

J Am Chem Soc. Author manuscript; available in PMC 2008 September 10

Published in final edited form as:

J Am Chem Soc. 2005 December 14; 127(49): 17180–17181. doi:10.1021/ja055968f.

# Palladium-Catalyzed Asymmetric Allylic $\alpha$ -Alkylation of Acyclic Ketones

Barry M. Trost\* and Jiayi Xu

Department of Chemistry, Stanford University, Stanford, California 94305-5080

#### **Abstract**

$$R_1 = \text{aryl, vinyl, or alkyl}$$

$$R_2 = \text{alkyl}$$

$$R_1 = R_2 \text{ up to 99\% Yield up to 98\% ee}$$

$$R_1 = R_1 = R_2 \text{ up to 98\% ee}$$

The first example of Pd-catalyzed asymmetric allyl alkylation of the conformationally non-rigid acyclic ketone enolates is reported with excellent yields, regioselectivity and enantioselectivity. The double bond geometry of the allyl enol carbonates affects its reactivity, selectivity as well as the absolute configuration of the products. An opposite enantioselectivity from what is predicted by a direct attack of the enolate on the allyl moiety of the  $\pi$ -ally-Pd complex was observed. An alternative mechanism was proposed, which involves an inner sphere process of coordination of the enolate to Pd followed by reductive elimination.

Regio- and stereoselective formation of new carbon-carbon bonds is a fundamental problem in synthetic organic chemistry. One of the important C-C bond formation reactions is the  $\alpha$ -alkylation of ketone enolates. However, metal catalyzed asymmetric alkylation of unstabilized ketone enolates remains one of the most challenging reactions because the enolate equilibration during the reaction can lead to loss of regio-selectivity, polyalkylation, and in the case of creating tertiary centers, racemization of product. While there has been some recent progress in the case of cyclic ketones, to our knowledge there are no examples of asymmetric alkylation of the conformationally non-rigid acyclic ketones, in which the specific issue of the relationship of enolate geometry to asymmetric induction must be addressed. Herein, we report the first such examples and some mechanistic insights.

We initially selected ligand 1 and  $Pd_2(dba)_3CHCl_3$  2 to catalyze the reaction of (*Z*)-allyl 1-phenylprop-1-enyl carbonate 3 in toluene at ambient temperature (Table 1). The reaction went to completion in 3 h and led to alkylated product 4 in 68% yield and 75% ee. The by-products detected by GC were ketone 5 and dialkylated product 6 in 24% and 4% yield respectively. Changing the solvent to THF increased the ee value of the product to 88% but did not improve the yield. One the other hand, improvement occurred by switching to 1,4-dioxane: only 6% of 5 and no dialkylated product were detected by GC. The ee of 4 also increased to 94%. These results are significantly superior to those using dppe or dppb as ligand (Table 1 entry 4, 5 and 6). Thus, proton transfer is significantly eliminated by using our chiral ligand in 1,4-dioxane.

The reaction scope is summarized in Table 2. In general, excellent yields and ee's were obtained for various aromatic ketones. While the reaction can tolerate a broad range of substitution groups on the aromatic ring, some electronic effect was observed. Substrates bearing more electron-rich aromatic ring (entries 10, 13) had better enantiomeric excess (98%) than those possessing more electron-deficient aryl rings (entry 11, 73% and 12, 82%). The length of the alkyl chain at  $R_2$  does not affect the results of the reaction (entries 2 and 3). However, an  $\alpha$ branched group significantly slows the reaction and decreases the ee (entry 4). The yield and ee was restored in the case of a  $\beta$ -branched  $R_2$  (entry 5). Replacing the aryl ring by a vinyl group retained an excellent yield and high enantiomeric excess (entries 17 and 18). In the challenging case of the unsymmetrical aliphatic ketones such as 7 where  $R_1$  = cyclohexyl and  $R_2$  = methyl (Scheme 1), no loss of regioselectivity was observed in both the E- and Z- enol carbonates, <sup>5</sup> although the Z isomer reacted more sluggishly and had a lower ee (60%) than the aromatic (entry 1, 94%) or enone (entry 17, 88%) cases even though the steric size of these three R<sub>1</sub> groups should be close. This may suggest that the enantio-recognition step involves not only steric effects of  $R_1$  and  $R_2$ , but also some electronic effects such as  $\pi$ -stacking interactions between the substrate and the ligand.

By using (E)-allyl 1-cyclohexyl-1-propenyl carbonate (Scheme 1) as the substrate, we can generate the corresponding mono-allyl alkylated aliphatic ketone in almost quantitative yield exclusively as one regioisomer in 97% ee. The double bond geometry of the enol carbonate 7 controls not only the enantiomeric excess but also the configuration of the resulting ketone (see Scheme 1). The double bond geometry also affects the reaction rate. Thus, E-7 was more reactive that its Z isomer. The same effect was also observed in the case of 1-mesityl-1-propenyl carbonate (entry 15 and 16); the reaction of E-isomer went to completion in 6 h with a quantitative yield and 96% ee but only trace amount of product was detected in 16 h for the Z-isomer.

The absolute configuration of **4** was determined to be *S*- by Pd-CaCO<sub>3</sub> catalyzed hydrogenation of the C=C double bond and comparison of the optical rotation of the product with the known enantiomer. This result conflicts with the model of intermolecular nucleophilic attack of the enolate on the  $\pi$ -allyl-Pd complex possessing ligand **1**, by which the *R*- enantiomer is preferred. The same conflict was found in our previous studies. In the case of allylenol carbonate, since the  $\pi$ -allyl-Pd cation is the only counterion of the *in situ* generated enolate, it is likely that there is coordination between the enolate and palladium. According to the work of Hartwig et al, either C- or O-bound arylpalladium enolates, can undergo reductive elimination to generate the corresponding  $\alpha$ -aryl ketones. Therefore, under our reaction conditions, a reasonable explanation invokes a shift of mechanism from a direct attack of the enolate on the allyl moiety to an inner sphere process of coordination and reductive elimination (Scheme 2).

The distinctive solvent effect in favor of 1,4-dioxane may be explained by the fact that it is much better in forming solvent caged contact ion pairs than THF. The proton sources in the bulk solution, mainly the mono-alkylated product itself or trace amounts of water, may react more slowly in 1,4-dioxane relative to collapse to product, so that very little proton transfer occurs between the enolate and these proton sources. The conjecture is supported by the reaction of 3 in 1,4-dioxane in the presence of one equivalent of dimethyl methylmalonate, dimethyl malonate or acetylacetone. The reaction with dimethyl methylmalonate was identical to the control. A small amount (9%) of dimethyl allylmalonate was detected in the run with dimethyl malonate and the yield of by-product 5 slightly increased to 10%, but the ee of the reaction remained high (93%) (entry 2). In entry 3 high yields of 5 (83%) and allyl acac (91%) were detected with the loss of yield (17%) and ee (81%) of the product 4. A similar trend was observed in THF with the addition of a significant amount of diallyl acac also being observed. With the increase of the acidity of the additive, the ability to intercept the solvent caged contact ion pair relative to collapse to 4 increases. Thus the amount of byproducts increases.

In summary, we report the first palladium catalyzed asymmetric  $\alpha$ -allyl alkylation of acyclic ketones. The reaction proceeds under very mild conditions and generates an  $\alpha$ -tertiary stereogenic center with excellent yield, regio-selectivity and enantiomeric excess. Based on our experimental results we propose an intramolecular mechanism involving an inner sphere reductive elimination, quite distinct from the usual behavior of  $\pi$ -allyl-Pd complexes. Further investigation of the mechanism and the application of the reaction in organic synthesis are underway.

## **Supplementary Material**

Refer to Web version on PubMed Central for supplementary material.

#### **Acknowledgements**

We thank the National Science Foundation and National Institutes of Health, GM13598, for their generous support of our programs. Mass Spectra were provided by the Mass Spectrometry Regional Center of the University of California-San Francisco, supported by the NIH Division of Research Resources.

## References

- 1. Caine, D. Comprehensive Organic Synthesis: Carbon-Carbon σ-bond formation. Trost, BM.; Fleming, I., editors. 3. Pergamon; New York: 1991.
- 2. House, HO. Modern Synthetic Reactions. 2. Benjamin, W. A; Menlo Park, CA: 1972. p. 492-628.
- a. Trost BM, Xu J. J Am Chem Soc 2005;127:2846. [PubMed: 15740108]
   b. Behenna DC, Stoltz BM. J Am Chem Soc 2004;126:15044. [PubMed: 15547998]
   c. Kazmaier U. Curr Org Chem 2003;7:317.
- 4. Polyalkylation was found in other substrates. See Tsuji J, Yamada T, Minami I, Nisar M, Shimizu IJ. Org Chem 1987;52:29–88.Shimizu I, Minami I, Tsuji J. Tetrahedron Lett 1983;24:1797.
- 5. Masamune S, Ellingboe JW, Choy W. J Am Chem Soc 1982;104:5526.
- 6. Baldwin JE, Patrick JE. J Am Chem Soc 1971;93:3556.
- Trost BM, Schroeder GM. J Am Chem Soc 1999;121:6759. Trost BM, Schroeder GM. Chem Eur J 2005;11:174.
- 8. Culkin DA, Hartwig JF. J Am Chem Soc 2001;123:5816. [PubMed: 11403622]
- 9. Hogen-Esch TE, Smid J. J Am Chem Soc 1965;87:669.

Pd<sub>2</sub>(dba)<sub>3</sub>CHCl<sub>3</sub>, 1  
Dioxane, 23 °C, 16 h  
72% yield, 60% ee 
$$[\alpha]_D^{22} = +18.0 \text{ (c} = 2.25, \text{ CH}_2\text{Cl}_2)$$
  
Pd<sub>2</sub>(dba)<sub>3</sub>CHCl<sub>3</sub>, 1  
Dioxane, 23 °C, 2h  
94% yield, 97% ee  $[\alpha]_D^{22} = -30.8 \text{ (c} = 2.25, \text{ CH}_2\text{Cl}_2)$ 

**Scheme 1.** Double bond geometry controls the configuration and enatiomeric excess of product.



Scheme 2. Model for the enantioselectivity of 4.

**Scheme 3.** Proposed mechanism for the reaction.

Trost and Xu

Selected Optimization Studies.<sup>a</sup>

| -<br>O= |                                                                                         | —<br>9  |    |                                    |          |
|---------|-----------------------------------------------------------------------------------------|---------|----|------------------------------------|----------|
| 0=      | + + + + + + + + + + + + + + + + + + + +                                                 | ĸ       |    |                                    |          |
| O=      |                                                                                         | 4       |    |                                    |          |
| 1       | Pd <sub>2</sub> (dba) <sub>3</sub> CHCl <sub>3</sub> <b>2</b><br>Ligand, solvent, r. t. |         | ZI | PPh <sub>2</sub> Ph <sub>2</sub> P | (R, R)-1 |
|         |                                                                                         | es<br>) |    |                                    |          |
|         |                                                                                         |         |    |                                    |          |

| 4 T T T T T T T T T T T T T T T T T T T | 14<br>13           | 6       |
|-----------------------------------------|--------------------|---------|
| 24<br>25<br>6                           | 24<br>20           | 38      |
| 68(75%)<br>61(88%)<br>94(94%)           | 61 67              | 53      |
| 3 h<br>1 h<br>30 min                    | 10 min<br>10 min   | 3 h     |
| Toluene<br>THF<br>Dioxane               | Dioxane<br>Dioxane | Toluene |
|                                         | Бррь               | Dppb    |
| 3 2 -                                   | 4 %                | 9 0     |

yield% of 6

yield% of 5

yield% (ee) of 4

solvent

Ligand

<sup>a</sup>Unless otherwise indicated, all reactions were performed at 23 °C on a 0.3 mmol scale at 0.1 M using 2.5 mol% 2 and 5.5 mol% ligand; yields are determined by quantitative GC analysis using decane as internal reference; ee of 4 was determined by chiral HPLC on a Chiralcel@OD-H column eluted with 2000:1 heptane: 2-proanol.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

| R <sub>1</sub> R <sub>2</sub> R <sub>3</sub> R <sub>4</sub> R <sub>4</sub> R <sub>4</sub> R <sub>4</sub> R <sub>5</sub> R <sub>4</sub> R <sub>4</sub> R <sub>5</sub> R <sub>5</sub> R <sub>4</sub> R <sub>5</sub> R <sub>4</sub> R <sub>5</sub> | R <sub>1</sub> R <sub>2</sub> R <sub>3</sub> R <sub>4</sub> R <sub>4</sub> R <sub>4</sub> R <sub>5</sub> R <sub>4</sub> R <sub>5</sub> R <sub>5</sub> R <sub>6</sub> R <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o≕                     | \                  |                                       |             | O=         |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|---------------------------------------|-------------|------------|-------------------------|
| Holioxane, r. t. R <sub>2</sub> R <sub>1</sub> R <sub>2</sub> R <sub>3</sub> R <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The Ph R <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 (                    | Pd <sub>2</sub> (0 | Jba) <sub>3</sub> CHCl <sub>3</sub> 2 | <u>م</u>    |            |                         |
| R₁         R₂         Z/E⁰         time         yield           Ph         Ha         Nae         >88/2         2 h         94%           Ph         C <sub>3</sub> H₁         >88/2         2 h         94%           Ph         C <sub>3</sub> H₁         >98/2         16 h         94%           Ph         C <sub>4</sub> H₁         >98/2         1 h         90%           Ph         CH₂Ph         >98/2         1 h         90%           Ph         Me         >98/2         1 h         90%           A:-Cl-Ph         Me         >98/2         1 h         94%           A:-Cl-Ph         Me         >98/2         1 h         94%           A:-Cl-Ph         Me         >98/2         1 h         95%           Pyridy         Me         >98/2         1 h         95%           Puryl         Me         >98/2         1 h         95%           A:-Cl-Ph         Me         >98/2         1 h         95%           Puryl         Me         >98/2         1 h         95%           A:-Cl-Ph         Me         >98/2         1 h         94%           A:-Cl-Ph         Me         >98/2         1 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R₁         R₂         Z/E⁰         time         yield           Ph         We         >98/2         2 h         94%           Ph         Et         >98/2         2 h         94%           Ph         C <sub>3</sub> H <sub>11</sub> >98/2         16 h         93%           Ph         C <sub>4</sub> H <sub>11</sub> >98/2         1 h         93%           Ph         CH <sub>2</sub> Ph         >98/2         1 h         90%           Ph         CH <sub>2</sub> Ph         >98/2         1 h         90%           A: ClPh         Me         >98/2         1 h         90%           A: ClPh         Me         >98/2         1 h         94%           A: Me-Ph         Me         >98/2         1 h         94%           A: Middle         A: Me         >96/2         1 h <th><br/><math>R_1</math> <math>R_2</math></th> <th><b>,</b></th> <th>oloxane, r. t.</th> <th>-</th> <th>−ଝୁ</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>$R_1$ $R_2$        | <b>,</b>           | oloxane, r. t.                        | -           | −ଝୁ        |                         |
| Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ph         Me         >98.2         2 h         94%           Ph         Et         >98.2         2 h         94%           Ph         i-Pr         >98.2         16 h         94%           Ph         i-Pr         >98.2         16 h         94%           Ph         i-Pr         >98.2         1 h         75%           Ph         Me         >98.2         1 h         90%           3·Cl-Ph         Me         >98.2         1 h         97%           4·Br-Ph         Me         >98.2         1 h         94%           4·Br-Ph         Me         >98.2         1 h         94%           4·Br-Ph         Me         >98.2         1 h         95%           4·Br-Ph         Me         >98.2         1 h         95%           Ards-Ph         Me         >98.2         1 h         94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbf{R}_1$         | $\mathbf{R}_2$     | $Z/\mathrm{E}^b$                      | time        | yield      | ee                      |
| Ph C <sub>3</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ph C <sub>H</sub> + 988.2 2h 94% Ph i-Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ph                     | Me                 | >98/2                                 | 2 h         | 94%        | 94%                     |
| Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ph (Ph Figh 1982) Ph (CH <sub>2</sub> Ph 9882) Ph (Ph 9982) Ph (Ph Ph Ph Ph 9982) Ph (Ph Ph Ph Ph 9982) Ph (Ph Ph Ph Ph Ph 9982) Ph (Ph Ph Ph Ph Ph Ph 9982) Ph (Ph Ph P | Ph<br>Ph               | Et C, H;           | >98/2                                 | 2 h<br>16 h | 94%<br>93% | 94%<br>92% <sup>C</sup> |
| Ph CH <sub>2</sub> Ph >98/2 1h 75%  Me >98/2 1h 90% 2-F-Ph Me >98/2 1h 90% 3-CI-Ph Me >98/2 1h 97% 3-CI-Ph Me >98/2 1h 97% 3-CI-Ph Me >98/2 1h 99% 3-CI-Ph Me >98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ph CH₂Ph >98/2 1h 75%  2-F-Ph Me >98/2 1h 90%  3-CI-Ph Me >98/2 1h 90%  3-CI-Ph Me >98/2 1h 97%  4-Br-Ph Me >98/2 1h 99%  4-Mo-Ph Me >98/2 1h 99%  4-NO₂Ph Me >98/2 1h 99%  4-NO₂Ph Me >98/2 1h 99%  4-NO₂Ph Me >98/2 1h 99%  4-NO₃Ph Me >98/2 1h 99%  Amesiyl Me >98/2 2h 94%  Mesiyl Me >98/2 5h 99%  Mesiyl Me >98/2 5h 99%  Mesiyl Me >98/2 5h 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ph                     | i-Pr               | >98/2                                 | 24 h        | 30%        | 32% <sup>c</sup>        |
| 2-F-Ph  Me  >98/2  2-F-Ph  Me  >98/2  1 h  90%  3-CI-Ph  Me  >98/2  1 h  97%  97%  97%  1 h  99%  -OMe-Ph  Me  >98/2  -OMe-Ph  Me  >98/2  -OMe-Ph  Ade  -OMe-Ph  99%  -OMe-Ph  99%  -OMe-Ph  99%  -OMe-Ph  90%  -OMe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-F-Ph  Me  >98/2  2-F-Ph  Me  >98/2  1 h  90%  3-CI-Ph  Me  >98/2  1 h  97%  97%  3-CI-Ph  Me  >98/2  1 h  99%  -0Me-Ph  Me  >98/2  1 h  99%  -0Me  -0Me  >98/2  -0Me  -0Me  >98/2  -0Me  -0M                                         | Ph                     | $CH_2Ph$           | >98/2                                 | 1 h         | 75%        | 88%                     |
| 2-F-Ph Me >98/2 1h 80%  2-(F-Ph Me >98/2 1h 97%  Me >98/2 1h 94%  Me >98/2 1h 94%  -OMe-Ph Me >98/2 1h 94%  -OMe-Ph Me >98/2 1h 99%  Furyl Me >98/2 1h 83%  -(CF <sub>3</sub> -Ph Me >98/2 2h 99%  Mesiryl Me >98/2 2h 99%  Mesiryl Me >98/2 5h 99%  Me >98/2 25/1 0.3h 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-F-Ph Me >98/2 1h 80% 3-(2-P-Ph Me >98/2 1h 97% Me >98/2 1h 94% Me >98/2 1h 94% Me >98/2 1h 94% Me >98/2 1h 94% Me >98/2 1h 99% -\text{VN}_2-Ph Me >98/2 1h 83% -\text{VN}_2-Ph Me >98/2 2h 99% Mesiv  Me >98/2 2h 99% Mesiv  Me >98/2 5h 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ard the                | Me                 | >98/2                                 | 1 h         | %06        | %56                     |
| Me     >98/2     1h     80%       Me     >98/2     1h     94%       Me     >98/2     16h     99%       Me     >98/2     1h     95%       Me     >98/2     1h     83%       Me     >98/2     4h     89%       Me     >98/2     2h     94%       Me     59/2     6h     94%       Me     96/4     16h     trace       Me     >98/2     5h     94%       Me     25/1     0.3h     93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Me     >98/2     1h     80%       Me     >98/2     1h     94%       Me     >98/2     16h     99%       Me     >98/2     1h     95%       Me     >98/2     1h     83%       Me     >98/2     4h     89%       Me     >98/2     2h     94%       Me     598/2     6h     99%       Me     96/4     16h     trace       Me     >98/2     5h     94%       Me     25/1     0.3h     93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MeO                    |                    |                                       |             |            |                         |
| Me >98/2 1h 91/8 Me >98/2 1h 99/8 Me >98/2 16h 99% Me >98/2 1h 99% Me >98/2 1h 99% Me >98/2 1h 83% Me >98/2 2h 94% Me >98/2 2h 94% Me 96/4 16h trace Me >98/2 5h 94% Me >98/2 6h 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Me > 98/2 1h 91/8 Me > 98/2 1h 99/8 Me > 98/2 16h 99% Me > 98/2 1h 99% Me > 98/2 1h 99% Me > 98/2 1h 83% Me > 98/2 2h 94% Me > 98/2 2h 94% Me 96/4 16h trace Me > 98/2 5h 94% Me > 98/2 6h 99% Me > 25/1 0.3h 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2'-F-Ph                | Me                 | >98/2                                 | 1 h         | 80%        | 94%                     |
| Me >98/2 1h 94% Me >98/2 16h 99% Me >98/2 1h 95% Me >98/2 1h 83% Me >98/2 2h 94% Me >98/2 2h 94% Me 5/95 6h 99% Me 96/4 16h trace Me >98/2 5h 94% Me >25/1 0.3h 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Me       >98/2       1 h       94%         Me       >98/2       16 h       99%         Me       >98/2       1 h       95%         Me       >98/2       1 h       83%         Me       >98/2       2 h       94%         Me       5/95       6 h       94%         Me       96/4       16 h       trace         Me       >98/2       5 h       94%         Me       25/1       0.3h       93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3'-Cl-Ph               | We .               | >98/2                                 | ч.<br>Т.    | 97.6       | 93%                     |
| Me > 98/2 1h 95% Me > 98/2 1h 83% Me > 98/2 1h 89% Me > 98/2 2h 94% Me 5/95 6h 99% Me 96/4 16h trace Me > 98/2 5h 94% Me > 25/1 0.3h 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Me >98/2 1h 95% Me >98/2 1h 83% Me >98/2 2h 94% Me >98/2 2h 94% Me >96/4 16h trace Me >98/2 5h 99% Me >98/2 5h 99% Me >25/1 0.3h 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4'-Br-Ph<br>2' OM° Bh  | Me                 | >98/2<br>>08/3                        | 1 h         | 94%<br>99% | 93%                     |
| Me         >98/2         1 h         83%           Me         >98/2         4 h         89%           Me         >98/2         2 h         94%           Me         5/95         6 h         94%           Me         96/4         16 h         trace           Me         >98/2         5 h         94%           Me         25/1         0.3h         93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Me         >98/2         1 h         83%           Me         >98/2         4 h         89%           Me         >98/2         2 h         94%           Me         5/95         6 h         94%           Me         96/4         16 h         trace           Me         >98/2         5 h         94%           Me         25/1         0.3h         93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pyridyl                | Me                 | >98/2                                 | 1.h         | %26        | 98%<br>73% <sup>C</sup> |
| Me         >98/2         4 h         89%           Me         >98/2         2 h         94%           Me         5/95         6 h         99%           Me         96/4         16 h         trace           Me         >98/2         5 h         94%           Me         25/1         0.3h         93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Me         >98/2         4 h         89%           Me         >98/2         2 h         94%           Me         5/95         6 h         99%           Me         96/4         16 h         trace           Me         >98/2         5 h         94%           Me         25/1         0.3h         93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3′-NO <sub>2</sub> -Ph | Me                 | >98/2                                 | 1 h         | 83%        | 82%                     |
| Me         >98/2         2 h         94%           Me         5/95         6 h         99%           Me         96/4         16 h         trace           Me         >98/2         5 h         94%           Me         25/1         0.3h         93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Me         >98/2         2 h         94%           Me         5/95         6 h         99%           Me         96/4         16 h         trace           Me         >98/2         5 h         94%           Me         25/1         0.3h         93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Furvl                  | Me                 | >98/2                                 | 4 h         | %68        | %88                     |
| Me         5/95         6 h         99%           Me         96/4         16 h         trace           Me         >98/2         5 h         94%           Me         25/1         0.3h         93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Me         5/95         6 h         99%           Me         96/4         16 h         trace           Me         >98/2         5 h         94%           Me         25/1         0.3h         93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2'$ -CF $_3$ -Ph      | Me                 | >98/2                                 | 2 h         | 94%        | 95%                     |
| Me         96/4         16 h         trace           Me         >98/2         5 h         94%           Me         25/1         0.3h         93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Me         96/4         16 h         trace           Me         >98/2         5 h         94%           Me         25/1         0.3h         93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mesityl                | Me                 | 5/95                                  | 6 h         | %66        | 2%96                    |
| Me >98/2 5 h 94%<br>Me 25/1 0.3h 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Me >98/2 5 h 94%<br>Me 25/1 0.3h 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mesityl                | Me                 | 96/4                                  | 16 h        | trace      | NA                      |
| 25/1 0.3h 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25/1 0.3h 93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | zzkr_                  | Me                 | >98/2                                 | 5 h         | 94%        | %88                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E Carlo                | Me                 | 25/1                                  | 0.3h        | 93%        | 91%                     |

<sup>&</sup>lt;sup>a</sup>Unless otherwise indicated, all reactions were performed on a 0.3 mmol scale at 0.1 M in 1, 4-dioxane at 23 °C using 2.5% 2 and 5.5% ligand 1; the yields were isolated yields and ee values were determined by chiral HPLC.

 $<sup>^{</sup>b}Z/E$  ratio was determined by  $^{1}H$ -NMR.

 $<sup>^{</sup>c}$ The ee values were determined by analysis of the derivative described in supporting information part.

Trost and Xu

Page 9

Reactions with proton sources.

|                                               | <b>10 %</b> | 0                  | 0        | 0        | 0                  | 5 14  |
|-----------------------------------------------|-------------|--------------------|----------|----------|--------------------|-------|
|                                               | % 6 % 9     | 0                  | 6        | 91       | 22                 | 9/ (  |
| , t                                           | 9 % 9       | 9                  | 10       | 83 (     | 27                 | 92 (  |
| + 9<br>+ 2<br>- 2<br>- 3<br>- 4<br>- 4<br>- 6 | 4 %(ee)     | 94(94)             | 90(93)   | 17(81)   | 71(87)             | 8(63) |
| 4 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 +       | time min    | 30                 | 15       | 15       | 10                 | \$    |
| <b>1</b>                                      | solvent     | dioxane            | dioxane  | dioxane  | THF                | THF   |
| м                                             | R,          | Me                 | Н        | Н        | Н                  | Н     |
|                                               | <b>~</b>    | CO <sub>2</sub> Me | $CO_2Me$ | $COCH_3$ | CO <sub>2</sub> Me | сосн  |
|                                               |             | 1                  | 2        | 3        | 4                  | 5     |