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Abstract
It is well known that ethanol damages the developing nervous system by augmenting apoptosis.
Previously, this laboratory reported that ethanol augments apoptosis in fetal rhombencephalic
neurons, and that the increased apoptosis is associated with reduced activity of the
phosphatidylinositol 3’kinase pathway and downstream expression of pro-survival genes. Other
laboratories have shown that another mechanism by which ethanol induces apoptosis in developing
neurons is through the generation of reactive oxygen species (ROS) and the associated oxidative
stress.

The present study used an in vitro model to investigate the potential neuroprotective effects of several
antioxidants against ethanol-associated apoptosis in fetal rhombencephalic neurons. The investigated
antioxidants included three phenolics: (-)-epigallocatechin-3-gallate (EGCG), a flavanoid
polyphenol found in green tea; curcumin, found in tumeric; and resveratrol (3,5,4’-
trihydroxystilbene), a component of red wine. Additional antioxidants, including melatonin, a
naturally occurring indole, and α-lipoic acid, a naturally occurring dithiol, were also investigated.

These studies demonstrated that a 24-hour treatment of fetal rhombencephalic neurons with 75 mM
ethanol caused a 3-fold increase in the percentage of apoptotic neurons. However, co-treatment of
these cultures with any of the five different antioxidants prevented ethanol-associated apoptosis.
Antioxidant treatment did not alter the extent of apoptosis in control neurons, i.e., those cultured in
the absence of ethanol. These studies showed that several classes of antioxidants can exert
neuroprotection against ethanol-associated apoptosis in fetal rhombencephalic neurons.
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Introduction
Fetal Alcohol Syndrome (FAS) is considered the most common preventable cause of mental
retardation in the United States and affects approximately1-2 per 1,000 live births (Sampson
et al., 1997). Prenatal exposure to alcohol can cause a range of disorders known as Fetal Alcohol
Spectrum Disorders (FASD) of which FAS is the most severe. Children with FAS exhibit
growth deficiencies, mental retardation, and specific craniofacial abnormalities (Jones and
Smith, 1975; Mattson et al., 1996; Wattendorf, and Muenke, 2005). In utero ethanol exposure
is also associated with impairments in learning, verbal skills, attention, visual-spatial skills,
executive function, and memory (Mattson et al., 1996; Mattson et al., 1999). Human studies
show that fetal exposure to alcohol can damage several developing CNS regions, including the
cerebellum, basal ganglia, and corpus callosum (Roebuck et al., 1998; Riley et al., 2004); it
also affects cortical thickness (Sowell et al., 2007).

In vitro and in vivo studies of animal models show that ethanol damages the developing CNS
by reducing neurons in the cortex, cerebellum, hippocampus, and dorsal and median raphe
(Marcussen, et al., 1994; Goodlett and Eilers, 1997; Tajuddin and Druse, 1999; 2001; Chen et
al., 2001; Jacobs and Miller, 2001; Moulder, et al., 2002). Reportedly, a single high dose of
ethanol, administered during a vulnerable developmental period, causes neurodegeneration in
the rodent forebrain, caudate nucleus, nucleus accumbens, hippocampus, amygdala, thalamus,
and cerebellum (Ikonomidou, et al., 2000; Dikranian et al., 2005. The CNS damage associated
with early ethanol exposure adversely impacts several developing CNS neurotransmitter
systems, e.g., those containing GABA, serotonin dopamine, noradrenaline, acetylcholine, and
glutamate (reviewed by Druse, 1996; Goodlett and Horn, 2001).

Although the mechanism(s) by which ethanol damages the developing CNS are not fully
elucidated, it is well established that apoptosis is involved. In fact, this laboratory finds that
the loss of the developing serotonin (5-HT) neurons of the dorsal and median raphe region
(Tajuddin and Druse, 1999; 2001) is caused by ethanol-associated apoptosis (Druse et al.,
2004; 2005; 2007). Moreover, these effects are accompanied by a decrease in the activity of
the phosphatidylinositol 3’kinase (PI-3K) → pAkt pro-survival pathway and the downstream
reduction in the expression of NF-kB dependent genes that encode pro-survival/anti-apoptotic
proteins (Druse et al., 2005- 2007), e.g. Bcl-2, Bcl-XL, X-inhibitor of apoptosis protein (XIAP),
cIAP-1, and cIAP-2.

Another mechanism by which ethanol damages the developing CNS is through the generation
of oxidative stress (Heaton et al., 2002; Ramachandran et al., 2003; Watts et al., 2005; Lee et
al., 2007). In vitro ethanol exposure causes a brisk increase in reactive oxygen species (ROS)
in cortical and fetal rhombencephalic neurons (Ramachandran et al., 2003; Lee et al., 2007);
the ROS increase in cortical neurons is followed by mitochondrial-mediated apoptosis
(Ramachandran et al., 2003). It appears that the extent of the ROS response to ethanol depends
on the brain region examined and on the relative developmental vulnerability of that brain
region (Heaton et al., 2003). Fetal cells are particularly vulnerable to oxidative stress because
they have low levels of endogenous antioxidants (Ramachandran et al., 2003) and because
ethanol alters levels of enzymatic antioxidants (Heaton et al., 2003; Watts et al., 2005).

The present study investigated the potential neuroprotective effects of several antioxidants,
including three phenolics: (-)-epigallocatechin-3-gallate (EGCG), a flavanoid polyphenol
found in green tea; curcumin, found in tumeric; and resveratrol (3,5,4’-trihydroxystilbene), a
component of red wine (Zhuang et al., 2003). This study also evaluated potential
neuroprotective effects of two other antioxidants: melatonin, a naturally occurring indole; and
α-lipoic acid, a naturally occurring dithiol. Although these compounds all exert antioxidant/
free radical chelating effects, they also mediate non-antioxidant functions that might contribute
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to their neuroprotective effects. Interestingly, it appears that the non-antioxidant functions of
antioxidants involve several diverse mechanisms. Some of the non-antioxidant effects, i.e.,
those of α-lipoic acid (LA), dihydrolipoic acid (DHLA), melatonin, curcumin, and resveratrol,
involve the maintenance of cellular levels of endogenous antioxidants and/or antioxidant
enzymes (Suh et al., 2004; Shila et al., 2005; Barlow-Walden et al., 1995; Kotler et al., 1998;
Zhuang et al., 2003; Juknat et al., 2005; Lin, 2007). In addition, some antioxidants, i.e., LA,
curcumin, and EGCG can rapidly activate the PI-3K pro-survival pathway in certain cell types
(Zhang et al., 2001; Muller et al., 2003; Koh et al., 2004; Antonio and Druse, 2006; Kang et
al., 2007), suggesting that this effect may be directly linked with the action of these
antioxidants. Additional pro-survival effects of antioxidants are also likely to be involved;
EGCG can down-regulate the expression of several pro-apoptotic genes (Levites et al., 2002;
Mandel et al., 2004).

Results
The present study investigated the potential of several antioxidants to attenuate ethanol-
associated apoptosis. Cultures of fetal rhombencephalic neurons were maintained for 24 hours
[day in vitro 5 (DIV5) to DIV6] in the presence of 0 mM (control) or 75 mM ethanol (ethanol)
and in the presence or absence of either a single antioxidant, i.e., 1 μM EGCG, 1 μM melatonin,
1 μM curcumin, 10 μM α-lipoic acid, or 10 μM resveratrol. At the end of the treatment period,
neurons were stained with Hoechst 33342 to identify and quantify neurons with fragmented/
apoptotic or nonapoptotic nuclei.

Figure 1 includes pictures of neurons that were stained with Hoechst 33342, which identifies
fragmented/apoptotic nuclei. Pictures of neurons treated with 0 or 75 mM ethanol are shown
in Figures 1A and 1B and those of neurons co-treated with the five antioxidants are shown in
Figures 1C-1L. The diverse sizes of nuclei reflect the different sizes and morphology of the
mixed population of neuronal cells in these cultures. Each arrow identifies a single apoptotic
nucleus or a cluster of fragments of an apoptotic nucleus. The results of analyses of Hoechst
stained neurons are graphically presented in Figure 2 for clarity. Data from the antioxidant
treatment groups and the associated figures follow: EGCG - Figures 1C & D, Figure 2A;
curcumin - Figures 1E & 1F, Figure 2B); resveratrol - Figures 1G & 1H, Figure 2C; α-lipoic
acid - Figures 1I & 1J, Figure 2D; and melatonin - Figures 1K & 1L, Figure 2E. For each “n”,
all treatments with ethanol and each of the five antioxidants were conducted simultaneously.

The results depicted in Figures1 and 2 demonstrate that a 24-hour treatment of fetal
rhombencephalic neurons with ethanol markedly augments apoptosis. In cultures maintained
with no ethanol or antioxidants (control cultures), only 4.7% of fetal rhombencephalic neurons
maintained under control conditions had apoptotic nuclei. However, the concentration of
neurons with apoptotic nuclei tripled (p < .01) when fetal rhombencephalic neurons were
maintained in the presence of 75 mM ethanol.

Co-treatment with each antioxidant provides significant neuroprotection to the ethanol-treated
neurons {EGCG [F(1,23) = 13.5, p < .01], curcumin [F(1,23) = 20.2, p < .01], resveratrol [F
(1,23) = 22.3, p < .01], α-lipoic acid [F(1,22) = 24.9, p < .01], and melatonin [F(1,23) = 19.4,
p < .01]}. In fact, the percentage of apoptotic neurons in cultures co-treated with ethanol and
antioxidant is comparable to those of control neurons (p> 0.05) as well as to control neurons
treated with antioxidant (p> 0.05).

Discussion
The present study clearly demonstrates that ethanol augments apoptosis in fetal
rhombencephalic neurons. This finding confirms earlier studies from this laboratory (Druse et
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al., 2004; 2005; 2007) and reports that detected ethanol-associated apoptosis in neurons from
other brain regions. For example, previous studies found that ethanol increases apoptosis in
the developing neural crest (Dunty et al., 2001) and cerebellar granule cells (Ramachandran et
al., 2001) as well as in cells from cortex (Cheema et al., 2000) and forebrain (Ikonomidou et
al., 2000). Very likely, the CNS damage found in children exposed to ethanol in utero is due
in part to the ethanol-associated apoptotic reduction in CNS neurons.

Previously, this laboratory reported that one of the mechanisms by which ethanol caused cell
death in fetal rhombencephalic neurons was likely to involve the decreased activity of the PI-3K
prosurvival pathway and the reduced expression of downstream NF- κB dependent pro-survival
genes, i.e., Bcl-2, Bcl-XL, XIAP, cIAP1, and cIAP2. Importantly, the neuroprotective effects
of the 5-HT1A agonist ipsapirone (Druse et al., 2004-2006) and of the astroglial protein S100B
(Druse et al., 2007) were accompanied by maintenance of normal to elevated activity of PI-3K-
> pAkt (Druse et al., 2005; 2007). The latter effects were associated with increased expression
of the genes encoding the anti-apoptotic proteins XIAP (ipsapirone or S100B treatments), Bcl-
XL (ipsapirone) and/or Bcl-2 (S100B) (Druse et al., 2006; 2007) in ethanol-treated neurons.

It is significant that several laboratories (Heaton et al., 2002; Ramachandran et al., 2003; Watts
et al., 2005), including this one (Lee et al., 2007), report that ethanol treatment is associated
with increased production of ROS, because increased levels of ROS cause apoptotic cell death
(Koh et al., 2003). The involvement of ROS in ethanol-associated apoptosis of fetal
rhombencephalic neurons is emphasized by in vivo studies which show that exogenous
antioxidants exert both neuroprotective (Heaton et al., 2004) and anti-teratogenic effects (Chen
et al., 2004) against the damaging effects of ethanol. Moreover, the present investigation shows
that all antioxidants investigated in this study, i.e. the phenols EGCG, curcumin and resveratrol;
the indole melatonin; and the dithiol α-lipoic acid, prevent and/or attenuate ethanol-associated
apoptosis.

The ability of the investigated antioxidants to prevent and/or attenuate ethanol associated
apoptosis extends our understanding of their neuroprotective effects. Previous studies showed
that LA treatment counteracts an arsenic-induced decrease in GSH levels in several brain
regions (Shila et al., 2005), and that EGCG protects PC12 cells against the effects of serum
withdrawal (Reznichenko et al., 2005) and oxidative stress (Koh etal., 2003). In addition,
resveratrol prevents NO-related toxicity (Bastianetto et al., 2000) in hippocampal neurons and
curcumin blocks toxicity from the Alzheimer’s disease related Aβ42 oligomer in
neuroblastoma cells (Yang et al., 2005). Moreover, melatonin prevents H2O2 activation of the
pro-apoptotic enzyme, caspase-3 (Juknat et al., 2005). Nonetheless, while low doses of these
antioxidants are neuroprotective, high doses of many antioxidants exert pro-oxidant effects
and augment apoptosis (Watjen et al., 2005; Williams et al., 2004).

It is likely that antioxidant/free radical scavenging properties of antioxidants make a significant
contribution to their anti-apoptotic effects. However, each of these antioxidants exerts
additional effects that can potentially contribute to their neuroprotective actions. Some of their
non-antioxidant effects contribute to the maintenance of a healthy ROS level within the cell
by modulating levels of endogenous antioxidants and the antioxidant enzymes, which facilitate
the detoxification of ROS. For example, α-lipoic acid is converted to dihydrolipoic acid within
the cell, and both of these compounds increase cellular levels of the endogenous antioxidant
GSH (Suh et al., 2004). GSH levels can also be influenced by melatonin, which increases the
activity of the GSH-associated antioxidant enzymes GSH peroxidase and GSH reductase
(Barlow-Walden et al., 1995; Juknat et al., 2005). Reportedly, both resveratrol and curcumin
induce the gene encoding heme oxygenase 1 (HOX1) (Zhuang et al., 2003; Lin, 2007); HOX
1 is an antioxidant enzyme that degrades the pro-oxidant heme. Antioxidants can also exert
neuroprotective effects by increasing the activity of pro-survival proteins or by downregulating
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the expression of pro-apoptotic genes. For example, LA, curcumin, and EGCG can activate
the PI-3K pro-survival pathway (Zhang et al., 2001; Muller et al., 2003; Koh et al., 2004;
Antonio and Druse, 2006; Kang et al., 2007), and EGCG mediates downregulation of the
expression of Bax and Bad (Levites et al., 2002; Mandel et al., 2004), which encode pro-
apoptotic proteins. Moreover, the protein kinase C (PKC) pathway has been implicated with
the protective effects of EGCG (Reznichenko et al.., 2005). Additional studies are needed to
establish whether any or all of these alternative non-antioxidant mechanisms contributed to the
neuroprotective effects of the five investigated antioxidants against ethanol-associated
apoptosis in fetal rhombencephalic neurons.

Experimental Procedure
Neuronal Cultures

Dissection and culturing of fetal rhombencephalic neurons have been described by this
laboratory (Druse et al., 2004-2007). Rhombencephalic tissue was dissected from gestation
day 14 (G14) embryos taken from timed-pregnancy Sprague-Dawley rats, where G=0
corresponds to the day of insemination (Honegger and Monnet-Tschudi, 1997; Eriksen and
Druse, 2001). Tissue from the G14 rhombencephalon was used because this brain region
contains the cell bodies of developing 5-HT neurons and other CNS neurons (Shahar et al.,
1989). All animal care and use procedures were reviewed and approved by the Institutional
Animal Care and Use Committee at Loyola University Chicago, Stritch School of Medicine.

Using sterile techniques, rhombencephalic tissue was mechanically disaggregated (Eriksen and
Druse, 2001) and the suspension was collected. Dispersed cells were seeded on the first day
in vitro, i.e., DIV1, onto four-chambered slides (Nalge and Nunc, Naperville, IL) that were
previously coated with poly-D-lysine at a density of ∼350,000 cells/chamber. Cells were
maintained in Dulbecco’s Minimal Essential Media/F12 (DMEM/F12) media, supplemented
with hydrocortisone-21 sulfate, Basal Medium Eagles Vitamin Solution, B27 serum-free
medium supplement, and 0.25% fetal bovine serum. After 24 hrs (DIV2), gliogenesis was
arrested using 0.4 μM cytosine arabinoside. Media was changed on DIV2 and DIV5. Neurons
were maintained in culture for a total of 5 days (DIV1 to DIV6). Previous studies in this
laboratory showed that by DIV6, 5-HT neurons comprised ∼20% to 30% of fetal
rhombencephalic neurons and glial fibrillary acidic protein (GFAP) positive astrocytes
accounted for < 5% of the cells (Druse et al., 2004).

Ethanol and Antioxidant Treatments
On DIV5, cultures were divided into groups that would be treated with 0 mM ethanol (control)
or 75 mM ethanol and/or with specific antioxidants (1 μM EGCG, 1 μM melatonin, 1 μM
curcumin, 10 μM α-lipoic acid, or 10 μM resveratrol. At this time the media was changed from
that containing standard B27 supplement to one in which the B27 supplement lacked
antioxidants. Antioxidant doses were based on the lowest dose that appeared to demonstrate
ethanol-associated neuroprotection in preliminary studies which screened these antioxidants
at concentrations of 1, 10, and 50 μM. This laboratory reported that use of an ethanol chamber
system, used in this and prior studies, maintains the ethanol concentration in cultures at ≥85%
of the initial concentration. (Eriksen and Druse, 2001).

Detection and Quantification of Apoptotic Nuclei
Neurons with unfragmented and fragmented/apoptotic nuclei were identified using Hoechst
33342, a nucleic acid stain, as described previously by this laboratory (Druse et al., 2004).
Previously, we showed that Hoechst 33342, which is used to visualize fragmented nuclei, and
TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling),
which labels fragmented DNA in apoptotic cells, identify the identical population of apoptotic
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fetal rhombencephalic neurons in control and ethanol-treated cultures (Druse et al., 2004). For
each “n”, ∼600 control and ethanol neurons were analyzed methodically without consideration
of treatment; these neurons were counted on ∼15 fields from two chambers (7-8 fields/
chamber). Five to seven separate replicate experiments were performed for each treatment
group. As described previously (Druse et al., 2004), intact cells characterized as apoptotic cells
contained fragmented apoptotic nuclei, while non-apoptotic cells lacked fragmented nuclei.
We did not observe necrotic cells, e.g., those exhibiting signs of swelling and the presence of
diffuse or finely clumped chromatin. Apparent extracellular debris, fragmented cells, and
‘dots’, were not counted.

Statistical Analyses
Data were analyzed using a 2-way ANOVA [ethanol × antioxidant] and a Tukey’s post-hoc
analysis. A p < 0.05 was considered to be significant.
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Figure 1. Ethanol augments apoptosis in fetal rhombencephalic neurons in vitro, and antioxidants
prevent the pro-apoptotic effects of 75 mM ethanol
Figures 1A and 1B show fetal rhombencephalic neurons stained with Hoechst 33342 from
cultures that were maintained under control conditions (no ethanol) or that were treated for the
last 24 hours (DIV5 to DIV6) with 75 mM ethanol (ethanol). Control and ethanol-treated
neurons treated with EGCG (1C, 1D), curcumin (1E, 1F), resveratrol (1G, 1H), LA (1I, 1J),
and melatonin (1K, 1L) are also depicted. Hoechst-stained living and apoptotic neurons were
identified as described. A higher magnification (see inset) was used to identify neurons that
exhibit the characteristics of apoptotic cells. Arrows point to one or a cluster of fragmented/
apoptotic nuclei.
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Figure 2. A graphic depiction of the percentage of apoptotic neurons in cultures of fetal
rhombencephalic neurons that were maintained under control conditions (no ethanol) or in the
presence of 75 mM ethanol and treated with EGCG (2A), curcumin (2B), resveratrol (2C), LA (2D)
or melatonin (2E)
The ** indicates that ethanol treatment significantly augmented apoptosis (p < .01); this
treatment tripled the number of apoptotic neurons. Each of these antioxidants exerted a
significant main effect when cultures of fetal rhombencephalic neurons were co-treated with
the antioxidant and ethanol [(1 μM EGCG (F(1,23) = 13.5, p < .01), 1 μM curcumin (F(1,23)
= 20.2, p < .01), 10 μM resveratrol (F(1,23) = 22.3, p < .01), 10 μM α-lipoic acid (F(1,22) =
24.9, p < .01) , and 1 μM melatonin (F(1,23) = 19.4, p < .01)]. The ## indicates that the
percentage of apoptotic neurons in ethanol-treated cultures was significantly decreased by co-
treatment with antioxidant (p < .01). In fact, the percentage of apoptotic neurons in cultures
co-treated with ethanol and each of the antioxidants was comparable to that in control cultures
(p> .05). In addition, antioxidant treatment did not significantly alter the percentage of
apoptotic neurons (p > .05) in control (no ethanol) cultures. In each of the 5-7 separate
experiments, treatments with ethanol and each of five antioxidants were conducted
simultaneously. Results are graphically depicted for each antioxidant for clarity of presentation.
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