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Abstract
An advanced intermediate in our planned synthesis of mitomycin C has been acquired in nine steps
from tert-butyl glyoxylate. The aziridinyl pyrrolidine and quinone subunits are coupled
regioselectively to arrive at an enamine that is prepared for C10 homologation.

The mitomycin natural products have attracted the attention of medicinal and synthetic
chemists for nearly a half century.1,2 This interest results from several factors, including the
continued clinical use of mitomycin C (1) for treatment of various forms of cancer. The unique
pyrroloquinone backbone presents a high degree and density of oxidation, and this functional
group array is the source of mitomycin C’s unique ability to crosslink DNA.3 Consequently,
a substantial challenge for chemical synthesis is presented. Indeed, there have been many
reports detailing synthetic efforts toward this class of natural products, and although interest
has not waned with the passing of time, only two total syntheses of the title compound4 and
two syntheses of another member of the class, mitomycin K (3)5, have been logged.

A successful synthesis, particularly one amenable to derivative formation, might further
improve the therapeutic profile for this natural product class,6 and rejuvenate efforts to use
contemporary biochemical techniques to similarly improve efficacy.

To achieve a high degree of convergency, our retrosynthesis disconnects the
aziridinopyrrolidine and quinone across the central dihydropyrrole ring. On the basis of our
previous studies of regioselective enamine additions to methoxy quinones,7 we expected the
coupling of enamine 6 to quinone 7 to be regioselective for methoxy substitution at the
bromomethoxy olefin.8 Construction of enamine 6 could arise from a cyclization of an amino
alkyne via formal alkyne hydroamination. Convergency could again be served if an aziridine
ring-forming reaction could be used that would also form the aziridine carbon-carbon bond.
Hence, we began our studies by investigating the traditional methods for aziridine construction
by carbon-carbon bond formation.9
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Scheme 1 lists several general lines of investigation toward this end. Based on the work of
O’Donnell10 and Miller,11 we anticipated that glycinyl Schiff base 8 might engage propargyl
aldehyde 7 in an aldol reaction. The resulting β-hydroxy ester could be converted to the
corresponding mesylate. In order to avoid competitive cyclization to the corresponding
oxazoline,12 in situ trapping with mesyl chloride was necessary. Reductive amination then
provided the desired aziridine in good overall yield. Unfortunately, the initial addition was
minimally diastereoselective and favored the undesired trans-isomer.

The Darzens reaction13 using an azomethine electrophile provided a more direct route to the
aziridine since it avoided the necessity to activate the hydroxy imine intermediate in eq 1 and
reduce the imine functionality.14 The reaction of propargyl imine 10 under these conditions
provided only trace amounts of aziridine, much less the desired cis-9. By activating the imine
electrophile without resorting to a more robust protecting group at nitrogen, we examined the
diphenylmethyl amine Schiff base of ethyl glyoxylate (11). Combination of the reactants at
low temperature, followed by slow warming to room temperature, resulted in modest yields of
the desired aziridine. Of greater significance is the high cis-diastereoselection observed in this
transformation, a prerequisite for eventual formation of the aziridinopyrrolidine. Substitution
of chloroacetonitrile for tert-butyl chloroacetate was also effective and cis-selective, but
provided a greater amount of competing nitrile homocoupling.

Conversion of the cis-aziridinosuccinate 12 to enamine precursor 16 (Scheme 2) began with
selective saponification of the ethyl ester using aqueous sodium hydroxide in ethanol (97%).
Straightforward coupling of the carboxylic acid with commercial (S)-α-methyl benzylamine
(98% ee) was achieved in 74% yield using DCC/HOBT to furnish diastereomeric cis-aziridines
14a/b. Selective reduction of tert-butyl ester 14 provided the corresponding aldehydes in good
yield as judged by spectroscopic analysis of the crude reaction mixture. Careful
chromatographic separation at this stage provided the diastereomeric cis-aziridines in pure
form, however at the expense of chemical yield due to their instability. Subsequent alkynylation
of the less polar aldehyde was effected using the Gilbert-Seyferth phosphonate reagent.15 In
this manner, the terminal alkyne was produced in 85% yield from 14a. Red-Al reduction of
the amide was similarly effective, and alkynyl amine 16a was obtained in 79% yield. Upon
standing for one week, this amine crystallized and single crystals could be obtained by slow
evaporation from dichloromethane. X-ray crystallographic analysis enabled assignment of the
stereochemistry depicted in Scheme 2.

An aminomercuration/coupling sequence was next evaluated with quinone 5 (Scheme 3).
Enamine 6b was generated in situ by treatment of alkynylamine 16b16 with Hg(II),17 and this
solution was added to quinone 5. The resulting deep blue solution was concentrated at 0 °C.
Analysis of this crude reaction mixture by 1H NMR suggested selective and efficient
production of a coupled product (see SI for details). However, successful purification of the
putative enamine required cold column chromatography (ice water cooling). Using the bright
color of the conjugated system as an indicator during this process, a product was isolated and
kept at low temperature during NMR analysis. Notwithstanding, the material decomposed
slowly with an approximate half-life of 1.5 days at −15 °C. The reactivity of this intermediate,
manifested as instability during purification, is a feature we anticipated and desired as part of
our synthesis strategy; notwithstanding, we sought to fully characterize it by spectroscopic
means.

Immediate recognition of several features suggested its identity to be 4b. The aminobenzyl
methine proton resonances are readily differentiated by chemical shift. The methine of the
enamine is consistently deshielded to 4–5 ppm. The corresponding aziridine DPM-methine is
further upfield at 3–4 ppm. HMBC, HMQC, and COSY experiments allowed assignment of
all proton and carbon resonances. The coupling regiochemistry was identified by 3JCH between
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the enamine proton resonance (H9) and the quinone carbonyl carbon (C8) nearest the methoxy
substituent. The latter was assigned indirectly by identification of the companion quinone
carbonyl (C5) for which a 3JCH crosspeak could be observed from the quinone ring methyl
subsituent. Consistent with our earlier observation, the methoxy group is preferentially
substituted despite the electronic counter-influence of the distal methoxy. This behavior is
consistent with rate-limiting addition in this nucleophilic vinylogous acyl substitution. The
geometry of the newly formed enamine olefin was assigned by analogy to similar reactions we
have investigated, all of which provide the E-olefin stereoisomer.7

In summary, we have arrived at an advanced intermediate (4) in our approach to the synthesis
of the antitumor agent mitomycin C. This is accomplished in only nine steps from ethyl
glyoxylate. The next significant step is homologation to install the C10 hydroxymethyl; the
enamine character of 4, as well as the steric influence of the aziridine are perfectly suited to
this task. Details on this front will be the subject of future reports.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Retrosynthesis of mitomycin C
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Scheme 1.
Approaches to the synthesis of cis-aziridine precursors to 6
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Scheme 2.
Synthesis of alkynyl amine 16
* then separate diastereomers
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Scheme 3.
Formation of the key enamine intermediate and subsequent alkylation to the mitomycin
backbone
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