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P
hysics 101 wisdom suggests that
we need to overcome the static
friction force, Fs, to initiate the
lateral motion of one solid body

over another one and that a force
greater than the kinetic friction, Fk, is
required to maintain the gliding nature
of the contact. To drag a solid through
a fluid, no such threshold forces exist.
Many scientists are therefore tempted to
conclude that a smaller force is required
to push a large cruise ship through still
waters than to slide a salt shaker over
the dining table, provided that time is
not an issue. The potential pitfall in this
reasoning stems from the difficulty of
clearly distinguishing a pinned from a
sliding state, which makes it difficult to
determine a precise value for static fric-
tion. Extremely small sliding velocities
may remain unnoticed, because the dis-
tance that a supposedly pinned solid
displaces within a day or even a year is
below the detection limit of the experi-
mental apparatus. A problem with static
friction is that it may be conceptually
ill-defined. First, Fs is not single-valued
even if the materials in contact, the
load, and a potentially present lubricant
are well specified. Instead static friction
is known to depend on the age of the
contact (the increase is logarithmic in
time over a broad range of contact ages)
and the rate with which the shear stress
is increased. Second, static friction may
not even be static. Transient creep-like
motion, difficult to detect at the macro-
scopic scale, can take place before the
rapid slip event (1). To probe the funda-
mental laws of static friction, one there-
fore needs to study extremely small
sliding velocities vs. Going down to vs
slightly �1 �m/s for a paper-on-paper
system, Baumberger and coworkers
(2, 3) showed that creep occurs in those
systems during the stick phase, although
the lateral forces were well below Fs. In
this issue of PNAS, Yang, Zhang, and
Marder (4) push the envelope even
more slowly and manage to resolve slid-
ing velocities down to 10�5 �m/s. Their
analysis of this experimental data in
terms of a rate and state model for fric-
tion suggests that slip precedes static
friction and furthermore confirms the
expectation that creep takes place at
shear forces much below the static
friction.

Rate and State Models: From
Micrometers to Tectonic Scales
Rate and state models for friction were
originally developed in the geophysical

community to describe the slow time
evolution of mechanical contacts, in par-
ticular those of rock (5–7). These theo-
ries are based on the observation that
intimate mechanical contact tends to
happen only at a miniscule fraction of
the apparent contact area, which is
caused by the rough, self-affine nature
of typical surface topographies (8, 9). At
the onset of sliding, previously existing
microscopic contact points break and
new ones are formed, leading to a com-
plicated dynamics of aging and rejuvina-
tion. The key idea of rate and state
theories is to cast the history depen-
dence into one or several (phenomeno-
logical) state variables �, whose physical
interpretation differs. In the simplest
case, � is associated with the (average)
age of contact points, but alternative
interpretations are possible. In addition
to the logarithmic dependence of fric-
tion on the waiting time (or state vari-
able), friction increases logarithmically
with sliding velocity. To reflect these
observations (at sufficiently large values
of � and vs), Yang, Zhang, and Marder
(4) chose the following expression for
the friction coefficient � (ratio of nor-
mal and lateral force):

� � �0 � A ln � v
v*

� 1�
� B ln � �

�*
� 1� . [1]

where �0 can be associated with the
static friction coefficient (vs � 0) of a
nascent contact (� � 0). A, B, v*, and
�* are phenomenological, system-
dependent coefficients in addition to �0.
The advantage of Eq. 1 over the more
regularly used expression � � �0 �
Aln(v/v*) � Bln(�/�*) is that no singu-
larities arise in the zero limits of vs
and �.

To complete the theory, an expression
for the time evolution of the state vari-
able needs to be found. In systems that
show a lot of aging at long times, e.g.,
when the materials yield plastically at
the points of contact, � tends to be as-
sociated with the age of the contact.
However, on time scales between 30 min
and 2 weeks, Yang, Zhang, and Marder
(4) found no evidence for aging in their
systems (steel rubbed against either sili-
con or quartz). This finding motivated
their choice of an expression originally
suggested by Ruina (6), in which � is a
function of past sliding velocities. Con-

sidering a limit of Ruina’s formulation,
in which aging does not play a role, the
following expression for the time deriva-
tive of � was found:

d�

dt
�

v
Dc

� 1
1 � v/v�

� ��, [2]

where Dc is a characteristic linear di-
mension of a single contact point and v�

is a system-dependent term. As the physi-
cal nature of the variable is unspecified,
it may be difficult to fully rationalize
this result. However, one can ascertain
that in the limit of large v, the rate with
which the contact ‘‘rejuvinates’’ is v/Dc,
whereas the contact becomes ‘‘stiffer’’
when the sliding velocity is small. At
zero sliding, no stiffening (roughly simi-
lar to aging) occurs.

The theoretical framework was ap-
plied to two types of experiments. In the
first, a steel frame, into which the sam-
ples (quartz or silicon) were clamped,
was extended by 0.5 �m for 16 s and
then it was not further elongated for
another 284 s. This 5-min protocol was
repeated several times. In the second
sort of experiment, the frame was
stretched continuously as a function of
time with loads varying from 120 to
1,500 N. The rate-state model captured
the experimental features quantitatively.
However, it was necessary to set the co-
efficient for static friction of a nascent
contact, �0, to zero. The implication
would be that surfaces need to slip on a
submicron scale before they can lock
together. Of course, this does not mean
that the static friction itself is zero. An
(upper-bound) estimate for static fric-
tion is Fs � Bln(1 � 1/�*); � cannot
exceed unity because of Eq. 2.

Microscopic Origin of Interlocking
It may be worth placing the interpreta-
tion resulting from the rate state treat-
ment into Coulomb’s microscopic pic-
ture for solid friction (10): ‘‘. . . ou bien
il faut supposer que les molécules des
surfaces des deux plans en contact con-
tracte, par leur proximetée, une cohér-
ence qu’il faut vaincre pour conduire le
movement’’ (. . . or one has to assume
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that the surface molecules of the two
opposing planes contract because of
their proximity into a coherence, which
needs to be overcome to produce mo-
tion). The rate-state model suggests that
one needs a little bit of slip on a micro-
scopic scale before this ‘‘contraction’’
takes place. This idea seems provocative
given that there are quite a few static
friction mechanisms not requiring sub-
micron slips. Some of these mechanisms
are interlocking because of adsorbed
layers, pinning via (chemical) defects,
material mixing and/or cold welding, or
local, elastic and plastic instabilities
(11). One can speculate that the concept
of contact stiffness resolves the issue:
solid–solid interfaces have been found
to behave as if they had a shear stiffness
�: for forces well below Fs, linear, elastic

displacements between the two solids
have been identified (12). Interestingly,
� does not appear to correlate with the
elastic properties of the contacting sol-
ids, but it can rather be described as the

ratio, � � L/�, formed by the normal
force or load L pushing the solids to-
gether and a length � in the order of
1–2 �m, which like Dc, corresponds to
typical linear dimensions of single-
asperity contacts. However, although the

concept of contact stiffness shows the
correct trends, the values of 1/� appear
to be too small to account for the mag-
nitude of the measured effects.

The observations by Yang, Zhang,
and Marder (4) certainly further solidify
the idea that static friction is not truly
static and it is intriguing that their ob-
servations can be cast into a simple and
thus elegant rate-state model, which
would require interfaces to slip before
they stick. Still, it will not be necessary
to rewrite all aspects on solid friction in
physics 101 textbooks. Velocities of 10�5

�m/s can be considered negligible for
most practical purposes and it will re-
main easier to push a cruise ship
through still waters than to slide a salt
shaker over the dining table at such
small velocities.
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Creep takes place at
shear forces much below

the static friction.
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