contained 4 spectra). The figures’ x-axes represents the fragments’ m/
z values and the y-axes represents the intensities.
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